Advertisement

Australasian Plant Pathology

, Volume 43, Issue 6, pp 663–678 | Cite as

Turnip mosaic virus: potential for crop losses in the grain belt of New South Wales, Australia

  • Mark W. Schwinghamer
  • Mark A. Schilg
  • John A. Walsh
  • Rodney W. Bambach
  • Rosa M. Cossu
  • Judith M. Bambridge
  • Tamrika L. Hind-Lanoiselet
  • Bruce E. McCorkell
  • Peter Cross
Article

Abstract

The potential of Turnip mosaic virus (TuMV) to infect and damage cool season crops in the grain belt of New South Wales, Australia, was investigated by serological tests on 24,689 dicot weed, grain, and forage specimens from 1999 to 2007 and infectivity/pathogenicity tests with six isolates. Natural infection by TuMV was common in Brassicaceae weeds. Infected grain crops included mustard (Brassica juncea), field pea (Pisum sativum), chickpea (Cicer arietinum), and coriander (Coriandrum sativum). Forage (turnip, Brassica rapa) was also infected. None of 9,816 canola (Brassica napus, at least 19 cultivars) or 1,967 faba bean (Vicia faba, three cultivars) plants were infected. Six isolates from weeds, mustard, and chickpea were inoculated on a range of weed and crop species including four B. napus pathotype differential lines. Inoculated Brassicaceae weeds, mustard, field pea cv. ‘Cressy Blue’, coriander, Chinese cabbage (B. rapa), and forage turnip (B. rapa) were usually infected. Field pea cv. Dundale and radishes (Raphanus sativus) were infected infrequently. Symptoms were severe in mustard, forage turnip, chickpea, and field pea. The reportedly susceptible canola cv. ‘Outback’ displayed only variable infectivity and mild symptoms for five isolates and no infectivity for one isolate. Faba bean, field pea cv. ‘Excell’, and two B. napus differentials appeared to be non-hosts. The results suggest that TuMV strains naturalised in Brassicaceae weeds in NSW in 1999–2007 could damage mustard, field pea, and forage turnip, but not canola or faba bean. These NSW strains appeared to be distinct from strains that damage canola in Europe, North America, and Asia.

Keywords

Beet western yellows virus Field crop Fodder Hirschfeldia Oilseed rape Pulse Rapistrum Tissue blot immunoassay Turnip yellows virus 

Notes

Acknowledgments

The authors acknowledge the following contributions: Gordon Murray, Kerry Wratten, and Fleur Lewington who planned and carried out crop sampling the southern canola survey; Steve Moore for sowing and managing the field pea natural infection experiment; Steven Harden for help with statistical analysis of the pea natural infection experiment; and John Holland for critical reading of this manuscript and designing mustard and canola evaluation trials that were sampled as part of this work. Funding was primarily by New South Wales Department of Primary Industries (NSW DPI) and Grains Research & Development Corporation (GRDC) funding for project DAN 00023. Funding for canola surveys was from GRDC project DAN 00068, and canola and mustard field trials sampled in surveys were funded through GRDC projects DAN 444 and DAN 00053 conducted by NSW DPI.

References

  1. Astier S, Albouy J, Maury Y, Robaglia C, Lecoq H (2007) Principles of plant virology. Scientific Publishers, EnfieldGoogle Scholar
  2. Australian Bureau of Agricultural and Research Economics and Sciences (2012) Agricultural commodity statistics 2012. Available at http://adl.brs.gov.au/data/warehouse/agcstd9abcc002/agcstd9abcc0022012/ACS_2012_1.1.0.pdf. ABARES, Canberra
  3. Ayres L, Clements B (2002) Forage brassicas—quality crops for livestock production. Agfact P2.1.13. AGDEX 124/20. NSW Department of Primary Industries, Orange 2800. http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0018/222246/Brassica-juncea-in-north-western-NSW.pdf
  4. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) GenBank. Nucleic Acids Res 36:D25–D30. doi: 10.1093/nar/gkm929, Database issuePubMedCentralPubMedCrossRefGoogle Scholar
  5. Conroy RJ (1959) Black ringspot disease of crucifers. J Aust Inst Agric Sci 25(1):64–67Google Scholar
  6. Coutts BA, Jones RAC (2000) Viruses infecting canola (Bassica napus) in south-west Australia: incidence, distribution, spread, and infection reservoir in wild radish (Raphanus raphinistrum). Aust J Agric Res 51(7):925–936. doi: 10.1071/AR00014 CrossRefGoogle Scholar
  7. Coutts BA, Walsh JA, Jones RAC (2007) Evaluation of resistance to Turnip mosaic virus in Australian Brassica napus genotypes. Aust J Agric Res 58(1):67–74. doi: 10.1071/AR06096 CrossRefGoogle Scholar
  8. Cowling WA (2007) Genetic diversity in Australian canola and implications for crop breeding for changing future environments. Field Crops Res 104(1–3):103–111. doi: 10.1016/j.fcr.2006.12.014 CrossRefGoogle Scholar
  9. Dellow JJ, Storrie A, Cheam AH, King WM, Jacobs S, Kemp DR (2006) (Weeds) Major brassicaceous weeds in Australian agriculture. In: Cheam AH (ed) Proceedings of the wild radish and other cruciferous weeds symposium, Perth, Western Australia. Department of Agriculture and Food, Western Australia, pp 1–10Google Scholar
  10. Dikova BA (2008) Sinapis arvensis L. as a source of viruses—Cauliflower mosaic virus (CaMV) and Turnip mosaic virus (TuMV) infecting oilseed rape. Acta Phytopathol Entomol Hung 43(1):93–99. doi: 10.1556/APhyt.43.2008.1.11 CrossRefGoogle Scholar
  11. Edwardson JR, Christie RG (1991a) Turnip mosaic virus. In: The Potyvirus Group. Monograph No. 16. Available from United States Department of Agriculture National Agricultural Library. Agricultural Experiment Station, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, pp 973–1008Google Scholar
  12. Edwardson JR, Christie RG (1991b) XXII. Turnip mosaic virus (Subdivisions III and IV). In: CRC Handbook of viruses infecting legumes. CRC Press, Boca Raton, Florida, pp 167–175Google Scholar
  13. Farzadfar S, Tomitaka Y, Ikematsu M, Golnaraghi AR, Pourrahim R, Ohshima K (2009) Molecular characterisation of Turnip mosaic virus isolates from Brassicaceae weeds. Eur J Plant Pathol 124(1):45–55. doi: 10.1007/s10658-008-9390-2 CrossRefGoogle Scholar
  14. Gibbs AJ, Mackenzie AM, Wei K-J, Gibbs MJ (2008) The potyviruses of Australia. Arch Virol 153(8):1411–1420. doi: 10.1007/s00705-008-0134-6 PubMedCrossRefGoogle Scholar
  15. Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2008) ASReml User Guide Release 3.0. VSN International Ltd, Hemel Hempstead, HP1 1ES, UKGoogle Scholar
  16. Graichen K, Rabenstein F (1996) European isolates of beet western yellows virus (BWYV) from oilseed rape (Brassica napus L. ssp. napus) are non-pathogenic on sugar beet (Beta vulgaris L. var. altissima) but represent isolates of turnip yellows virus (TuYV). Z Pflanzenkrankh Pflanzen 103:233–245Google Scholar
  17. Hammond J, Jordan RL (1990) Dot blots (viruses) and colony screening. In: Hampton RO, Ball EM, De Boer SH (eds) Serological methods for detection and identification of viral and bacterial plant pathogens. APS Press, St. Paul, pp 237–248Google Scholar
  18. Hardwick NV, Davies JML, Wright DM (1994) The incidence of three virus diseases of winter oilseed rape in England and Wales in the 1991/92 and 1992/93 growing seasons. Plant Pathol 43(6):1045–1049. doi: 10.1111/j.1365-3059.1994.tb01656.x CrossRefGoogle Scholar
  19. Hertel K, Schwinghamer M, Bambach R (2004) Virus diseases in canola and mustard. Agnote DPI 495, Agdex 144/10. NSW Department of Primary Industries, Orange 2800. http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0003/148377/virus-diseases-in-canola-and-mustard.pdf
  20. Hsu HT, Lawson RH (1991) Direct tissue blotting for detection of tomato spotted wilt virus in Impatiens. Plant Dis 75:292–295CrossRefGoogle Scholar
  21. Hu WQ, Pu ZQ, Xu ZG, Fang ZD (1996) A viral disease of broad bean caused by a non-aphid-transmissible strain of turnip mosaic virus. Plant Pathol 45(5):843–847. doi: 10.1111/j.1365-3059.1996.tb02894.x CrossRefGoogle Scholar
  22. Inouye T, Inouye N (1964) A disease of peanut caused by a strain of turnip mosaic virus. Nogaku Kenkyu 50:51–60Google Scholar
  23. Jenner CE, Walsh JA (1996) Pathotypic variation in turnip mosaic virus with special reference to European isolates. Plant Pathol 45(5):848–856. doi: 10.1111/j.1365-3059.1996.tb02895.x CrossRefGoogle Scholar
  24. Jenner CE, Keane GJ, Jones JE, Walsh JA (1999) Serotypic variation in turnip mosaic virus. Plant Pathol 48(1):101–108. doi: 10.1046/j.1365-3059.1999.00309.x CrossRefGoogle Scholar
  25. Jordan R, Hammond J (1991) Comparison and differentiation of potyvirus isolates and identification of strain-, virus-, subgroup-specific and potyvirus group-common epitopes using monoclonal antibodies. J Gen Virol 72(1):25–36. doi: 10.1099/0022-1317-72-1-25
  26. Kehoe MA, Coutts BA, Jones RAC (2010) Resistance phenotypes in diverse accessions, breeding lines, and cultivars of three mustard species inoculated with Turnip mosaic virus. Plant Dis 94(11):1290–1298. doi: 10.1094/PDIS-12-09-0841 CrossRefGoogle Scholar
  27. Kirkegaard JA, Sprague SJ, Dove H, Kelman WM, Marcroft SJ, Lieschke A, Howe GN, Graham JM (2008) Dual-purpose canola—a new opportunity in mixed farming systems. Aust J Agric Res 59(4):291–302. doi: 10.1071/AR07285 CrossRefGoogle Scholar
  28. Korkmaz S, Tomitaka Y, Onder S, Ohshima K (2008) Occurrence and molecular characterization of Turkish isolates of Turnip mosaic virus. Plant Pathol 57(6):1155–1162. doi: 10.1111/j.1365-3059.2008.01902.x CrossRefGoogle Scholar
  29. Latham LJ, Smith LJ, Jones RAC (2003) Incidence of three viruses in vegetable brassica plantings and associated wild radish weeds in south-west Australia. Australas Plant Pathol 32(3):387–391. doi: 10.1071/AP03031 CrossRefGoogle Scholar
  30. Letham DB, Daines D, Hennissey J (1975) Turnip mosaic virus- a serious problem in hybrid cabbage crops. Agric Gaz NSW 86(4):52–53Google Scholar
  31. Lin NS, Hsu YH, Hsu HT (1990) Immunological detection of plant viruses and a mycoplasmalike organism by direct tissue blotting on nitrocellulose membranes. Phytopathology 80:824–828CrossRefGoogle Scholar
  32. Makkouk KM, Comeau A (1994) Evaluation of various methods for the detection of barley yellow dwarf virus by the tissue-blot immunoassay and its use for virus detection in cereals inoculated at different growth stages. Eur J Plant Pathol 100:71–80. doi: 10.1007/BF01871967 CrossRefGoogle Scholar
  33. Makkouk KM, Kumari SG (2001) Reduction of incidence of three persistently transmitted aphid-borne viruses affecting legume crops by seed-treatment with the insecticide imidacloprid (Gaucho®). Crop Prot 20(5):433–437. doi: 10.1016/S0261-2194(00)00169-1 CrossRefGoogle Scholar
  34. Martin RJ, McMillan MG, Cook JB (1988) Survey of farm management practices of the northern wheat belt of New South Wales. Aust J Exp Agric 28:499–509CrossRefGoogle Scholar
  35. McCullagh P, Nelder JA (1989) Generalized linear models. Monographs on statistics and applied probability, vol. 37. Chapman and Hall, LondonGoogle Scholar
  36. McLean GD, Price LK (1984) Virus, viroid, mycoplasma and rickettsial diseases of plants in Western Australia. Technical Bulletin 68. Western Australian Department of Agriculture. South Perth, W.AGoogle Scholar
  37. Moody T (2011) Agriculture—grains and oilseeds. Atlas of New South Wales Available at http://www.atlas.nsw.gov.au/public/nsw/home/topic/article/agriculture-grains-and-oilseeds.html. February, 2013
  38. Murison J, Napier T (2006) Cabbage growing. Primefact 90. NSW Department of Primary Industries, Orange 2800 http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0005/80168/Cabbage-growing---Primefact-90-final.pdf
  39. Oram RN, Kirk JTO, Veness PE, Hurlstone CJ, Edlington JP, Halsall DM (2005) Breeding Indian mustard [Brassica juncea (L.) Czern.] for cold-pressed, edible oil production—a review. Aust J Agric Res 56(6):581–596. doi: 10.1071/AR04295 CrossRefGoogle Scholar
  40. Osten VA, Walker SR, Storrie A, Widderick M, Moylan P, Robinson GR, Galea K (2007) Survey of weed flora and management relative to cropping practices in the north-eastern grain region of Australia. Aust J Exp Agric 47(1):57–70. doi: 10.1071/EA05141 CrossRefGoogle Scholar
  41. Parsons WT, Cuthbertson EG (2001) Noxious weeds of Australia, 2nd edn. CSIRO Publishing, CollingwoodGoogle Scholar
  42. Plant Health Australia (2001) Australian Plant Pest Database, online database administered by PHA, Canberra, Australia. www.planthealthaustralia.com.au/appd. Accessed Feb 2013
  43. Procházková Z (1980) Host range and symptom differences between isolates of turnip mosaic virus obtained from Sisymbrium loeselii. Biol Plant 22(5):341–347. doi: 10.1007/bf02908979 CrossRefGoogle Scholar
  44. Provvidenti R (1978) A mosaic of Pisum sativum caused by a strain of turnip mosaic virus. Plant Dis Rep 62(6):482–485Google Scholar
  45. Rew LJ, Medd RW, Van de Ven R, Gavin JJ, Robinson GR, Tuitee M, Barnes J, Walker S (2005) Weed species richness, density and relative abundance on farms in the subtropical grain region of Australia. Aust J Exp Agric 45(6):711–723. doi: 10.1071/EA03273 CrossRefGoogle Scholar
  46. Schwinghamer M, Schilg M, Moore K, Kumari S, Srivastava M, Wratten K, Knights E, Bambach R, Southwell R (2003) The virus situation in chickpea, faba bean, and canola. Update of research in progress at the Tamworth Agricultural Institute 2002. Agdex 100/005. NSW Agriculture. 222 ppGoogle Scholar
  47. Schwinghamer MW, Thomas JE, Parry JN, Schilg MA, Dann EK (2007) First record of natural infection of chickpea by Turnip mosaic virus. Australas Plant Dis Notes 2:41–43. doi: 10.1071/DN07020 CrossRefGoogle Scholar
  48. Schwinghamer MW, Thomas JE, Schilg MA, Parry JN, Dann EK, Moore KJ, Kumari SG (2010) Mastreviruses in chickpea (Cicer arietinum) and other dicotyledonous crops and weeds in Queensland and northern New South Wales, Australia. Australas Plant Pathol 39(6):551–561. doi: 10.1071/AP10032 CrossRefGoogle Scholar
  49. Segundo E, Martín-Bretones G, Ruiz L, Velasco L, Janssen D, Cuadrado IM (2003) First Report of Turnip mosaic virus in Pisum sativum in Spain. Plant Dis 87(1):103. doi: 10.1094/PDIS.2003.87.1.103 CrossRefGoogle Scholar
  50. Shahraeen N, Farzadfar S, Lesemann D-E (2003) Incidence of viruses infecting winter oilseed rape (Brassica napus ssp. oleifera) in Iran. J Phytopathol 151(11/12):610–616. doi: 10.1046/j.0931-1785.2003.00774.x Google Scholar
  51. Shattuck VI (1992) The biology, epidemiology, and control of turnip mosaic virus. Hortic Rev Vol 14:199–238. doi: 10.1002/9780470650523.ch4, Published online 2010 by John Wiley & Sons, Inc., Oxford, UKGoogle Scholar
  52. Shukla DD, Schmelzer K (1973) Studies on viruses and virus diseases. XII A complex disease of fodder rape. Acta Phytopathol Acad Sci Hung 8(1–2):127–137Google Scholar
  53. Simpfendorfer S (2010) Barley yellow dwarf virus widespread in northern NSW in 2009. GRDC Update Papers. Available at http://www.grdc.com.au/Research-and-Development/GRDC-Update-Papers/2010/2009/BARLEY-YELLOW-DWARF-VIRUS-WIDESPREAD-IN-NORTHERN-NSW-IN-2009. Accessed Feb 2013
  54. Stobbs LW, Shattuck VI (1989) Turnip mosaic virus strains in southern Ontario, Canada. Plant Dis 73(3):208–212. doi: 10.1094/PD-73-0208 CrossRefGoogle Scholar
  55. Tomimura K, Špak J, Katis N, Jenner CE, Walsh JA, Gibbs AJ, Ohshima K (2004) Comparisons of the genetic structure of populations of Turnip mosaic virus in West and East Eurasia. Virology 330(2):408–423. doi: 10.1016/j.virol.2004.09.040 PubMedCrossRefGoogle Scholar
  56. Tomlinson JA (1987) Epidemiology and control of virus diseases of vegetables. Ann Appl Biol 110(3):661–681. doi: 10.1111/j.1744-7348.1987.tb04187.x CrossRefGoogle Scholar
  57. Tomlinson JA, Ward CM (1978) The reactions of swede (Brassica napus) to infection by turnip mosaic virus. Ann Appl Biol 89(1):61–69. doi: 10.1111/j.1744-7348.1978.tb02568.x CrossRefGoogle Scholar
  58. Twardowicz-Jakusz A, Zielinska L (1979) Studies on viroses of parsley and carrot. Part II. Turnip mosaic virus isolated from carrot. Zesz Probl Postep Nauk Rol 226:71–87Google Scholar
  59. USDA, ARS, National Genetic Resources Program (2014) Germplasm Resources Information Network—(GRIN) Online Database. National Germplasm Resources Laboratory, Beltsville, Maryland. url: http://www.ars-grin.gov/cgi-bin/npgs/html/taxgenform.pl. Accessed 17 Feb 2014
  60. van Leur J, Kumari SJ, Makkouk KM, Rose I (2006) Viruses on faba bean in north-east Australia and strategies for virus control. In: Avila CM, Cubero JI, Moreno MT, Suso MJ, Torres AM (eds) International Workshop on Faba Bean Breeding and Agronomy, Córdoba (Spain), 25–27 October, 2006. Junta de Andalucía, Instituto de Investigación y Formación Agraria y Pesquera, España, pp 129–131Google Scholar
  61. van Leur JAG, Aftab M, Manning W, Bowring A, Riley MJ (2013) A severe outbreak of chickpea viruses in northern New South Wales, Australia, during 2012. Australas Plant Dis Notes 8(1):49–53. doi: 10.1007/s13314-013-0093-y CrossRefGoogle Scholar
  62. van Leur J, Aftab M, Sharman M, Lindbeck K (2014) Viral diseases in canola and winter pulses. GRDC Update Papers. Available online at http://www.grdc.com.au/Research-and-Development/GRDC-Update-Papers/2014/02/Viral-diseases-in-canola-and-winter-pulses. 27 Feb 2014
  63. Wade S (2005) Vegetable growing in the Central West. Primefact 56. NSW Department of Primary Industries, Orange 2800. http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0008/45926/Vegetable_growing_in_the_Central_West_-_Primefact_56-final.pdf
  64. Walsh JA, Jenner CE (2002) Turnip mosaic virus and the quest for durable resistance. Mol Plant Pathol 3(5):289–300. doi: 10.1046/j.1364-3703.2002.00132.x PubMedCrossRefGoogle Scholar
  65. Walsh JA, Tomlinson JA (1985) Viruses infecting winter oilseed rape (Brassica napus ssp. oleifera). Ann Appl Biol 107(3):485–495. doi: 10.1111/j.1744-7348.1985.tb03165.x CrossRefGoogle Scholar
  66. Wilson CR, Lambert SJ, Dann AL, Cross P, Hay FS (2012) Occurrence of viruses within Tasmanian vegetable crops and identification of a novel Polerovirus infecting pea. Australas Plant Pathol 41(3):311–319. doi: 10.1007/s13313-011-0114-2 CrossRefGoogle Scholar
  67. Zink FW, Duffus JE (1969) Relationship of turnip mosaic virus susceptibility and downy mildew (Bremia lactucae) resistance in lettuce. J Amer Soc Hortic Sci 94:403–407Google Scholar

Copyright information

© Australasian Plant Pathology Society Inc. 2014

Authors and Affiliations

  • Mark W. Schwinghamer
    • 1
  • Mark A. Schilg
    • 1
    • 5
  • John A. Walsh
    • 2
  • Rodney W. Bambach
    • 1
  • Rosa M. Cossu
    • 2
  • Judith M. Bambridge
    • 2
  • Tamrika L. Hind-Lanoiselet
    • 3
    • 6
  • Bruce E. McCorkell
    • 1
  • Peter Cross
    • 4
  1. 1.New South Wales Department of Primary Industries, Tamworth Agricultural InstituteTamworthAustralia
  2. 2.School of Life SciencesUniversity of WarwickWarwickUK
  3. 3.New South Wales Department of Primary Industries, Wagga Wagga Agricultural InstituteWagga WaggaAustralia
  4. 4.Department of Primary Industries, Parks, Water and EnvironmentNew Town Research LaboratoriesNew TownAustralia
  5. 5.LavingtonAustralia
  6. 6.Department of Agriculture and Food, Western AustraliaSouth PerthAustralia

Personalised recommendations