Indian Pediatrics

, Volume 56, Issue 9, pp 795–796 | Cite as


  • Rajendra Prasad AnneEmail author
  • Emine A. Rahiman
  • Ekta MainiEmail author
  • Bondu Venkateshwarlu


  1. 1.
    Scavone M, Carboni E, Stefanelli E, Romano G, Vero A, Giancotti L, Miniero R, et al. Prediction of transient or permanent congenital hypothyroidism from initial thyroid stimulating hormone levels. Indian Pediatr. 2018;55: 1059–61.CrossRefGoogle Scholar
  2. 2.
    DeMartino L, McMahon R, Caggana M, Tavakoli NP. Gender disparities in screening for congenital hypothyroidism using thyroxine as a primary screen. Eur J Endocrinol. 2018;179:161–7.CrossRefGoogle Scholar
  3. 3.
    Léger J, Olivieri A, Donaldson M, Torresani T, Krude H, Van Vliet G, et al. European Society for Paediatric Endocrinology Consensus Guidelines on Screening, Diagnosis, and Management of Congenital Hypothyroidism. Hormone Res Pediatr. 2014;81:80–103.CrossRefGoogle Scholar
  4. 4.
    Kara C, Günindi F, Yýlmaz GC, Aydýn M. Transient congenital hypothyroidism in Turkey: An analysis on frequency and natural course. J Clin Res Pediatr Endocrinol. 2016;8:170.CrossRefGoogle Scholar
  5. 5.
    Bongers-Schokking JJ, Resing WC, Oostdijk W, de Rijke YB, de Muinck Keizer-Schrama SM. Relation between early over-and undertreatment and behavioural problems in preadolescent children with congenital hypothyroidism. Hormone Res Pediatr. 2018;90:247–56.CrossRefGoogle Scholar


  1. 1.
    GBD 2016 Healthcare Access and Quality Collaborators. Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016. Lancet. 2018; 391:2236–71.CrossRefGoogle Scholar
  2. 2.
    World Health Organization. WHO Global Action Plan for the Prevention And Control of Non-communicable Diseases 2013–2020. Available from: Accessed April 26, 2019.
  3. 3.
    Maini E, Venkateswarlu B, Gupta A. Applying machine learning algorithms to develop a universal cardiovascular disease prediction system. In: Hemant J, Fernando X, Lafate P, Baig Z(eds). International Conference on Intelligent Data Communication Technologies and Internet of Things ICICI 2018, Lecture Notes on Data Engineering and Communications Technologies. 2019(26):627–32.Google Scholar
  4. 4.
    Kaur H, Kumari V. Predictive modelling and analytics for diabetes using a machine learning approach. Applied Computing and Informatics. 2018;doi:

Copyright information

© Indian Academy of Pediatrics 2019

Authors and Affiliations

  1. 1.Department of PediatricsPGIMERChandigarhIndia
  2. 2.Dayananda Sagar UniversityBengaluruIndia

Personalised recommendations