Australasian Plant Pathology

, Volume 47, Issue 2, pp 119–134 | Cite as

Potential pathogenicity determinants in the genome of ‘Candidatus Liberibacter solanacearum’, the causal agent of zebra chip disease of potato

  • Jenna M. Gilkes
  • Rebekah A. Frampton
  • Grant R. Smith
  • Renwick C. J. Dobson
Review

Abstract

‘Candidatus Liberibacter solanacearum’ is an unculturable α-proteobacterium that is the putative causal agent of Zebra Chip (ZC) disease of potato. This disease is a major problem in potato growing areas in the United States and New Zealand, as it affects growth and yield of the crop which has resulted in millions of dollars of loss to the potato industries. ZC disease is characterised by browning and necrotic flecking of vascular and internal tissue, which when fried present as dark stripes and streaks within the chip rendering them commercially unacceptable. The potato-infecting clades of this bacterium are vectored by Bactericera cockerelli, the tomato potato psyllid. Vertical transmission via seed potatoes is another mechanism that can spread the disease. Current disease management strategies target the psyllid: as the pathogen is transmitted relativity quickly, these strategies are limited in control of the disease. Thus, new management strategies that target the bacterial pathogen are required. A number of high quality bacterial genomes are now available and comparative genomics has identified a number of potential targets. This bacterium has a relatively small, AT-rich genome that contains all the components of a type I secretion system, ABC transporters, as well as ten bifunctional protein genes that encode proteins with two different enzymatic domains. Two of the bifunctional genes encode proteins similar to those described as pathogenicity or virulence determinants in other organisms. The relevance of these bifunctional genes to pathogenicity and virulence of this species is discussed in relation to maintaining these domains in a relatively small, AT-rich genome and their putative pathogenicity/virulence roles.

Keywords

Candidatus Liberibacter solanacearum Zebra chip disease Bifunctional protein 

References

  1. Abad JA, Bandla M, French-Monar RD, Liefting LW, Clover GRG (2009) First report of the detection of ‘Candidatus Liberibacter’ species in zebra chip disease-infected potato plants in the United States. Plant Dis 93:108.  https://doi.org/10.1094/PDIS-93-1-0108C CrossRefGoogle Scholar
  2. Albus U, Baier R, Puhler A, Niehaus K (2001) Suppression of an elicitor induced oxidative burst reaction in Medicago sativa cell cultures by Sinorhizobium meliloti lipopolysaccharides. New Phytol 151:597–606.  https://doi.org/10.1046/j.0028-646x.2001.00214.x CrossRefGoogle Scholar
  3. Alfaro-Fernandez A, Siverio F, Cebrian M, Villaescusa F, Font M (2012) Candidatus Liberibacter solanacearum associated with Bactericera trigonicaaffected carrrots in the Canary Islands. Plant Dis 96:581.  https://doi.org/10.1094/PDIS-11-11-0918-PDN CrossRefGoogle Scholar
  4. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75PubMedCrossRefPubMedCentralGoogle Scholar
  5. Baron C, Coombes B (2007) Targeting bacterial secretion systems: benefits of disarmament in the microcosm. Infect Disord Drug Targets 7:19–27.  https://doi.org/10.2174/187152607780090685 PubMedCrossRefGoogle Scholar
  6. Bastolla U, Demetrius L (2005) Stability constraints and protein evolution: the role of chain length, composition and disulphide bonds. Protein Eng Des Sel 18:405–415.  https://doi.org/10.1093/protein/gzi045 PubMedCrossRefGoogle Scholar
  7. Bentley SD, Parkhill J (2004) Comparative genomic structure of prokaryotes. Annu Rev Genet 38:771–792.  https://doi.org/10.1146/annurev.genet.38.072902.094318 PubMedCrossRefGoogle Scholar
  8. Brown JS, Gilliand SM, Holden DW (2001) A Streptococcus pneumoniae pathogenicity island encoding an ABC transporters involved in iron uptake and virulence. Mol Microbiol 40:572–585.  https://doi.org/10.1046/j.1365-2958.2001.02414 PubMedCrossRefGoogle Scholar
  9. Brubaker RR (1970) Interconversion of purine mononucleotides in Pasteurella pestis. Infect Immun 1:446–454PubMedPubMedCentralGoogle Scholar
  10. Buchman JL, Sengoda VG, Munyaneza JE (2011) Vector transmission efficiency of liberibacter by Bactericera cockerelli (Hemiptera: Triozidae) in zebra chip potato disease: effects of psyllid life stage and inoculation access period. J Econ Entomol 1045:1486–1495.  https://doi.org/10.1603/EC11123 CrossRefGoogle Scholar
  11. Buchman JL, Fisher TW, Sengoda VG, Munyaneza JE (2012) Zebra chip progression: from inoculation of potato plants with liberibacter to development of disease symptoms in tubers. Am J Potato Res 89:159–168.  https://doi.org/10.1007/s12230-012-9238-3 CrossRefGoogle Scholar
  12. Butler CD, Trumble JT (2012) The potato psyllid, (Sulc) (Hemiptera: Triozidae): life history, relationship to plant diseases, and management strategies. Terr Arthropod Rev 5:87–111CrossRefGoogle Scholar
  13. Casteel CL, Hansen AK, Walling LL, Paine TD (2012) Manipulation of plant defense responses by the tomato psyllid (Bactericerca cockerelli) and its associated endosymbiont Candidatus Liberibacter psyllaurous. PLoS One 7:4.  https://doi.org/10.1371/annotation/9903158b-c45c-44b9-b152-7ffb5bec0c32 CrossRefGoogle Scholar
  14. Chen C, Chen X, Xie T, Hatting JL, Yu X, Ye S, Wang Z, Shentu X (2016) Diverse bacterial symbionts of insect-pathogenic fungi and possible impact on the maintenance of virulence during infection. Symbiosis 69:47–58.  https://doi.org/10.1007/s13199-015-0371 CrossRefGoogle Scholar
  15. CIP (2008) Agricultural research for development: potato facts and figures. International Potato Center, RomeGoogle Scholar
  16. Coletta-Filho HD, Targon MLPN, Takita MA, De Negri JD, Pompeu J, Machado MA, Amaral AM, Muller GW (2004) First report of the causal agent of huanglongbing Candidatus Liberibacter asiaticus in Brazil. Plant Dis 88:1382.  https://doi.org/10.1094/PDIS.2004.88.12.1382C CrossRefGoogle Scholar
  17. CRC Plant Biosecurity (2016) Case study: zebra chip. PBCRC Publishing. http://www.pbcrc.com.au/news/2016/pbcrc/case-study-zebra-chip. Accessed 2 Jan 2017
  18. Crosslin JM, Munyaneza JE, Brown JK, Liefting LW (2010) Potato zebra chip disease; a phytopathological tale. Plant Health Prog.  https://doi.org/10.1094/PHP-2010-0317-01-RV
  19. Dalio RJD, Magalhaes DM, Rodrigues CM, Arena GD, Oliveira TS, Souza-Neto RR, Picchi SC, Martins PMM, Santos PJC, Maximo HJ, Pacheco IS, De Souza AA, Machado MA (2017) PAMPS, PRR’s effectors and R-genes associated with citrus-pathogen interactions. Ann Bot 119:749–774.  https://doi.org/10.1093/aob/mcw238 PubMedPubMedCentralGoogle Scholar
  20. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364PubMedCrossRefPubMedCentralGoogle Scholar
  21. Dehbashi S, Pourmand MR, Mashhadi R (2016) Characterization of Afb, a novel bifunctional protein in Streptococcus agalactiae. Iran J Microbiol 8:73–79PubMedPubMedCentralGoogle Scholar
  22. Duan Y, Gottwald T, Zhou L, Gabriel D (2008) First report of dodder transmission of ‘Candidatus Liberibacter asiaticus’ to tomato (Lycopersicon esculentum). Plant Dis 92:831.  https://doi.org/10.1094/PDIS-92-5-0831C CrossRefGoogle Scholar
  23. Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H, Liu L, Vahling CM, Gabriel DW, Williams KP, Dickerman A, Sun Y, Gottwald T (2009) Complete genome sequence of citrus huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ obtained through metagenomics. Mol Plant-Microbe Interact 228:1011–1020.  https://doi.org/10.1094/MPMI-22-8-1011 CrossRefGoogle Scholar
  24. Duan Q, Zhou M, Zhu L, Zhu G (2013) Flagella and bacterial pathogenicity. J Basic Microbiol 53:1–8.  https://doi.org/10.1002/jobm.201100335 PubMedCrossRefGoogle Scholar
  25. Dufresne A, Garczarek L, Partensky F (2005) Accelerated evolution associated with genome reduction in a free-living prokaryote. Genome Biol 6:14.  https://doi.org/10.1186/gb-2005-6-2-r14 CrossRefGoogle Scholar
  26. Fagen JR (2014) Comparative study of liberibacter species divergent in culturability and virulence. Dissertation, University of FloridaGoogle Scholar
  27. Fagen JR, Leonard MT, Coyle JF, Mccullough CM, Davis-Richardson AG, Davis MJ, Triplett EW (2014a) Liberibacter crescens the first cultured member of the genus liberibacter. Int J Syst Evol Microbiol 64:2461–2466.  https://doi.org/10.1099/ijs.0.063255-0 PubMedCrossRefGoogle Scholar
  28. Fagen JR, Leonard MT, McCullough CM, Edirisinghe JN, Henry CS, Davis MJ, Triplett EW (2014b) Comparative genomics of cultured and uncultured strains suggests genes essential for free-living growth of liberibacter. PLoS One 9:1–11.  https://doi.org/10.1371/journal.pone.0084469 CrossRefGoogle Scholar
  29. Fares MA, Ruiz-González M, Moya A, Santiago EF, Barrio E (2002) Endosymbiotic bacteria: groEL buffers against deleterious mutations. Nature 417:398.  https://doi.org/10.1038/417398a PubMedCrossRefGoogle Scholar
  30. Feng Y, Chin CY, Chakravartty V, Gao R, Crispell EK, Weiss DS, Cronan JE (2015) The atypical occurrence of two biotin protein ligases in Francisella novicida is due to distinct roles in virulence and biotin metabolism. mBio 60:591–615.  https://doi.org/10.1128/mBio.00591-15 Google Scholar
  31. Fernández A, Lynch M (2011) Non-adaptive origins of interactome complexity. Nature 474:502–505.  https://doi.org/10.1038/nature09992 PubMedCrossRefPubMedCentralGoogle Scholar
  32. Fisher TW, Vyas M, He R, Nelson W, Cicero JM, Soderlund CA, Gang DR, Brown JK (2014) Comparison of potato and asian citrus psyllid adult and nymph transcriptomes identified vector transcripts with potential involvement in circulative, propagative liberibacter transmission. Pathogens 3:875–907.  https://doi.org/10.3390/pathogens3040875 PubMedCrossRefPubMedCentralGoogle Scholar
  33. Fitzgerald B (2017) West Australian potato disease threats stunts trade as growers warned spread almost inevitable. Australian Broadcasting Company. http://www.abc.net.au/news/rural/2017-03-31/wa-seed-industry-frustrated-over-biosecurity-trade-halt/8401726. Accessed 30 July 2017
  34. Frey J (1995) Virulence in Actinobacillus pleuropneumoniae and RTX toxins. Trends Microbiol 3:257–261.  https://doi.org/10.1016/S0966-842X(00)88939-8 PubMedCrossRefGoogle Scholar
  35. Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756PubMedCrossRefGoogle Scholar
  36. Garnier M, Danel N, Bové JM (1984) The greening organism is a gram negative bacterium. Proceedings of 9th conference IOCV 115-124Google Scholar
  37. Garnier M, Jagoueix-Eveillard S, Cronje PR, Le Roux HF, Bove JM (2000) Genomic characterization of a liberibacter present in an ornamental rutaceous tree, Calodendrum capense, in the western cape province of South Africa proposal of Candidatus Liberibacter africanus subsp. capensis. Int J Syst Evol Microbiol 50:2119–2125.  https://doi.org/10.1099/00207713-50-6-2119 PubMedCrossRefGoogle Scholar
  38. Gill G (2006) Tomato psyllid detected in New Zealand. Biosecurity 69:10–11Google Scholar
  39. Glaser P, Sakamoto H, Bellalou J, Ullmann A, Danchin A (1988) Secretion of cyclolysin, the calmodulin-sensitive adenylate cyclase-haemolysin bifunctional protein of Bordetella pertussis. EMBO J 7:3997–4004PubMedPubMedCentralGoogle Scholar
  40. Glass JI, Lefkowitz EJ, Glass JS, Heiner CR, Chen EY, Cassell GH (2000) The complete sequence of the mucosal pathogen Ureaplasma urealyticum. Nature 407:757–762.  https://doi.org/10.1038/35037619 PubMedCrossRefGoogle Scholar
  41. Glynn JM, Islam MS, Bai Y, Lan S, Wen A, Gudmestad NC, Civerolo EL, Lin H (2012) Multilocus sequence typing of ‘Candidatus Liberibacter solanacearum’ isolates from North America and New Zealand. J Plant Pathol 94:1.  https://doi.org/10.4454/jpp.fa.2012.007 Google Scholar
  42. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38:695–699.  https://doi.org/10.1093/nar/gkq313 CrossRefGoogle Scholar
  43. Haapalainen M (2014) Biology and epidemics of Candidatus Liberibacter species, psyllid-transmitted plant-pathogenic bacteria. Ann Appl Biol 165:172–198.  https://doi.org/10.1111/aab.12149 CrossRefGoogle Scholar
  44. van Ham RCHJ, Kamerbeek J, Palacios C, Rausell C, Abascal F, Bastolla U, Fernández JM, Jimenez L, Postigo M, Silva FJ, Tamames J, Viguera E, Latorre A, Valencia A, Moran F, Moya A (2003) Reductive genome evolution in Buchnera aphidicola. Proc Natl Acad Sci U S A 100:581–586.  https://doi.org/10.1073/pnas.0235981100 PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hansen AK, Trumble JT, Stouthamer R, Paine TD (2008) A new huanglongbing species, ‘Candidatus Liberibacter psyllaurous’ found to infect tomato and potato, is vectored by the psyllid Bactericera cockerelli (Sulc). Appl Environ Microbiol 74:5862–5865.  https://doi.org/10.1128/AEM.01268-08 PubMedCrossRefPubMedCentralGoogle Scholar
  46. Hartung JS, Shao J, Kuykendall DL (2011) Comparison of the Candidatus Liberibacter asiaticus genome adapted for an intracellular lifestyle with other members of the Rhizobiales. PLoS One 6:23289.  https://doi.org/10.1371/journal.pone.0023289 CrossRefGoogle Scholar
  47. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J, Hashimoto M, Komatsu K, Kagiwada S, Yamaji Y, Namba S (2009) A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. Proc Natl Acad Sci U S A 106:6416–6421.  https://doi.org/10.1073/pnas.081303810 PubMedCrossRefPubMedCentralGoogle Scholar
  48. Jagoueix S, Bove JM, Garnier M (1994) The phloem-limited bacterium of greening disease of citrus is a member of the alpha subdivision of the proteobacteria. Int J Syst Bacteriol 44:379–386PubMedCrossRefGoogle Scholar
  49. Jain M, Fleites LA, Gabriel DW (2015) Prophage encoded peroxidase in Candidatus Liberibacter asiaticus is a secreted effector that suppresses plant defences. Mol Plant Microbe Interact 28:1330–1337.  https://doi.org/10.1094/MPMI-07-15-0145-R PubMedCrossRefGoogle Scholar
  50. Jenkins A, Cote C, Twenhafel N, Merkel T, Bozue J, Welkos S (2011) Role of purine biosynthesis in Bacillus anthracis pathogenesis and virulence. Infect Immun 79:153–166.  https://doi.org/10.1128/IAI.00925-10 PubMedCrossRefGoogle Scholar
  51. Jensen JH (1939) Psyllid yellows in Nebraska 1938. Plant Dis Rep 23:35–26Google Scholar
  52. Jorgensen N, Butler RC, Vereijssen J (2013) Biorational insecticides for control of the tomato potato psyllid. New Zealand. Plant Prot 66:333–340Google Scholar
  53. Kim YR, Lee SE, Kim CM, Kim SY, Shin EK, Shin DH, Chung SS, Choy HE, Progulske-Fox A, Hillman JD, Handfield M, Rhee JH (2003) Characterization and pathogenic significance of Vibrio vulnificus antigens preferentially expressed in septicemic patients. Infect Immun 71:5461–5471.  https://doi.org/10.1128/IAI.71.10.5461-5471.2003 PubMedCrossRefPubMedCentralGoogle Scholar
  54. Koh EJ, Zhou L, Williams DS, Park J, Ding N, Duan Y, Kang BH (2012) Callose deposition in the phloem plasmodesmata and inhibition of phloem transport in citrus leaves infected with Candidatus Liberibacter asiaticus. Protoplasma 249:687–697.  https://doi.org/10.1007/s00709-011-0312-3 PubMedCrossRefGoogle Scholar
  55. Kulshin VA, Zahringer U, Lindner B, Frasch CE, Tsai CM, Dmitriev BA, Rietschel ET (1992) Structural characterization of the lipid a component of pathogenic Neisseria meningitidis. J Bacteriol 174:1793–1800PubMedCrossRefPubMedCentralGoogle Scholar
  56. Kuo CH, Ochman H (2009) Deletional bias across the three domains of life. Genome Biol Evol 1:145–152.  https://doi.org/10.1093/gbe/evp016 PubMedCrossRefPubMedCentralGoogle Scholar
  57. Lacey LA, Liu TX, Buchman JL, Munyaneza JE, Goolsby JA, Horton JR (2011) Entomopathogenic fungi (hypocreales) for control of potato psyllid, Bactericera cockerelli (Šulc) (Hemiptera: Triozidae) in an area endemic for zebra chip disease of potato. Biol Control 56:271–278.  https://doi.org/10.1016/j.biocontrol.2010.11.012 CrossRefGoogle Scholar
  58. Lafleche D, Bove JM (1970) Mycoplasmes dans les agrumes atteints de ‘greening’, de ‘stubborn’ ou de maladies similaires. Fruits 25:455–465Google Scholar
  59. Lai KK, Davis-Richardson AG, Dias R, Triplett EW (2016) Identification of the genes required for the culture of Liberibacter crescens, the closest cultured relative of the uncultured liberibacter plant pathogens. Front Microbiol 7:041–011.  https://doi.org/10.3389/fmicb.2016.00547 CrossRefGoogle Scholar
  60. Lally ET (1999) The interaction between RTX toxins and target cells. Trends Microbiol 7:356–361.  https://doi.org/10.1016/S0966-842X(99)01530-9 PubMedCrossRefGoogle Scholar
  61. Lapage SP, Sneath PHA, Lessel EF, Skerman VBD, Seeliger HPR, Clark WA (1992) International code of nomenclature of bacteria: bacteriological code 1990 revision. ASM Press, Washington DCGoogle Scholar
  62. Leonard MT, Fagen JR, Davis-Richardson AG, Davis MJ (2012) Complete genome sequence of Liberibacter crescens BT-1. Stand Genomic Sci 7:271–283.  https://doi.org/10.4056/sigs.3326772 PubMedCrossRefPubMedCentralGoogle Scholar
  63. Lercher BY, Pal C (2008) Integration of horizontally transferred genes into regulatory interaction networks takes many million years. Mol Bio Evol 25:559–567.  https://doi.org/10.1093/molbev/msm283 CrossRefGoogle Scholar
  64. Li W, Abad JA, French-Monar RD, Rascoe J, Wen A, Gudmestad NC, Secor GA, Lee IM, Duan Y, Levy L (2009) Multiplex real-time PCR for detection, identification and quantification of ‘Candidatus Liberibacter solanacearum’ in potato plants with zebra chip. J Microbiol Methods 78:59–65.  https://doi.org/10.1016/j.mimet.2009.04.009 PubMedCrossRefGoogle Scholar
  65. Li A, Geng J, Cui D, Shu C, Zhang S, Yang J, Xing J, Wang J, Ma F, Hu S (2011) Genome sequence of Agrobacterium tumefaciens strain F2, a bioflocculant producing bacterium. J Bacteriol 193:5531.  https://doi.org/10.1128/JB.05690-11 PubMedCrossRefPubMedCentralGoogle Scholar
  66. Li W, Cong Q, Pei J, Kinch LN, Grishin NV (2012) The ABC transporters in Candidatus Liberibacter asiaticus. Proteins 80:2614–2628.  https://doi.org/10.1002/prot.24147 PubMedCrossRefPubMedCentralGoogle Scholar
  67. Li J, Pang Z, Trivedi P, Zhou X, Ying X (2017) Candidatus Liberibacter asiaticus encodes a functional salicylic acid (SA) hydroxylase that degrades SA to suppress plant defences. Mol Plant Microbe Interact 30:620–630.  https://doi.org/10.1094/MPMI-12-16-0257-R PubMedCrossRefGoogle Scholar
  68. Liefting LW, Ward LI, Shiller JB, Clover GRG (2008a) A new Candidatus Liberibacter species in Solanum betaceum (tamarillo) and Physalis peruviana (cape gooseberry) in New Zealand. Plant Dis 92:1588–1201.  https://doi.org/10.1111/epp.12043 CrossRefGoogle Scholar
  69. Liefting LW, Perez-Egusquiza C, Clover GRG (2008b) A new ‘Candidatus Liberibacter’ species in Solanum tuberosum in New Zealand. Plant Dis 92:1474–2276.  https://doi.org/10.1099/ijs.0.007377-0 CrossRefGoogle Scholar
  70. Liefting LW, Weir BS, Pennycook SR, Clover GRG (2009) Candidatus Liberibacter solanacearum associated with plants in the family Solanaceae. Int J Syst Evol Microbiol 59:2274–2276.  https://doi.org/10.1099/ijs.0.007377-0 PubMedCrossRefGoogle Scholar
  71. Lin H, Gudmestad NC (2013) Aspects of pathogens genomics, diversity, epidemiology, vector dynamics and disease management for a newly emerged disease of potato: zebra chip. Phytopathology 103:524–537.  https://doi.org/10.1094/PHYTO-09-12-0238-RVW PubMedCrossRefGoogle Scholar
  72. Lin H, Lou B, Glynn JM, Doddapaneni H, Civerolo EL, Chen C, Duan Y, Zhou L, Vahling CM (2011) The complete genome sequence of ‘Candidatus Liberibacter Solanacearum ’, the bacterium associated with potato zebra chip disease. PLoS One 6:19135.  https://doi.org/10.1371/journal.pone.0019135 CrossRefGoogle Scholar
  73. MacLean AM, Sugio A, Makarova OV, Findlay KC, Grieve VM, Toth R (2011) Phytoplasma effectors SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants. Plant Physiol 157:831–841.  https://doi.org/10.1104/pp.111.181586 PubMedCrossRefPubMedCentralGoogle Scholar
  74. Mathieu M, Debousker G, Vincent S, Viviani F, Bamas-Jacques N, Mikol V (2005) Escherichia coli FolC structure reveals an unexpected dihydrofolate binding site providing an attractive target for anti-microbial therapy. J Biol Chem 280:18916–18922.  https://doi.org/10.1074/jbc.M413799200 PubMedCrossRefGoogle Scholar
  75. McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26CrossRefGoogle Scholar
  76. McFarland WC, Stocker BAD (1987) Effect of different purine auxotrophic mutations on mouse-virulence of a vi-positive strain of Salmonella Dublin and of two strains of Salmonella Typhimurium. Microb Pathog 3:129–141.  https://doi.org/10.1016/0882-4010(87)90071-4 PubMedCrossRefGoogle Scholar
  77. McWilliam H, Li W, Uludag M, Squizzati S, Park YM, Buso N, Cowley AP, Lopez R (2013) Analysis tool web services from the EMBL-EBI. Nucleic Acids Res 41:597–600.  https://doi.org/10.1093/nar/gkt376 CrossRefGoogle Scholar
  78. Mendonca AG, Alves RJ, Pereira-Leal JB (2011) Loss of genetic redundancy in reductive genome evolution. PLoS Comput Biol 7:e1001082.  https://doi.org/10.1371/journal.pcbi.1001082 PubMedCrossRefPubMedCentralGoogle Scholar
  79. Miles GP, Samuel MA, Chen J, Civerolo EL, Munyaneza JE (2010) Evidence that cell death is associated with zebra chip disease in potato tubers. Am J Potato Res 87:337–349.  https://doi.org/10.1007/s12230-010-9140-9 CrossRefGoogle Scholar
  80. Moore BD (2004) Bifunctional and moonlighting enzymes: lighting the way to regulatory control. Trends Plant Sci 9:221–228.  https://doi.org/10.1016/j.tplants.2004.03.005 PubMedCrossRefGoogle Scholar
  81. Moran NA (1996) Accelerated evolution and Muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A 93:2873–2878PubMedCrossRefPubMedCentralGoogle Scholar
  82. Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108:583–586.  https://doi.org/10.1016/S0092-8674(02)00665-7 PubMedCrossRefGoogle Scholar
  83. Mori H, Ito K (2001) The sec protein-translocation pathway. Trends Microbiol 9:494–500.  https://doi.org/10.1016/S0966-842X(01)02174-6 PubMedCrossRefGoogle Scholar
  84. Morris J, Shiller J, Mann R, Smith G, Yen A, Rodoni B (2017) Novel Candidatus Liberibacter species identified in the Australian eggplant psyllid Acizzia solanicola. Microb Biotechnol 10:833–844PubMedCrossRefPubMedCentralGoogle Scholar
  85. Munyaneza JE (2012) Zebra chip disease of potato: biology, epidemiology and management. Am J Potato Res 89:329–350.  https://doi.org/10.1007/s12230-012-9262-3 CrossRefGoogle Scholar
  86. Munyaneza JE, Goolsby JA, Crosslin JM, Upton JE (2007) Further evidence that zebra chip potato disease in the lower Rio Grande Valley of Texas is associated with Bactericera cockerelli. Subtropical. Plant Sci 59:30–37Google Scholar
  87. Munyaneza JE, Buchman JL, Upton JE, Goolsby JA, Crosslin JM, Bester G, Miles GP, Sengoda VG (2008) Impact of different potato psyllid populations on zebra chip disease incidence, severity, and potato yield. Subtropical. Plant Sci 60:27–37Google Scholar
  88. Munyaneza JE, Fisher TW, Sengoda VG, Garczynski SF, Nissinen A, Lemmetty A (2010a) First report of ‘Candidatus Liberibacter solanacearum’ associated with psyllid-affected carrots in Europe. Plant Dis 94:639–639.  https://doi.org/10.1094/PDIS-94-5-0639A CrossRefGoogle Scholar
  89. Munyaneza JE, Fisher TW, Sengoda VG, Garczynski SF, Nissinen A, Lemmetty A (2010b) Association of ‘Candidatus Liberibacter Solanacearum’ with the psyllid, Trioza apicalis (Hemiptera: Triozidae) in Europe. J Econ Entomol 103:1060–1070PubMedCrossRefGoogle Scholar
  90. Munyaneza JE, Buchman JL, Sengoda VG, Fisher TW, Pearson CC (2011) Susceptibility of selected potato varieties to zebra chip disease. Am J Potato Res 88:435–440.  https://doi.org/10.1007/s12230-011-9209-0 CrossRefGoogle Scholar
  91. Murray RGE, Schleifer KH (1994) Taxonomic notes : a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 11:174–176.  https://doi.org/10.1099/00207713-44-1-174 CrossRefGoogle Scholar
  92. Murray RG, Stackebrandt E (1995) Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int J Syst Bacteriol 45:186–187.  https://doi.org/10.1099/00207713-45-1-186 PubMedCrossRefGoogle Scholar
  93. Nagradova N (2003) Interdomain communications in bifunctional enzymes: how are different activities coordinated. IUBMB Life 55:459–466.  https://doi.org/10.1080/15216540310001602805 PubMedCrossRefGoogle Scholar
  94. Navarre DA, Shakya R, Holden J, Crosslin JM (2009) LC-MS analysis of phenolic compounds in tubers showing zebra chip symptoms. Am J Potato Res 86:88–95CrossRefGoogle Scholar
  95. Nelson WR, Fisher TW, Munyaneza JE (2011) Haplotypes of ‘Candidatus Liberibacter solanacearum’ suggest long-standing separation. Eur J Plant Pathol 130:5–12.  https://doi.org/10.1007/s10658-010-9737-3 CrossRefGoogle Scholar
  96. Newman MA, von Roepenack-Lahaye E, Parr A, Daniels MJ, Dow JM (2002) Prior exposure to lipopolysaccharides potentiates expression of plant defences in response to bacteria. Plant J 29:487–495.  https://doi.org/10.1046/j.0960-7412.2001.00233.x PubMedCrossRefGoogle Scholar
  97. Nielsen H, Birkholz S, Andersen LP, Moran AP (1994) Neutrophil activation by Helicobacter pylori lipopolysaccharides. J Infect Dis 170:135–139.  https://doi.org/10.1093/infdis/170.1.135 PubMedCrossRefGoogle Scholar
  98. Nilsson AI, Koskiniemi S, Eriksson S, Kugelberg E, Hinton JCD, Andersson DI (2005) Bacterial genome size reduction by experimental evolution. Proc Natl Acad Sci U S A 102:12112–12116.  https://doi.org/10.1073/pnas.0503654102 PubMedCrossRefPubMedCentralGoogle Scholar
  99. O’Connell DM, Wratten SD, Pugh AR, Barnes AM (2012) New species association biological control, two coccinellid species and an invasive psyllid pest in New Zealand. Biol Control 62:86–92.  https://doi.org/10.1016/j.biocontrol.2012.03.011 CrossRefGoogle Scholar
  100. Ochman H, Kelkar YD (2013) Genome reduction promotes increase in protein functional complexity in bacteria. Genetics 193:303–307.  https://doi.org/10.1534/genetics.112.145656 PubMedCrossRefPubMedCentralGoogle Scholar
  101. Ochman H, Moran NA (2001) Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292:1096–1099.  https://doi.org/10.1126/science.1058543 PubMedCrossRefGoogle Scholar
  102. Ogden SC (2011) Tomato potato psyllid and liberibacter in New Zealand-impact and research programme overview. Proceedings of the 11th Annual Zebra Chip Reporting Session 6–9Google Scholar
  103. Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007) Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318:113–116PubMedCrossRefGoogle Scholar
  104. Pereira S, Zille A, Micheletti E, Moradas-Ferreira P, De Phillipis R, Tamagnini P (2009) Complexity of cyanobacterial exopolysaccharideas: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol Rev 33:917–941.  https://doi.org/10.1111/j.1574-6976.2009.00183 PubMedCrossRefGoogle Scholar
  105. Plant Health Australia (2010) Threat specific contingency plan: zebra Chip complex. Industry Biosecurity Plan for the Potato Industry. http://www.planthealthaustralia.com.au/wp-content/uploads/2013/03/Zebra-chip-CP-2011.pdf. Accessed 14 Feb 2017
  106. Pletsch DJ (1947) The potato psyllid Paratrioza cockerelli (Sulc) in biology and control. EPPO Bull 446:95–208.  https://doi.org/10.1111/epp.12044 Google Scholar
  107. Polissi A, Pontiggia A, Feger G, Altieri M, Mottl H, Ferrari L, Simon D (1998) Large scale identification of virulence genes from Streptococcus pneumoniae. Infect Immun 66:5620–5629PubMedPubMedCentralGoogle Scholar
  108. Prager SM, Wallis C, Trumble JT (2015) Indirect effects of one plant pathogen on the transmission of a second pathogen and the behavior of its potato psyllid vector. Environ Entomol 44:1065–1075.  https://doi.org/10.1093/ee/nvv081 PubMedCrossRefGoogle Scholar
  109. Prasad S, Xu J, Zhang Y, Wang N (2016) SEC-translocon dependent extracytoplasmic proteins of Candidatus Liberibacter asiaticus. Front Microbiol 7:1–9CrossRefGoogle Scholar
  110. Purushothaman S, Gupta G, Srivastava R, Ramu VG, Surolia A (2008) Ligand specificity of group I biotin protein ligase of Mycobacterium tuberculosis. PLoS One 3:1–12.  https://doi.org/10.1371/journal.pone.0002320 CrossRefGoogle Scholar
  111. Quiblier C, Seidl K, Roschitzki B, Zinkernagel AS, Berger-Bachi B, Senn MM (2013) Secretome analysis defines the major role of SECDF in Staphylococcus aureus. PLoS One 8:e63513.  https://doi.org/10.1371/journal.pone.0063513 PubMedCrossRefPubMedCentralGoogle Scholar
  112. Raddadi N, Gonella E, Camerota C, Pizzinat A, Tedeschi R, Crotti E, Mandrioli M, Bianco PA, Daffonchio D, Alma A (2011) Candidatus Liberibacter europaeus that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte. Environ Microbiol 13:414–426.  https://doi.org/10.1111/j.1462-2920.2010.02347 PubMedCrossRefGoogle Scholar
  113. Ravindran A, Saenkham P, Gad-Levy J, Tamborindeguy C, Lin H, Gross D, Pierson EA (2017) Characterization of the serralysin-like gene of Candidatus Liberibacter solanacearum associated with potato zebra chip disease. Phytopathology. https://www.ncbi.nlm.nih.gov/m/pubmed/29106346. Accessed 23 July 2017
  114. Rego AT, Chandran V, Waksman G (2010) Two step and one step secretion mechanisms in gram negative bacteria: contrasting the type IV secretion system and the chaperone usher pathway of pilus biogenesis. Biochem J 425:475–488.  https://doi.org/10.1042/BJ20091518 PubMedCrossRefGoogle Scholar
  115. Richards HL (1928) A new and destructive disease of the potato in Utah and its relation to the potato psylla. Phytopathology 18:140–141Google Scholar
  116. Sandanayaka WRM, Moreno A, Tooman LK, Page-Weir NEM, Fereres A (2014) Stylet penetration activities linked to the acquisition and inoculation of Candidatus Liberibacter solanacearum by its vector tomato potato psyllid. Entomol Exp Appl 151:170–181.  https://doi.org/10.1111/eea.12179 CrossRefGoogle Scholar
  117. Secor GA, Rivera-Varas VV (2004) Emerging diseases of cultivated potato and their impact on Latin America. Rev Latinoa de La Papa 1:1–8Google Scholar
  118. Secor GA, Rivera VV, Abad JA, Lee I, Clover GRG, Liefting LW, Li X, De Boer SH (2009) New diseases and epidemics association of ‘ Candidatus Liberibacter solanacearum ’ with zebra chip disease of potato established by graft and psyllid transmission, electron microscopy and PCR. New Diseases and Epidemics 93:330–335.  https://doi.org/10.1094/PDIS-93-6-0574 Google Scholar
  119. Sengoda VG, Buchman JL, Henne DC, Pappu HR, Munyaneza JE (2013) Candidatus Liberibacter solanacearum titre over time in Bactericera cockerelli (hemiptera: triozidae) after acquisition from infected potato and tomato plants. J Econ Entomol 106:1964–1972.  https://doi.org/10.1603/EC13129 PubMedCrossRefGoogle Scholar
  120. Sengoda VG, Cooper WR, Swisher KD, Henne DC, Munyaneza JE (2014) Latent period and transmission of ‘Candidatus Liberibacter solanacearum’ by the potato psyllid Bactericera cockerelli (hemiptera: triozidae). PLoS One 9:e93475.  https://doi.org/10.1371/journal.pone.0093475 PubMedCrossRefPubMedCentralGoogle Scholar
  121. Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Soding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol 7:539.  https://doi.org/10.1038/msb.2011.75 PubMedCrossRefPubMedCentralGoogle Scholar
  122. Sugawara H, Ohyama A, Mori H, Kurokawa K (2009) Microbial Genome Annotation Pipeline (MiGAP) for diverse users. The 20th International Conference on Genome Informatics Poster and Software Demonstrations, YokohamaGoogle Scholar
  123. Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA (2011) Diverse targets of pytoplasma effectors from plant development to defense against insects. Annu Rev Phytopathol 49:175–195.  https://doi.org/10.1146/annurev-phyto-072910-095323 PubMedCrossRefGoogle Scholar
  124. Suh JR, Herbig AK, Stover PJ (2001) New perspectives on folate catabolism. Annu Rev Nutr 21:255–282.  https://doi.org/10.1146/annurev.nutr.21.1.255 PubMedCrossRefGoogle Scholar
  125. Tamames J, Moya A, Valencia A (2007) Modular organization in the reductive evolution of protein-protein interaction networks. Genome Biol 8:94.  https://doi.org/10.1186/gb-2007-8-5-r94 CrossRefGoogle Scholar
  126. Tamura GS, Kuypers JM, Smith S, Raff H, Rubens CE (1994) Adherence of group B streptococci to cultured epithelial cells: roles of environmental factors and bacterial surface components. Infect Immun 62:2450–2458PubMedPubMedCentralGoogle Scholar
  127. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729.  https://doi.org/10.1093/molbev/mst197 PubMedCrossRefPubMedCentralGoogle Scholar
  128. Teresani GR, Bertolini E, Alfaro-Fernández A, Martínez C, Tanaka FAO, Kitajima EW, Roselló M, Sanjuan S, Ferrandiz JC, Lopez MM, Cambra M, Font MI (2014) Association of ‘Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection. Phytopathology 104:804–811.  https://doi.org/10.1094/PHYTO-07-13-0182-R PubMedCrossRefGoogle Scholar
  129. Teulon DAJ, Workman PJ, Thomas KL, Nielsen MC (2009) Bactericera cockerelli: incursion, dispersal and current distribution on vegetable crops in New Zealand. New Zealand. Plant Prot 62:136–144Google Scholar
  130. Thompson S, Fletcher JD, Ziebell H, Beard S, Panda P, Jorgensen N, Fowler SV, Liefting LW, Berry L, Pitman AR (2013) First report of ‘ Candidatus Liberibacter europaeus ’ associated with psyllid infested scotch broom. New Disease Reports 27:5197.  https://doi.org/10.5197/j.2044-0588.2013.027.006 CrossRefGoogle Scholar
  131. Thompson SM, Johnson CP, Lu AY, Frampton RA, Sullivan KL, Fiers MWEJ, Crowhurst RN, Pitman AR, Scott IAW, Wen A, Gudmestad NC, Smith GR (2015) Genomes of ‘ Candidatus Liberibacter solanacearum ’ haplotype a from New Zealand and the United States suggest significant genome plasticity in the species. Phytopathology 105:863–871.  https://doi.org/10.1094/PHYTO-12-14-0363-FI PubMedCrossRefGoogle Scholar
  132. Tian J, Bryk R, Itoh M, Suematsu M, Nathan C (2005) Variant tricarboxylic acid cycle in Mycobacterium tuberculosis: identification of an alpha-ketoglutarate decarboxylase. Proc Natl Acad Sci U S A 102:10670–10675.  https://doi.org/10.1073/pnas.0501605102 PubMedCrossRefPubMedCentralGoogle Scholar
  133. Wallis RL (1955) Ecological studies on the potato psyllid as a pest of potatoes. USDA Tech Bull 1107Google Scholar
  134. Wang J, Haapalainen M, Schott T, Thompson SM, Smith GR, Nissinen AI, Pirhonen M (2017a) Genomic sequence of 'Candidatus Liberibacter solanacearum' haplotype C and its comparison with haplotype A and B genomes. PLoS One 12:e0171531.  https://doi.org/10.1371/journal.pone.0171531 PubMedCrossRefPubMedCentralGoogle Scholar
  135. Wang N, Pierson EA, Setubal JC, Jin X, Levy J, Zhang Y, Li J, Rangel LT, Martins J (2017b) The Candidatus Liberibacter host interface: insights into pathogenesis mechansims and disease control. Annu Rev Phytopathol 55:1–482.  https://doi.org/10.1146/annurev-phyto-080516-035513 CrossRefGoogle Scholar
  136. Wann ER, Gurusiddappa S, Hook M (2000) The fibronectin-binding MSCRAMM FnbpA of Staphylococcus aureus is a bifunctional protein that also binds to fibrinogen. J Biol Chem 275:13863–13871.  https://doi.org/10.1074/jbc.275.18.13863 PubMedCrossRefGoogle Scholar
  137. Wen A, Mallik I, Alvarado VY, Pasche JS, Wang X, Li W, Levy L, Lin H, Scholthof HB, Mirkov TE, Rush CM, Gudmestad NC (2009) Detection,distribution and genetic variability of 'Candidatus Liberibacter' species associated with zebra complex disease of potato in North America. Plant Disease 93:1102–1115.  https://doi.org/10.1094/PDIS-93-11-1102
  138. Willems A (2014) The family Phyllobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, Heidelberg, pp 355–418CrossRefGoogle Scholar
  139. Winstanley C, Langille MGI, Fothergill JL, Kukavica-Ibrulj I, Paradis-Bleau C, Sanschagrin F, Thomson NR, Winsor GL, Quail MA, Lennard N, Bignell A, Clarke L, Seeger K, Saunders D, Harris D, Parkhill J, Hancock REW, Brinkman FSL, Levesque RC (2009) Newy introduced genomic prophage islands are critical determinants of in vivo competitiveness in the Liverpool epidemic strain of Pseudomonas Aeruginosa. Genome Res 19:12–23.  https://doi.org/10.1101/gr.086082.108 PubMedCrossRefPubMedCentralGoogle Scholar
  140. Wu F, Deng X, Liang G, Wallis C, Trumble JT, Prager S, Chen J (2015) De novo genome sequence of Candidatus Liberibacter solanacearum from a single potato psyllid in California. Genome Announc 3:e01500–e01515.  https://doi.org/10.1128/genomeA.01500-15 PubMedPubMedCentralGoogle Scholar
  141. Wulff NA, Zhang S, Setubal JC, Almeida NF, Martins EC, Harakava R, Kumar D, Rangel LT, Foissac X, Bove JM, Gabriel DW (2014) The complete genome sequence of ‘Candidatus Liberibacter americanus’ associated with citrus huanglongbing. Mol Plant-Microbe Interact 27:163–176.  https://doi.org/10.1094/MPMI-09-13-0292-R PubMedCrossRefGoogle Scholar
  142. Yao J, Saenkham P, Levy J, Ibanez F, Noroy C, Mendoza A, Huot O, Meyer DF, Tamborindeguy C (2016) Interactions Candidatus Liberibacter solanacearum-Bactericera cockerelli: haplotype effect on vector fitness and gene expression analyses. Front Cell Infect Microbiol 6:62.  https://doi.org/10.3389/fcimb.2016.00062 PubMedCrossRefPubMedCentralGoogle Scholar
  143. Young PG, Smith CA, Sun X, Baker EN, Metcalf P (2006) Purification, crystallization and preliminary X-ray analysis of mycobacterium tuberculosis folypolyglutamate synthase. Acta Crystallogr Sect F Struct Biol Cryst Commun 62:579–582.  https://doi.org/10.1107/S1744309106017180 PubMedCrossRefPubMedCentralGoogle Scholar
  144. Zhang L, Morrison AJ, Thibodeau PH (2015) Interdomain contacts and the stability of serralysin protease from Serratia marcescens. PLoS One 10:e0138419.  https://doi.org/10.1371/journal.pone.0138419 PubMedCrossRefPubMedCentralGoogle Scholar
  145. Zhou L, Powell CA, Li W, Irey M, Duan Y (2013) Prophage mediated dynamics of Candidatus Liberibacter asiaticus populations, the destructive bacterial pathogens of citrus Huanglongbing. PLoS One 8:e82248.  https://doi.org/10.1371/journal.pone.0082248 PubMedCrossRefPubMedCentralGoogle Scholar
  146. Zipfel C, Robatzek S (2010) Pathogen associated molecular pattern triggered immunity: veni, vidi. Plant Physiol 154:551–554.  https://doi.org/10.1104/pp.110.161547 PubMedCrossRefPubMedCentralGoogle Scholar
  147. Zou H, Gowda S, Zhou L, Hajeri S, Chen G, Duan Y (2012) The destructive citrus pathogen, ‘Candidatus Liberibacter asiaticus’ encodes a functional flagellin characteristic of a pathogen-associated molecular pattern. PLoS One 7:e46447.  https://doi.org/10.1371/journal.pone.0046447 PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Australasian Plant Pathology Society Inc. 2018

Authors and Affiliations

  • Jenna M. Gilkes
    • 1
    • 2
  • Rebekah A. Frampton
    • 2
    • 3
  • Grant R. Smith
    • 2
    • 3
  • Renwick C. J. Dobson
    • 1
  1. 1.Biomolecular Interaction Centre, School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
  2. 2.The New Zealand Institute for Plant & Food Research LimitedLincolnNew Zealand
  3. 3.Plant Biosecurity Cooperative Research CentreCanberraAustralia

Personalised recommendations