Australasian Plant Pathology

, Volume 45, Issue 1, pp 45–56 | Cite as

Mycobiota of the weed Tradescantia fluminensis in its native range in Brazil with particular reference to classical biological control

  • D. M. Macedo
  • O. L. Pereira
  • B. T. Hora Júnior
  • B. S. Weir
  • R. W. Barreto
Original Paper


Tradescantia fluminensis [Commelinaceae] (common name wandering Jew or trad), is a native Brazilian herbaceous plant, which has been introduced to be used as an ornamental in many warm areas of the world. In New Zealand and other countries it has become an aggressive invader of natural ecosystems, causing serious environmental disturbances and threatening biodiversity. Surveys of pathogen and insect natural enemies of T. fluminensis were conducted over several years in Brazil to identify potential candidates for use as classical biological control agents in New Zealand. The surveys found seven pathogenic fungi associated with T. fluminensis and related Tradescantia species: Cercospora apii (leaf spot), Rhizoctonia solani (leaf blight), Sclerotium rolfsii (crown rot) and Uromyces commelinae (rust), and three novel species described in this paper: Ceratobasidium tradescantiae sp. nov. (web blight), Colletotrichum riograndense sp. nov. (anthracnose) and Kordyana brasiliensis sp. nov. (white smut-like disease). Observations of damage in the field and expected host-range suggest that K. brasiliensis and U. commelinae have the highest potential for use as classical biological control agents.


Biological invasions Mycology Plant pathogen Taxonomy 



This work forms part of a research project submitted as a D.Sc. dissertation to the Departamento de Fitopatologia/Universidade Federal de Viçosa by D. M. Macedo. D. Park, Landcare Research performed PCR amplification and sequencing for C. riograndense. The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Landcare Research – Manaaki Whenua (Auckland - New Zealand) for financial support.


  1. Barreto RC (1997) Levantamento das espécies de commelinaceas R. Universidade de São Paulo, Br nativas do Brasil. Tese em Botânica, 490 ppGoogle Scholar
  2. Barreto RW, Evans, HC (1988). Taxonomy of a fungus introduced into Hawaii for biological control of Ageratina Riparia (Eupatorieae: Compositae), with observations on related weed pathogens. Trans Br Mycol Soc 91:81–97Google Scholar
  3. Barreto RW, Evans HC (1994) Mycobiota of the weed Cyperus Rotundus in the state of Rio de Janeiro, with an elucidation of its associated Puccinia complex. Mycol Res 98:1107–1116Google Scholar
  4. Barton J, Fowler SV, Gianotti AF, Winks CJ, de Beurs M, Arnold GC, Forrester G (2007) Successful biological control of mist flower (Ageratina Riparia) in New Zealand: agent establishment, impact and benefits to the native flora. Biol Control 40:370–385Google Scholar
  5. Bauer R, Begerow D, Oberwinkler F, Piepenbring M, Berbee L (2000) Ustilaginomycetes. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) Mycota VII, part 2. Systematics and evolution. Springer Verlag, Berlin, pp 57–83Google Scholar
  6. Bauer R, Begerow D, Oberwinkler F, Piepenbring M, Berbee ML (2001) The Ustilaginomycetes. In: Mclaughlin DJ, Mclaughlin EG, Lenke PA (eds) Mycota VII part B. Systematics and evolution. Springer Verlag, Heidelberg, pp 57–83CrossRefGoogle Scholar
  7. Begerow D, Bauer R, Oberwinkler F (2002) The Exobasidiales: an evolutionary hypothesis. Mycol Prog 1:187–199Google Scholar
  8. Bowers RC (1986) Commercialization of collego - an industrialist's view. Weed Sci 34:24–25Google Scholar
  9. Cannon PF, Johnston PR, Damm U, Weir BS (2012) Colletotrichum – current status and future directions. Stud Mycol 73:181–213PubMedCentralCrossRefPubMedGoogle Scholar
  10. Carbone I, Kohn LM (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia 91:553–556Google Scholar
  11. Crous PW (2009) Taxonomy and phylogeny of the Genus Mycosphaerella and its anamorphs. Fungal Divers 38:1–24Google Scholar
  12. Crous PW, Braun U (2003) ‘Mycosphaerella and its anamorphs: names published in Cercospora and Passalora. Centraalbureau voor Schimmelcultures: UtrechtGoogle Scholar
  13. Crous PW,Gams W, Stalpers JA, Robert V, Stegehuis G (2004) MycoBank: an online initiative to launch mycology into the 21st century. Stud Mycol 50:19–22Google Scholar
  14. Cunningham JL, Bakshi BK, Lentz PL (1976) Two new genera of leaf-parasitic fungi (basidiomycetidae: brachybasidiaceae). Mycologia 68:640–654CrossRefGoogle Scholar
  15. Dhingra OD, Sinclair JB (1995) Basic plant pathology methods. CRC Press, New YorkGoogle Scholar
  16. Ellison CA, Pereira JM, Thomas SE, Barreto RW, Evans HC (2006) Studies on the rust prospodium tuberculatum, a new classical biological control agent released against the invasive weed lantana camara in Australia. 1. Life-cycle and infection parameters. Australas Plant Pathol 35:309–319CrossRefGoogle Scholar
  17. EPA Environmental Protection Authority – Te Mana Rauhi Taiao (2013). Decision – To import and release the pathogen Kordyana sp. as a biological control agent for the weed Tradescantia fluminensis. Available at: Accessed 07 Oct 2015
  18. Farr DF, Rossman AY (2014) Fungal databases, systematic mycology and microbiology laboratory, ARS, USDA. Accessed 23 Nov 2014
  19. Fowler SV, Barreto RW, Dodd S, Macedo DM, Paynter Q, Pedrosa-Macedo JH, Pereira OL, Peterson P, Smith L, Waipara N, Winks J, Forrester G (2013) Tradescantia fluminensis, an exotic weed affecting native forest regeneration in New Zealand: Ecological surveys, safety tests and releases of four biocontrol agents from Brazil. Biol Control 64:323–329Google Scholar
  20. Garcia GV, Onco MAP, Susan VB (2006) Review, biology and systematics of the form genus Rhizoctonia. Span J Agric Res 4:55–79CrossRefGoogle Scholar
  21. Garibaldi A, Gilardi G, Bertetti D, Gullino ML (2009a) First report of leaf blight on fan columbine (Aquilegia Flabellata) caused by Rhizoctonia Solani AG 4 in Italy. Plant Dis 93:433–433Google Scholar
  22. Garibaldi A, Bertetti D, Gullino ML (2009b) First report of leaf blight on hosta fortunei caused by Rhizoctonia Solani AG 4 in Italy. Plant Dis 93:432–432Google Scholar
  23. Gäumann E (1922) Über die gattung Kordyana Rac. Annales Mycologici 20:257–271Google Scholar
  24. Groenewald JZ, Nakashima C, Nishikawa J, Shin HD, Park HD, Jama AN, Groenewald M, Braun U, Crous PW (2012) Species concepts in cercospora: spotting the weeds among the roses. Stud Mycol 75:115–170PubMedCentralCrossRefGoogle Scholar
  25. Hayes L (2012) What news in biological control of weeds 61: 1–16Google Scholar
  26. Hennen JF, Figueiredo MB, Carvalho Jr AA, Hennen PG (2005) Catalogue of plant rust fungi (Uredinales) of Brazil. 460 p. Available at: publicações/publicações gerais. Accessed 23 Nov 2014
  27. Kelly D, Skipworth JP (1984) Tradescantia fluminensis in a manawatu (New Zealand) forest: I growth and effects on regeneration. New Zeal J Bot 22:393–397CrossRefGoogle Scholar
  28. Killgore EM, Sugiyama LS, Barreto RW, Gardner DE (1999) Evaluation of Colletotrichum Gloeosporioides for biological control of Miconia Calvescens in Hawaii. Plant Dis 83:964Google Scholar
  29. Kirk PM, Cannon PF, Minter JA, Stalpers JA (2008) Dictionary of the fungi, 10th edn. Wallingford, UKGoogle Scholar
  30. Lorenzi H (2008) Plantas daninhas do brasil: terrestres, aquáticas e tóxicas. Ed. Plantarum, Nova OdessaGoogle Scholar
  31. Maddison DR, Maddison WP (2000) MacClade 4: analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, Massachusetts, pp 492Google Scholar
  32. Mendes MAS, Urben AF (2014) Fungos relatados em plantas no Brasil, Laboratório de Quarentena Vegetal. Brasília, DF: Embrapa Recursos Genéticos e Biotecnologia. Accessed 28 Nov 2014
  33. Meyer JY, Taputuarai R, Killgore E (2007) Dissemination and impacts of the fungal pathogen Colletotrichum Gloeosporioides f.sp. Miconiae on the invasive alien tree Miconia Calvescens, in Tahiti (south Pacific). In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) Proceedings of the XIIth international symposium on biological control of weeds. CAB International, Wallingford, pp 594–600Google Scholar
  34. Mordue JEM (1974a) Corticium Rolfsii. CMI Descriptions of Pathogenic Fungi and Bacteria 406:1–2Google Scholar
  35. Mordue JEM (1974b) Corticium Rolfsii. CMI Descriptions of Pathogenic Fungi and Bacteria 410:1–2Google Scholar
  36. Morin L (2015) Using pathogens to biologically control environmental weeds – updates. Plant Protection Quarterly 30:82–85Google Scholar
  37. Mortensen K, Makowski RMD (1997) Effects of Colletotrichum Gloeosporioides f. sp. Malvae on plant development and biomass of non-target field crops under controlled and field conditions. Weed Res 37:351–360CrossRefGoogle Scholar
  38. Nylander JAA (2004) MrModeltest v 2.2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, SwedenGoogle Scholar
  39. O’Donell K (1992) Ribossomal DNA internal transcribed spacer are highly divergent in the phytopathogenic ascomycete Fusarium Sambucinum (Giberella Pulicaris). Curr Genet 22(3):213–220Google Scholar
  40. Pereira JM, Barreto, RW, Ellison C, Maffia LA (2003) Corynespora Cassiicola f. sp. Lantanae: a potential biocontrol agent for Lantana Camara from Brazil. Biol Control 26:21–31Google Scholar
  41. Pereira OL, Kasuya MCM, Rollemberg CL, Chaer GM (2005) Isolamento e identificação de fungos micorrízicos rizoctonióides associados a três espécies de orquídeas epífitas neotropicais no brasil. Revista Brasileira da Ciências do Solo 29:191–197CrossRefGoogle Scholar
  42. Pereira OL, Barreto RW & Waipara, N. (2008) Pathogens from Brazil for classical biocontrol of Tradescantia Fluminensis. In: Julien MH, Sforza R, Bon MC, Evans HC, Hatcher PE, Hinz HL, Rector BG (eds) XII International symposium on biological control of weeds. Proceedings of the XII International Symposium on Biological Control of Weeds. Wallingford, CAB International, pp 195–199Google Scholar
  43. Punja ZK (1985) The biology, ecology and control of Sclerotium Rolfsii. Annu Rev Phytopathol 23:97–127CrossRefGoogle Scholar
  44. Rayner RW (1970) A mycological colour chart. Commonwealth mycological institute and British mycological. Society, KewGoogle Scholar
  45. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574Google Scholar
  46. Staden R, Beal KF, Bonfield JK (1998) The staden package. Methods Mol Biol 132:115–130Google Scholar
  47. Standish RJ, Robertson AW, Williams PA (2001) The impact of an invasive weed tradescantia fluminensis on native regeneration. J Appl Ecol 38:1253–1263CrossRefGoogle Scholar
  48. Standish RJ, Bennet SJ, Stringer IAN (2002) Conservation of Powelliphanta Tracersi: effects of removal of Tradescantia Fluminensis and rodent poisoning. Science for Conservation 195:24Google Scholar
  49. Sutton BB (1992) The genus Glomerella and its anamorph Colletotrichum (1992). In: Bailey JA, Jeger MJ (eds) Colletotrichum: biology, pathology and control. CABI International, Wallingford, pp 1–27Google Scholar
  50. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCentralCrossRefPubMedGoogle Scholar
  51. Templeton GE (1992) Use of Colletotrichum strains as mycoherbicides. In: Bailey JA, Jeger MJ (eds) Colletotrichum: biology, pathology and control. CABI International, Wallingford, pp 358–380Google Scholar
  52. Trujillo EE (1986) Colletotrichum gloeosporioides, a possible biological control agent for Clidemia Hirta in Hawaiian forests. Plant Dis 70:974–976CrossRefGoogle Scholar
  53. Trujillo EE (2005) History and success of plant pathogens for biological control of introduced weeds in Hawaii. Biol Control 33:113–122CrossRefGoogle Scholar
  54. Weir BS, Johnston PR, Damm U (2012) The Colletotrichum Gloeosporioides species complex. Stud Mycol 73:115–180PubMedCentralCrossRefPubMedGoogle Scholar
  55. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. San Diego, CA, USA, pp 315–322Google Scholar

Copyright information

© Australasian Plant Pathology Society Inc. 2016

Authors and Affiliations

  • D. M. Macedo
    • 1
  • O. L. Pereira
    • 1
  • B. T. Hora Júnior
    • 1
  • B. S. Weir
    • 2
  • R. W. Barreto
    • 1
  1. 1.Departamento de FitopatologiaUniversidade Federal de ViçosaViçosaBrasil
  2. 2.Landcare ResearchAucklandNew Zealand

Personalised recommendations