Australasian Plant Pathology

, Volume 46, Issue 4, pp 293–304 | Cite as

Biological control of plant diseases

  • Philip A. O’Brien


Biological control is the control of disease by the application of biological agents to a host animal or plant that prevents the development of disease by a pathogen. With regard to plant diseases the biocontrol agents are usually bacterial or fungal strains isolated from the endosphere or rhizosphere. Viruses can also be used as biocontrol agents and there is a resurgent interest in the use of bacterial viruses for control of plant diseases. The degree of disease suppression achieved with biological agents can be comparable to that achieved with chemicals. Our understanding of the ways in which biocontrol agents protect plants from disease has developed considerably in recent years with the application of genomics and genetic modification techniques. We have uncovered mechanisms by which biocontrol agents interact with the host plant and other members of the microbial community associated with the plant. Understanding these mechanisms is crucial to the isolation of effective biocontrol agents and the development of biocontrol strategies for plant diseases. This review looks at recent developments in our understanding of biocontrol agents for plant diseases and how they work.


Biocontrol Screening Genetic-modification Endophytes 


  1. Abraham A, Philip S, Jacob CK, Jayachandran K (2013) Novel bacterial endophytes from Hevea brasiliensis as biocontrol agent against Phytophthora leaf fall disease. BioControl 58:675–684CrossRefGoogle Scholar
  2. Alexander BJR, Stewart A (2001) Glasshouse screening for biological control agents of Phytophthora cactorum on apple (Malus domestica). N Z J Crop Hortic Sci 29:159–169CrossRefGoogle Scholar
  3. An Y, Kang S, Kim KD, Hwang BK, Jeun Y (2010) Enhanced defense responses of tomato plants against late blight pathogen Phytophthora infestans by pre-inoculation with rhizobacteria. Crop Prot 29:1406–1412CrossRefGoogle Scholar
  4. Arrebola E, Jacobs R, Korsten L (2010) Iturin a is the principal inhibitor in the biocontrol activity of Bacillus amyloliquefaciens PPCB004 against postharvest fungal pathogens. J Appl Microbiol 108:386–395CrossRefPubMedGoogle Scholar
  5. Barrangou R, van Pijkeren JP (2016) Exploiting CRISPR-Cas immune systems for genome editing in bacteria. Curr Opin Biotechnol 37:61–68CrossRefPubMedGoogle Scholar
  6. Bélanger RR, Labbé C, Lefebvre F, Teichmann B (2012) Mode of action of biocontrol agents: all that glitters is not gold. Can J Plant Pathol 34:469–479. doi: 10.1080/07060661.2012.726649 CrossRefGoogle Scholar
  7. Benítez M-S, McSpadden Gardener BB (2009) Linking sequence to function in soil bacteria: sequence-directed isolation of novel bacteria contributing to soilborne plant disease suppression. Appl Environ Microbiol 75:915–924. doi: 10.1128/aem.01296-08 CrossRefPubMedGoogle Scholar
  8. Bisutti IL, Hirt K, Stephan D (2015) Influence of different growth conditions on the survival and the efficacy of freeze-dried Pseudomonas fluorescens strain Pf153. Biocontrol Sci Tech 25:1269–1284. doi: 10.1080/09583157.2015.1044498 CrossRefGoogle Scholar
  9. Bogino PC, Oliva MD, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brader G, Compant S, Mitter B, Trognitz F, Sessitsch A (2014) Metabolic potential of endophytic bacteria. Curr Opin Biotechnol 27:30–37CrossRefPubMedPubMedCentralGoogle Scholar
  11. Cai F, Yu G, Wang P, Wei Z, Fu L, Shen Q, Chen W (2013) Harzianolide, a novel plant growth regulator and systemic resistance elicitor from Trichoderma harzianum. Plant Physiol Biochem 73:106–113. doi: 10.1016/j.plaphy.2013.08.011 CrossRefPubMedGoogle Scholar
  12. Calderon CE, Perez-Garcia A, de Vicente A, Cazorla FM (2013) The dar genes of Pseudomonas chlororaphis PCL1606 are crucial for biocontrol activity via production of the antifungal compound 2-hexyl, 5-propyl resorcinol. Mol Plant-Microbe Interact 26:554–565CrossRefPubMedGoogle Scholar
  13. Card SD, Walter M, Jaspers MV, Sztejnberg A, Stewart A (2009) Targeted selection of antagonistic microorganisms for control of Botrytis cinerea of strawberry in New Zealand. Australas Plant Pathol 38:183–192CrossRefGoogle Scholar
  14. Chernin L, Ismailov Z, Haran S, Chet I (1995) Chitinolytic Enterobacter agglomerans antagonistic to fungal plant pathogens. Appl Environ Microbiol 61:1720–1726PubMedPubMedCentralGoogle Scholar
  15. Choinska-Pulit A, Mitula P, Sliwka P, Laba W, Skaradzinska A (2015) Bacteriophage encapsulation: trends and potential applications. Trends Food Sci Technol 45:212–221. doi: 10.1016/j.tifs.2015.07.001 CrossRefGoogle Scholar
  16. Christen D, Tharin M, Perrin-Cherioux S, Abou-Mansour E, Tabacchi R, Defago G (2005) Transformation of Eutypa dieback and esca disease pathogen toxins by antagonistic fungal strains reveals a second detoxification pathway not present in Vitis vinifera. J Agric Food Chem 53:7043–7051. doi: 10.1021/jf050863h CrossRefPubMedGoogle Scholar
  17. Clermont N, Lerat S, Beaulieu C (2011) Genome shuffling enhances biocontrol abilities of Streptomyces strains against two potato pathogens. J Appl Microbiol 111:671–682CrossRefPubMedGoogle Scholar
  18. Colburn GC, Graham JH (2007) Protection of citrus rootstocks against Phytophthora spp. with a hypovirulent isolate of Phytophthora nicotianae. Phytopathology 97:958–963CrossRefPubMedGoogle Scholar
  19. Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot B, Pozo MJ, Pugin A, Schaffrath U, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B, Prime APG (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071CrossRefPubMedGoogle Scholar
  20. Coombs JT, Michelsen PP, Franco CMM (2004) Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var. tritici in wheat. Biol Control 29:359–366. doi: 10.1016/j.biocontrol.2003.08.001 CrossRefGoogle Scholar
  21. Costa FG, Zucchi TD, de Melo IS (2013) Biological control of phytopathogenic fungi by endophytic actinomycetes isolated from maize (Zea mays L.) Braz Arch Biol Technol 56:948–955CrossRefGoogle Scholar
  22. Debode J, De Maeyer K, Perneel M, Pannecoucque J, De Backer G, Hofte M (2007) Biosurfactants are involved in the biological control of Verticillium microsclerotia by Pseudomonas spp. J Appl Microbiol 103:1184–1196. doi: 10.1111/j.1365-2672.2007.03348.x CrossRefPubMedGoogle Scholar
  23. Diallo S, Crepin A, Barbey C, Orange N, Burini JF, Latour X (2011) Mechanisms and recent advances in biological control mediated through the potato rhizosphere. FEMS Microbiol Ecol 75:351–364. doi: 10.1111/j.1574-6941.2010.01023.x CrossRefPubMedGoogle Scholar
  24. Djonovic S, Vittone G, Mendoza-Herrera A, Kenerley CM (2007) Enhanced biocontrol activity of Trichoderma virens transformants constitutively coexpressing beta-1,3- and beta-1,6-glucanase genes. Mol Plant Pathol 8:469–480. doi: 10.1111/j.1364-3703.2007.00407.x CrossRefPubMedGoogle Scholar
  25. Doumbou CL, Salove MKH, Crawford DL, Beaulieu C (2001) Actinomycetes, promising tools to control plant diseases and to promote plant growth. Phytoprotection 82:85–102CrossRefGoogle Scholar
  26. Downing K, Thomson JA (2000) Introduction of the Serratia marcescens chiA gene into an endophytic Pseudomonas fluorescens for the biocontrol of phytopathogenic fungi. Can J Microbiol 46:363–369CrossRefPubMedGoogle Scholar
  27. Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP (2011) Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759CrossRefPubMedGoogle Scholar
  28. Elliott M, Shamoun SF, Sumampong G, James D, Masri S, Varga A (2009) Evaluation of several commercial biocontrol products on European and north American populations of Phytophthora ramorum. Biocontrol Sci Tech 19:1007–1021CrossRefGoogle Scholar
  29. Ellis RJ, Timms-Wilson TM, Beringer JE, Rhodes D, Renwick A, Stevenson L, Bailey MJ (1999) Ecological basis for biocontrol of damping-off disease by Pseudomonas fluorescens 54/96. J Appl Microbiol 87:454–463. doi: 10.1046/j.1365-2672.1999.00851.x CrossRefPubMedGoogle Scholar
  30. Feklistova IN, Maksimova NP (2008) Obtaining Pseudomonas aurantiaca strains capable of overproduction of phenazine antibiotics. Microbiology 77:176–180. doi: 10.1134/s0026261708020094 CrossRefGoogle Scholar
  31. Ferluga S, Venturi V (2009) OryR is a LuxR-family protein involved in interkingdom signaling between pathogenic Xanthomonas oryzae pv. oryzae and rice. J Bacteriol 191:890–897CrossRefPubMedGoogle Scholar
  32. Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14:563–575. doi: 10.1038/nrmicro.2016.94 CrossRefPubMedGoogle Scholar
  33. Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75:583. doi: 10.1128/mmbr.00020-11 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Fu G, Huang S, Ye Y, Wu Y, Cen Z, Lin S (2010) Characterization of a bacterial biocontrol strain B106 and its efficacies on controlling banana leaf spot and post-harvest anthracnose diseases. Biol Control 55:1–10CrossRefGoogle Scholar
  35. Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M, Yamada T (2011) Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 77:4155–4162CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ghabrial SA, Caston JR, Jiang DH, Nibert ML, Suzuki N (2015) 50-plus years of fungal viruses. Virology 479:356–368CrossRefPubMedGoogle Scholar
  37. Gould M, Nelson L, Waterer D, Hynes R (2008) Biocontrol of Fusarium sambucinum, dry rot of potato, by Serratia plymuthica 5-6. Biocontrol Science and Technology 18:1005–1016Google Scholar
  38. Gyenis L, Anderson NA, Ostry ME (2003) Biological control of Septoria leaf spot disease of hybrid poplar in the field. Plant Dis 87:809–813CrossRefGoogle Scholar
  39. Hanitzsch M, Przyklenk M, Pelzer B, Anant P (2013) Development of new formulations for soil pest control. IOBC/WPRS Bulletin 90:211–215Google Scholar
  40. Hao WN, Li H, Hu MY, Yang L, Rizwan-ul-Haq M (2011) Integrated control of citrus green and blue mold and sour rot by Bacillus amyloliquefaciens in combination with tea saponin. Postharvest Biology and Technology 59:316–323Google Scholar
  41. Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56CrossRefPubMedGoogle Scholar
  42. Harris A (2000) Solid formulations of binucleate Rhizoctonia isolates suppress Rhizoctonia solani and Pythium ultimum in potting medium. Microbiol Res 154:333–337CrossRefPubMedGoogle Scholar
  43. Jackson LE (1989) U.S. Patent No. 4828999Google Scholar
  44. Jan AT, Azam M, Ali A, Haq QMR (2011) Novel approaches of beneficial Pseudomonas in mitigation of plant diseases - an appraisal. J Plant Interact 6:195–205. doi: 10.1080/17429145.2010.541944 CrossRefGoogle Scholar
  45. Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262CrossRefPubMedGoogle Scholar
  46. Kakvan N, Heydari A, Zamanizadeh HR, Rezaee S, Naraghi L (2013) Development of new bioformulations using Trichoderma and Talaromyces fungal antagonists for biological control of sugar beet damping-off disease. Crop Prot 53:80–84. doi: 10.1016/j.cropro2013.06.009 CrossRefGoogle Scholar
  47. Kim YC, Jung H, Kim KY, Park SK (2008) An effective biocontrol bioformulation against Phytophthora blight of pepper using growth mixtures of combined chitinolytic bacteria under different field conditions. Eur J Plant Pathol 120:373–382CrossRefGoogle Scholar
  48. King RR, Lawrence CH, Calhoun LA (2000) Microbial glucosylation of thaxtomin a, a partial detoxification. J Agric Food Chem 48:512–514. doi: 10.1021/jf990912o CrossRefPubMedGoogle Scholar
  49. Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. doi: 10.1094/PHYTO.2004.94.11.1259 CrossRefPubMedGoogle Scholar
  50. Lee KJ, Kamala-Kannan S, Sub HS, Seong CK, Lee GW (2008) Biological control of phytophthora blight in red pepper (Capsicum annuum L.) using Bacillus subtilis. World J Microbiol Biotechnol 24:1139–1145CrossRefGoogle Scholar
  51. Liu X, Jia J, Atkinson S, Camara M, Gao K, Li H, Cao J (2010) Biocontrol potential of an endophytic Serratia sp G3 and its mode of action. World J Microbiol Biotechnol 26:1465–1471CrossRefGoogle Scholar
  52. Ludwig-Muller J (2015) Plants and endophytes: equal partners in secondary metabolite production? Biotechnol Lett 37:1325–1334CrossRefPubMedGoogle Scholar
  53. Lugtenberg BJJ (2015) Introduction to plant-microbe-interactions. In: Lugtenberg BJJ (ed) Principles of plant-microbe interactions. Microbes for Sustainable Agriculture. Springer, Berlin, pp 1–2Google Scholar
  54. Martin JA, Macaya-Sanz D, Witzell J, Blumenstein K, Gil L (2015) Strong in vitro antagonism by elm xylem endophytes is not accompanied by temporally stable in planta protection against a vascular pathogen under field conditions. Eur J Plant Pathol 142:185–196CrossRefGoogle Scholar
  55. Marzano M, Gallo A, Altomare C (2013) Improvement of biocontrol efficacy of Trichoderma harzianum vs. Fusarium oxysporum f. Sp lycopersici through UV- induced tolerance to fusaric acid. Biol Control 67:397–408CrossRefGoogle Scholar
  56. Mazzola M, Zhao X, Cohen MF, Raaijmakers JM (2007) Cyclic lipopeptide surfactant production by Pseudomonas fluorescens SS101 is not required for suppression of complex Pythium spp. populations. Phytopathology 97:1348–1355. doi: 10.1094/PHYTO-97-10-1348 CrossRefPubMedGoogle Scholar
  57. Melnick RL, Zidack NK, Bailey BA, Maximova SN, Guiltinan M, Backman PA (2008) Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biol Control 46:46–56CrossRefGoogle Scholar
  58. Michelsen CF, Stougaard P (2011) A novel antifungal Pseudomonas fluorescens isolated from potato soils in Greenland. Curr Microbiol 62:1185–1192. doi: 10.1007/s00284-010-9846-4 CrossRefPubMedGoogle Scholar
  59. Michelsen CF, Watrous J, Glaring MA, Kersten R, Koyama N, Dorrestein PC, Stougaard P (2015) Nonribosomal peptides, key biocontrol components for Pseudomonas fluorescens In5, isolated from a Greenlandic suppressive soil. MBio 6:e00079–15. doi: 10.1128/mBio.00079-15 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Mocellin L, Gessler C (2007) Alginate matrix based formulation for storing and release of biocontrol agents. Bulletin OILB/SROP 30:553–555Google Scholar
  61. Morris CE, Monier JM (2003) The ecological significance of biofilm formation by plant-associated bacteria. Annu Rev Phytopathol 41:429–453. doi: 10.1146/annurev.phyto.41.022103.134521 CrossRefPubMedGoogle Scholar
  62. Muthukumar A, Eswaran A, Sangeetha G (2011) Induction of systemic resistance by mixtures of fungal and endophytic bacterial isolates against Pythium aphanidermatum. Acta Physiol Plant 33:1933–1944CrossRefGoogle Scholar
  63. Nakayama T, Sayama M (2013) Suppression of potato powdery scab caused by Spongospora subterranea using an antagonistic fungus Aspergillus versicolor isolated from potato roots Conference poster. Proceedings of the Ninth Symposium of the International Working Group on Plant Viruses with Fungal Vectors, Obihiro, Hokkaido, Japan, 19–22 August 2013:53–54Google Scholar
  64. Nawrocka J, Malolepsza U (2013) Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67:149–156. doi: 10.1016/j.biocontrol.2013.07.005 CrossRefGoogle Scholar
  65. Nuss DL (2005) Hypovirulence: mycoviruses at the fungal-plant interface. Nat Rev Microbiol 3:632–642CrossRefPubMedGoogle Scholar
  66. Olorunleke FE, Hua GKH, Kieu NP, Ma ZW, Hofte M (2015) Interplay between orfamides, sessilins and phenazines in the control of Rhizoctonia diseases by pseudomonas sp CMR12a. Environ Microbiol Rep 7:774–781. doi: 10.1111/1758-2229.12310 CrossRefPubMedGoogle Scholar
  67. Peng L, Wang LL, Bai JF, Jia LN, Yang QC, Huang QC, Xu XY, Wang LX (2011) Highly effective and enantioselective phospho-Aldol reaction of diphenyl phosphite with N-alkylated isatins catalyzed by quinine (vol 52, pg 1157, 2011). Tetrahedron Letters 52:6207–6209. doi: 10.1016/J.Tetlet.2011.09.036
  68. Perazzolli M, Roatti B, Bozza E, Pertot I (2011) Trichoderma harzianum T39 induces resistance against downy mildew by priming for defense without costs for grapevine. Biol Control 58:74–82CrossRefGoogle Scholar
  69. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker P (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375. doi: 10.1146/annurev-phyto-082712-102340 CrossRefPubMedGoogle Scholar
  70. Pliego C, Ramos C, de Vicente A, Cazorla FM (2011) Screening for candidate bacterial biocontrol agents against soilborne fungal plant pathogens. Plant Soil 340:505–520. doi: 10.1007/s11104-010-0615-8 CrossRefGoogle Scholar
  71. Poritsanos N, Selin C, Fernando WGD, Nakkeeran S, de Kievit TR (2006) A GacS deficiency does not affect Pseudomonas chlororaphis PA23 fitness when growing on canola, in aged batch culture or as a biofilm. Can J Microbiol 52:1177–1188. doi: 10.1139/w06-079 CrossRefPubMedGoogle Scholar
  72. Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA (2008) Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47:486–491. doi: 10.1111/j.1472-765X.2008.02428.x CrossRefPubMedGoogle Scholar
  73. Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34:1037–1062. doi: 10.1111/j.1574-6976.2010.00221.x CrossRefPubMedGoogle Scholar
  74. Raupach GS, Kloepper JW (1998) Mixtures of plant growth-promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164. doi: 10.1094/PHYTO.1998.88.11.1158 CrossRefPubMedGoogle Scholar
  75. Ren JH, Li H, Wang YF, Ye JR, Yan AQ, Wu XQ (2013) Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biol Control 67:421–430CrossRefGoogle Scholar
  76. Roberts DP, Lohrke SM, Meyer SLF, Buyer JS, Bowers JH, Baker CJ, Li W, de Souza JT, Lewis JA, Chung S (2005) Biocontrol agents applied individually and in combination for suppression of soilborne diseases of cucumber. Crop Prot 24:141–155CrossRefGoogle Scholar
  77. Rutledge PJ, Challis GL (2015) Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 13:509–523. doi: 10.1038/nrmicro3496 CrossRefPubMedGoogle Scholar
  78. Santoyo G, Orozco-Mosqueda MD, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Tech 22:855–872CrossRefGoogle Scholar
  79. Shanmugam V, Sriram S, Babu S, Nandakumar R, Raguchander T, Balasubramanian P, Samiyappan R (2001) Purification and characterization of an extracellular alpha-glucosidase protein from Trichoderma viride which degrades a phytotoxin associated with sheath blight disease in rice. J Appl Microbiol 90:320–329. doi: 10.1046/j.1365-2672.2001.01248.x CrossRefPubMedGoogle Scholar
  80. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, vol 48. Annual Review of Phytopathology. pp 21–43. doi: 10.1146/annurev-phyto-073009-114450
  81. Slininger PJ, Schisler DA, Eirjcsson LD, Brandt TL, Frazier MJ, Woodell LK, Olsen NL, Kleinkopf GE (2007) Biological control of post-harvest late blight of potatoes. Biocontrol Sci Tech 17:647–663. doi: 10.1080/09583150701408881 CrossRefGoogle Scholar
  82. Slininger PJ, Schisler DA, Kleinkopf GE (2001) Combinations of dry rot antagonistic bacteria enhance biological control consistency in stored potatoes. Phytopathology 91:S83Google Scholar
  83. Sneh B (1998) Use of non-pathogenic or hypovirulent fungal strains to protect plants against closely related fungal pathogens. Biotechnol Adv 16:1–32CrossRefPubMedGoogle Scholar
  84. Stockwell VO, Johnson KB, Sugar D, Loper JE (2011) Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101:113–123CrossRefPubMedGoogle Scholar
  85. Strange RN (2007) Phytotoxins produced by microbial plant pathogens. Nat Prod Rep 24:127–144. doi: 10.1039/b513232k CrossRefPubMedGoogle Scholar
  86. Subramoni S, Gonzalez JF, Johnson A, Pechy-Tarr M, Rochat L, Paulsen I, Loper JE, Keel C, Venturi V (2011) Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl Environ Microbiol 77:4579–4588CrossRefPubMedPubMedCentralGoogle Scholar
  87. Taghavi S, Garafola C, Monchy S, Newman L, Hoffman A, Weyens N, Barac T, Vangronsveld J, van der Lelie D (2009) Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar. Appl Environ Microbiol 75:748–757CrossRefPubMedGoogle Scholar
  88. Tambong JT, Höfte M (2001) Phenazines are involved in biocontrol of Pythium myriotylum on cocoyam by Pseudomonas aeruginosa PNA1. Eur J Plant Pathol 107:511–521. doi: 10.1023/a:1011274321759 CrossRefGoogle Scholar
  89. Vonasek E, Phuong L, Nitin N (2014) Encapsulation of bacteriophages in whey protein films for extended storage and release. Food Hydrocoll 37:7–13. doi: 10.1016/j.foodhyd.2013.09.017 CrossRefGoogle Scholar
  90. Wang MC, Tachibana S, Murai Y, Li L, Lau SYL, Cao MC, Zhu GN, Hashimoto M, Hashidoko Y (2016) Indole-3-acetic acid produced by Burkholderia heleia acts as a phenylacetic acid antagonist to disrupt tropolone biosynthesis in Burkholderia plantarii. Sci Rep 6:22596–22596CrossRefPubMedPubMedCentralGoogle Scholar
  91. Worasatit N, Sivasithamparam K, Ghisalberti EL, Rowland C (1994) Variation in pyrone production, lytic enzymes and control of Rhizoctonia root rot of wheat among single-spore isolates of Trichoderma koningii. Mycol Res 98:1357–1383CrossRefGoogle Scholar
  92. Wu LM, Wu HJ, Qiao JQ, Gao XW, Borriss R (2015) Novel routes for improving biocontrol activity of Bacillus based bioinoculants Frontiers in Microbiology 6:01395. doi: 10.3389/fmicb.2015.01395
  93. Yanez-Mendizabal V, Zeriouh H, Vinas I, Torres R, Usall J, de Vicente A, Perez-Garcia A, Teixido N (2012) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132:609–619CrossRefGoogle Scholar
  94. Zeriouh H, Romero D, Garcia-Gutierrez L, Cazorla FM, de Vicente A, Perez-Garcia A (2011) The iturin-like lipopeptides are essential components in the biological control arsenal of Bacillus subtilis against bacterial diseases of cucurbits. Mol Plant-Microbe Interact 24:1540–1552CrossRefPubMedGoogle Scholar
  95. Zhou HY, Wei HL, Liu XL, Wang Y, Zhang LQ, Tang WH (2005) Improving biocontrol activity of Pseudomonas fluorescens through chromosomal integration of 2,4-diacetylphloroglucinol biosynthesis genes. Chin Sci Bull 50:775–781. doi: 10.1360/982005-84 CrossRefGoogle Scholar

Copyright information

© Australasian Plant Pathology Society Inc. 2017

Authors and Affiliations

  1. 1.School of Veterinary and Life SciencesMurdoch UniversityMurdochAustralia

Personalised recommendations