Australasian Plant Pathology

, Volume 46, Issue 3, pp 267–275 | Cite as

The pandemic biotype of Austropuccinia psidii discovered in South America

  • G. M. Granados
  • A. R. McTaggartEmail author
  • I. Barnes
  • C. A. Rodas
  • J. Roux
  • M. J. Wingfield
Original Paper


The rust fungus Austropuccinia psidii was recently reported from ornamental Corymbia citriodora and plantations of Eucalyptus in Colombia. It is unknown whether the genotypic diversity of the pathogen in Colombia reflects that of other countries in South America or if unique genotypes occur. Multilocus genotypes (MLG) were determined for collections of A. psidii from four host genera, Corymbia, Eucalyptus, Psidium and Syzygium in Colombia and compared to collections from Australia, Brazil, Indonesia, Paraguay and South Africa. The genotypic diversity of 58 samples on 15 genera of Myrtaceae was determined using seven microsatellite markers. Two lineages of A. psidii were detected among Colombian samples. These included a previously unknown genotype on Psidium guajava, different to those sampled from Brazil, as well as the pandemic biotype, which has spread to Pacific countries such as Australia, Hawaii and Indonesia. This is the first time the pandemic biotype of A. psidii has been found in South America where the rust is believed to be native. These findings raise questions with regard to the origin of the pandemic biotype of A. psidii and emphasise the threat that this biotype poses to forestry.


Biosecurity Long distance dispersal Host adaptation Myrtaceae Myrtle rust Pucciniales 



We are grateful to Ms. Ximena Silva (University of Helsinki, Finland) and Dr. Geoff Pegg (Department of Agriculture, Fisheries and Forestry, Horticulture and Forestry Science, Agri-Science Queensland, Australia) for providing samples from Paraguay and Australia, respectively. We also acknowledge Smurfit Kappa Colombia (SKC), the National Research Foundation (NRF) of South Africa (Grant UID 78566), and members of the Tree Protection Co-operative Program (TPCP) based at the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa for logistical and financial support.


  1. Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139CrossRefPubMedGoogle Scholar
  2. Arnaund-Haond S, Belkhir K (2007) GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17CrossRefGoogle Scholar
  3. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48CrossRefPubMedGoogle Scholar
  4. Barrès B, Halkett F, Dutech C, Andrieux A, Pinon J, Frey P (2008) Genetic structure of the poplar rust fungus Melampsora larici-populina: evidence for isolation by distance in Europe and recent founder effects overseas. Infect Genet Evol 5:577–587. doi: 10.1016/j.meegid.2008.04.005 CrossRefGoogle Scholar
  5. Beenken L (2017) Austropuccinia: a new genus name for the myrtle rust Puccinia psidii placed within the redefined family Sphaerophragmiaceae (Pucciniales). Phytotaxa 297:53–61CrossRefGoogle Scholar
  6. Burgess TI, Wingfield MJ (2016) Pathogens on the move: a 100-year global experiment with planted eucalypts. Bioscience. doi: 10.1093/biosci/biw146 Google Scholar
  7. Buriticá CP, Pardo-Cardona VM (1996) Flora urediniana Colombiana. Revista Acad Colomb Ci Exac 20:845–236Google Scholar
  8. Carnegie AJ (2014) First report of Puccinia psidii (Myrtle rust) in Eucalyptus plantations in Australia. Plant Dis 99:161. doi: 10.1094/PDIS-09-14-0901-PDN CrossRefGoogle Scholar
  9. Carnegie AJ, Lidbetter JR, Walker J, Horwood MA, Tesoriero L, Glen M, Priest MJ (2010) Uredo rangelii, a taxon in the guava rust complex, newly recorded on Myrtaceae in Australia. Australas Plant Pathol 39:463–466. doi: 10.1071/ap10102 CrossRefGoogle Scholar
  10. Carnegie AJ, Kathuria A, Pegg GS, Entwistle P, Nagel M, Giblin FR (2016) Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biol Invasions 18:127–144CrossRefGoogle Scholar
  11. Castro HA, Krugner TL, Ideriha CHF, Capello MSC, Marchi AB (1983) Inoculação cruzada de Eucalyptus, goiaba (Psidium guajava) e jambeiro (Syzygium jambos) com Puccinia psidii. Fitopatol Bras 8:491–497Google Scholar
  12. Coelho L, Alfenas AC, Ferreira FA (2001) Variabilidade fisiológica de Puccinia psidii – Ferrugem do Eucalipto. Summa Phytopathol 27:295–300Google Scholar
  13. Coutinho TA, Wingfield MJ, Alfenas AC, Crous PW (1998) Eucalyptus rust: a disease with the potential for serious international implications. Plant Dis 82:819–825CrossRefGoogle Scholar
  14. Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350CrossRefGoogle Scholar
  15. Farris JS (1970) Methods for computing Wagner trees. Syst Zool 19:83–72CrossRefGoogle Scholar
  16. Ferreira FA (1981) Ferrugem do eucalipto – ocorrências, temperatura para germinação de uredosporos, produção de teliosporos, hospedeiro alternativo e resistência. Fitopatol Bras 6:603–604Google Scholar
  17. Ferreira FA (1983) Ferrugem do eucalipto. Rev Árvore 7:91–109Google Scholar
  18. Giblin F (2013) Myrtle rust report: New Caledonia. University of the Sunshine Coast. Maroochydore, QueenslandGoogle Scholar
  19. Giblin F, Carnegie AJ (2014) Puccinia psidii (Myrtle rust) – global host list. Version current at 24 sept. 2014. Accessed 06/12/2016
  20. Giraud T, Jonot O, Shykoff JA (2006) Common sex-linked deleterious alleles in a plant parasitic fungus alter infection success but show no pleitropic advantage. J Evol Biol 19:970–980CrossRefPubMedGoogle Scholar
  21. Glen M, Alfenas AC, Zauza EAV, Wingfield MJ, Mohammed C (2007) Puccinia psidii: a threat to the Australian environment and economy – a review. Australas Plant Pathol 36:1–16CrossRefGoogle Scholar
  22. Graça RN (2011) Genetic diversity of Puccinia psidii populations. Universidade de Viçosa, PhD DissertationGoogle Scholar
  23. Graça RN, Ross-Davis A, Klopfenstein N, Sook M, Peever T, Cannon P, Uchida J, Alfenas AC (2011) Tracking down worldwide Puccinia psidii dispersal. BMC Proc 5:14CrossRefGoogle Scholar
  24. Graça RN, Ross-Davis AL, Klopfenstein NB, Kim M, Peever TL, Cannon PG, Aun CP, Mizubuti EG, Alfenas AC (2013) Rust disease of eucalypts, caused by Puccinia psidii, did not originate via host jump from guava in Brazil. Mol Ecol 22:6033–6047CrossRefPubMedGoogle Scholar
  25. Joffily J (1944) Ferrugem do eucalipto. Bragantia 4:475–487CrossRefGoogle Scholar
  26. Kawanishi T, Uemastu S, Kakishima M, Kagiwada S, Hamamoto H, Horie H, Namba S (2009) First report of rust disease on ohia and the causal fungus, Puccinia psidii, in Japan. J Gen Plant Pathol 75:428–431CrossRefGoogle Scholar
  27. Kern FD, Toro RA (1935) Notes on some fungi from Colombia. Mycologia 27:615–617CrossRefGoogle Scholar
  28. Kern FD, Thurston HW Jr, Whetzel HH (1933) Annotated index of the rusts of Colombia. Mycologia 25:448–503CrossRefGoogle Scholar
  29. Machado PS, Alfenas AC, Alfenas RF, Mohammed CL, Glen M (2015) Microsatellite analysis indicates that Puccinia psidii in Australia is mutating but not recombining. Australas Plant Pathol 44:455. doi: 10.1007/s13313-015-0364-5.9 CrossRefGoogle Scholar
  30. MacLachlan JD (1938) A rust of the pimento tree in Jamaica, British West Indies. Phytopathology 28:157–170Google Scholar
  31. Mayor E (1914) Contribution à l’étude des Urédinées de Colombie. Mem Soc Sci Nat Neuchâtel 5:442–599Google Scholar
  32. Marlatt RB, Kimbrough JW (1980) Puccinia psidii on Pimento dioica in South Florida. Plant Dis 68:510–512Google Scholar
  33. McTaggart AR, Roux J, Granados GM, Gafur A, Tarrigan M, Santhakumar P, Wingfield MJ (2016a) Rust (Puccinia psidii) recorded in Indonesia poses a threat to forests and forestry in southeast Asia. Australas Plant Pathol 45:83–89CrossRefGoogle Scholar
  34. McTaggart AR, Shivas RG, van der Nest MA, Roux J, Wingfield BD, Wingfield MJ (2016b) Host jumps shaped the diversity of extant rust fungi (Pucciniales). New Phytol 209:1149–1158CrossRefPubMedGoogle Scholar
  35. McTaggart AR, van der Nest MA, Steenkamp ET, Roux J, Slippers B, Shuey LS, Wingfield MJ, Drenth A (2016c) Fungal genomics challenges the dogma of name-based biosecurity. PLoS Pathog 12:e1005475. doi: 10.1371/journal.ppat.1005475 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Nei M (1978) Estimation of heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedPubMedCentralGoogle Scholar
  37. Parks JC, Werth CR (1993) A study of spatial features of clones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537–544CrossRefGoogle Scholar
  38. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  39. Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analyses in excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539CrossRefPubMedPubMedCentralGoogle Scholar
  40. Pegg GS, Giblin FR, McTaggart AR, Guymer GP, Taylor H, Ireland KB, Shivas RG, Perry S (2014) Puccinia psidii in Queensland, Australia: disease symptoms, distribution and impact. Plant Pathol 63:1005–1021CrossRefGoogle Scholar
  41. Pérez AC, Wingfield MJ, Altier NA, Simento S, Blanchette RA (2011) Puccinia psidii infecting cultivated Eucalyptus and native myrtaceae in Uruguay. Mycol Prog 10:273–282CrossRefGoogle Scholar
  42. Rayachhetry MB, Elliott ML, Van TK (1997) Natural epiphytotic of the rust Puccinia psidii on Melaleuca quinquenervia in Florida. Plant Dis 81:831CrossRefGoogle Scholar
  43. Rayachhetry MB, Van TK, Center TD, Elliot ML (2001) Host range of Puccinia psidii, a potential biological control agent of Melaleuca quinquenervia in Florida. Biol Control 22:38–45CrossRefGoogle Scholar
  44. Rodas CA, Roux J, Granados GM, Bolaños MD, McTaggart AR, Wingfield MJ (2015) First report of Puccinia psidii on Corymbia citriodora and Eucalyptus in Colombia. For Pathol 45:534–536CrossRefGoogle Scholar
  45. Ross-Davis AL, Graça RN, Alfenas AC, Peever TL, Hanna JW, Uchida JY, Hauff RD, Kadooka CY, Kim MS, Cannon PG, Namba S, Minato N, Simeto S, Pérez CA, Rayamajhi MB, Móran M, Lodge DJ, Arguedas M, Medel-Ortiz R, López-Ramirez A, Tennant P, Glen M, Klopfenstein NB (2013) Tracking the distribution of Puccinia psidii genotypes that cause rust disease on diverse Myrtaceous trees and shrubs. In: http://www.Fs.Fed.Us/rm/pubs_journals/2014/rmrs_2014_ross_davis_a001.Pdf. Accessed 10/03/2016
  46. Roux J, Greyling I, Coutinho TA, Verleur M, Wingfield MJ (2013) The myrtle rust pathogen, Puccinia psidii, discovered in Africa. IMA Fungus 4:155–159CrossRefPubMedPubMedCentralGoogle Scholar
  47. Roux J, Granados GM, Shuey L, Barnes I, Wingfield MJ, McTaggart AR (2016) A unique genotype of the rust pathogen, Puccinia psidii, on Myrtaceae in South Africa. Australas Plant Pathol. doi: 10.1007/s13313-016-0447-y Google Scholar
  48. Silveira RLVA, Higashi EN (2003) Aspectos nutricionais envolvidos na ocorrência de doeças com ênfase para o eucalipto. Instituto de pesquisas e estudios florestais. Circular Técnica IPEF 200:1–13 ISSN 0100-3453Google Scholar
  49. Simpson JA, Thomas K, Grgurinovic CA (2006) Uredinales species pathogenic on species of Myrtaceae. Australas Plant Pathol 35:549–562CrossRefGoogle Scholar
  50. Stenberg P, Lundmark M, Saura A (2003) MLGSIM: a program for detecting clones using a simulation approach. Mol Ecol Notes 3:329–331CrossRefGoogle Scholar
  51. Takahashi SS (2002) Ferrugem do eucalipto: Índice de infecção, análise e estimativas de danos relacionadas à intensidade da doença no campo. MSc Thesis. Universidade Estadual Paulista. Julio de Mesquita Filho, Botucatu, BrazilGoogle Scholar
  52. Tommerup IC, Alfenas AC, Old KM (2003) Guava rust in Brazil – a threat to Eucalyptus and other Myrtaceae. N Z J For Sci 33:420–428Google Scholar
  53. Uchida J, Zhong S, Killgore E (2006) First report of a rust disease on Ohia caused by Puccinia psidii in Hawaii. Plant Dis 90:524CrossRefGoogle Scholar
  54. Wingfield MJ, Brockerhoff EG, Wingfield BD, Slippers B (2015) Planted forest health: the need for a global strategy. Science 349:832–836CrossRefPubMedGoogle Scholar
  55. Winter G (1884) Repertorium. Rabenhorstii fungi europaei et extraeuropaei exsiccati cura Dr. G. Winter, Centuria XXXI et XXXII. Hedwigia 23:164–172Google Scholar
  56. Yepes MS, Buriticá P (2012) Nuevos registros de Royas (Pucciniales) en plantas de interés agronómico y ornamental en Colombia. RFNAM 65:6691–6696Google Scholar
  57. Zhong S, Yang B, Alfenas AC (2008) Development of microsatellite markers for the guava rust fungus, Puccinia psidii. Mol Ecol Resour 8:348–350CrossRefPubMedGoogle Scholar
  58. Zhong S, Yang B, Puri KD (2011) Characterization of Puccinia psidii isolates in Hawaii using microsatellite DNA markers. J Gen Plant Pathol 77:178–181CrossRefGoogle Scholar
  59. Zhuang JY, Wei SX (2011) Additional materials for the rust flora of Hainan Province, China. Mycosystema 30:853–860Google Scholar

Copyright information

© Australasian Plant Pathology Society Inc. 2017

Authors and Affiliations

  1. 1.Department of Plant and Soil Sciences, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), Private Bag X20University of PretoriaPretoriaSouth Africa
  2. 2.Department of Genetics, TPCP, FABI, Private Bag X20University of PretoriaPretoriaSouth Africa
  3. 3.Forestry Health Protection ProgrammeSmurfitKappa ColombiaYumboColombia

Personalised recommendations