Indian Pediatrics

, Volume 50, Issue 2, pp 209–213

Effect of probiotics on allergic rhinitis in Df, Dp or dust-sensitive children: A randomized double blind controlled trial

  • Teng-Yi Lin
  • Chia-Jung Chen
  • Li-Kuang Chen
  • Shu-Hui Wen
  • Rong-Hwa Jan
Research Paper



To study, we examined the effect of Lactobacillus salivarius on the clinical symptoms and medication use among children with established allergic rhinitis (AR).


Double blind, randomized, controlled trial.


Hualien Tzu-Chi General Hospital.


Atopic children with current allergic rhinitis received 4 × 109 colony forming units/g of Lactobacillus salivarius (n=99) or placebo (n=100) daily as a powder mixed with food or water for 12 weeks. The SCORing Allergic rhinitis index (specific symptoms scores [SSS] and symptom medication scores [SMS]), which measures the extent and severity of AR, was assessed in each subject at each of the visits — 2 weeks prior to treatment initiation (visit 0), at the beginning of the treatment (visit 1), then at 4 (visit 2), 8 (visit 3) and 12 weeks (visit 4) after starting treatment. The WBC, RBC, platelet and, eosinophil counts as well as the IgE antibody levels of the individuals were evaluated before and after 3 months of treatment.


The major outcome, indicating the efficacy of Lactobacillus salivarius treatment, was the reduction in rhinitis symptoms and drug scores. No significant statistical differences were found between baseline or 12 weeks in the probiotic and placebo groups for any immunological or blood cell variables.


Our study demonstrates that Lactobacillus salivarius treatment reduces rhinitis symptoms and drug usage in children with allergic rhinitis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kao CC, Huang JL, Ou LS, See LC. The prevalence, severity and seasonal variations of asthma, rhinitis and eczema in Taiwanese schoolchildren. Pediatr Allergy Immunol. 2005;16:408–415.PubMedCrossRefGoogle Scholar
  2. 2.
    Krishna MT, Mavroleon G, Holgate ST. Essentials of Allergy. London: Martin Dunitz; 2001: 107–127.Google Scholar
  3. 3.
    Havenaar R, Huis in’t Veld JHJ. Probiotics: a general view. The lactic acid bacteria. In: Wood BJB, Ed. The Lactic Acid Bacteria in Health and Disease. London: Elsevier Applied Science. 1992;1:151–171.Google Scholar
  4. 4.
    Bjorksten B, Naaber P, Sepp E, Mikelsaar M. The intestinal microflora in alergic Estonian and Swedish 2-year-old children. Clin Exp Immunol. 1999;29:342–346.Google Scholar
  5. 5.
    Kirjavainen P, Arvola T, Salminen S, Isolauri E. Aberrant composition of gut microbiota of allergic infant: a target of bifidobacterial therapy at weaning. Gut. 2002;51:51–55.PubMedCrossRefGoogle Scholar
  6. 6.
    Pike MG, Heddle RJ, Boulton P, Turner MW, Atherton DJ. Increased intestinal permeability in atopic eczema. J Invest Dermatol. 1986;86:101–104.PubMedCrossRefGoogle Scholar
  7. 7.
    Isolauri E, Arvola T, Sutas Y, Moilanen E, Salminen S. Probiotics in the management of atopic eczema. Clin Exp Allergy. 2000;30:1604–1610.PubMedCrossRefGoogle Scholar
  8. 8.
    Rosenfeldt V, Benfeldt E, Nielsen SD, Michaelsen KF, Jeppesen DL, Valerius NH, et al. Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J Allergy Clin Immunol. 2003;111:389–395.PubMedCrossRefGoogle Scholar
  9. 9.
    Peng GC, Hsu CH. The efficacy and safety of heat-killed Lactobacillus paracasei for treatment of perennialallergic rhinitis induced by house-dust mite. Pediatr Allergy Immunol. 2005;16:433–438.PubMedCrossRefGoogle Scholar
  10. 10.
    Wang MF, Lin HC, Wang YY, Hsu CH. Treatment of perennial allergic rhinitis with lactic acid bacteria. Pediatr Allergy Immunol. 2004;15:152–158.PubMedCrossRefGoogle Scholar
  11. 11.
    Ciprandi G, Vizzaccaro A, Cirillo I, Tosca A. Bacillus clausii effects in children with allergic rhinitis. Allergy. 2005;60:702–710PubMedCrossRefGoogle Scholar
  12. 12.
    Aldinucci C, Bellussi L, Monciatti G, Passàli GC, Salerni L, Passàli D, et al. Effects of dietary yoghurt on immunological and clinical parameters of rhinopathic patients. Eur J Clin Nutr. 2002;56:1155–1161PubMedCrossRefGoogle Scholar
  13. 13.
    Li CY, Lin HC, Hsueh KC, Wu SF, Fang SH. Oral administration of Lactobacillus salivarius inhibits the allergic airway response in mice Can J Microbiol. 2010;56:373–379.PubMedCrossRefGoogle Scholar
  14. 14.
    La Rosa M, Ranno C, Andrè C, Carat F, Tosca MA, Canonica GW. Double-blind placebo-controlled evaluation of sublingual-swallow immunotherapy with standardizaed Parietaria Judaica extract in children with allergic rhinoconjunctivitis. J Allergy Clin Immunol. 1999;104:425–432.PubMedCrossRefGoogle Scholar
  15. 15.
    Cosmi L, Santarlasci V, Angeli R, Liotta F, Maggi L, Frosali F, et al. Sublingual immunotherapy with Dermatophagoides monomeric allergoid down-regulates allergen-specific immunoglobulin E and increases both interferon-g- and interleukin-10-production. Clin Exp Allergy. 2006; 36:261–272.PubMedCrossRefGoogle Scholar
  16. 16.
    Niers LE, Hoekstra MO, Timmerman HM, van Uden NO, de Graaf PM, Smits HH, et al. Selection of probiotic bacteria for prevention of allergic diseases: immunomodulation of neonatal dendritic cells. Clin Exp Immuno. 2007;149:344–352.CrossRefGoogle Scholar
  17. 17.
    Di’az-Ropero MP, Marti’n R, Sierra S, Lara-Villoslada F, Rodríguez JM, Xaus J, et al. Two Lactobacillus strains, isolated from breast milk, differently modulate the immune response. J Appl Microbiol. 2007;102:337–343.Google Scholar
  18. 18.
    Drago L, Nicola L, Iemoli E, Banfi G, De Vecchi E. Straindependent release of cytokines modulated by Lactobacillus salivarius human isolates in an in vitro model. BMC Res Notes. 2010;3:44.PubMedCrossRefGoogle Scholar
  19. 19.
    D’Andrea A, Aste-Amezaga M, Valiante NM, Ma X, Kubin M, Trinchieri G. Interleukin 10 (IL-10) inhibits human lymphocyte interferon gamma-production by suppressing natural killer cell stimulatory factor/IL-12 synthesis in accessory cells. J Exp Med. 1993;178: 1041–1048.PubMedCrossRefGoogle Scholar
  20. 20.
    Groux H, Bigler M, de Vries JE, Roncarolo MG. Interleukin-10 induces a long-term antigen-specific anergic state in human CD4+ T cells. J Exp Med. 1996;184:19–29.PubMedCrossRefGoogle Scholar
  21. 21.
    Ishida Y, Nakamura F, Kanzato H, Sawada D, Yamamoto N, Kagata H, et al. Effect of milk fermented with Lactobacillus acidophilus strain L-92 on symptoms of Japanese cedar pollen allergy: a randomized placebocontrolled trial. Biosci Biotechnol Biochem. 2005;69:1652–1660.PubMedCrossRefGoogle Scholar
  22. 22.
    Tamura M, Shikina T, Morihana T, Hayama M, Kajimoto O, Sakamoto A, et al. Effects of probiotics on allergic rhinitis induced by Japanese cedar pollen: randomized double-blind, placebo-controlled clinical trial. Int Arch Allergy Immunol. 2007;143:75–82.PubMedCrossRefGoogle Scholar
  23. 23.
    Xiao JZ, Kondo S, Yanagisawa N, Takahashi N, Odamaki T, Iwabuchi N, et al. Effect of probiotic Bifidobacteriu mlongum BB536 in relieving clinical symptoms and modulating plasma cytokine levels of Japanese cedar pollinosis during the pollen season: a randomized doubleblind, placebo-controlled trial. J Investig Allergol Clin Immunol. 2006;16:86–93.PubMedGoogle Scholar
  24. 24.
    Leech MD, Benson RA, De Vries A, Fitch PM, Howie SE. Resolution of Der p1-induced allergic airway inflammation is dependent on CD4+ CD25+Foxp3+ regulatory cells. J Immunol. 2007;179:7050–7058.PubMedGoogle Scholar
  25. 25.
    McGlade JP, Gorman S, Zosky GR, Larcombe AN, Sly PD, Finlay-Jones JJ, et al. Suppression of the asthmatic phenotype by ultraviolet b-induced, antigen-specific regulatory cells. Clin Exp Allergy. 2007;37:1267–1276.PubMedCrossRefGoogle Scholar
  26. 26.
    Strickland DH, Stumbles PA, Zosky GR, Subrata LS, Thomas JA, Turner DJ, et al. Reversal of airway hyperresponsiveness by induction of airway mucosal CD4+ CD25+ regulatory T cells. J Exp Med. 2006;203:2649–2660.PubMedCrossRefGoogle Scholar
  27. 27.
    Wu K, Bi Y, Sun K, Xia J, Wang Y, Wang C. Suppression of allergic inflammation by allergen-DNA-modified dendritic cells depends on the induction of Foxp3+ regulatory T cells. Scand J Immunol. 2008;67:140–151.PubMedCrossRefGoogle Scholar
  28. 28.
    Lyons A, O’Mahony D, O’Brien F, MacSharry J, Sheil B, Ceddia M, et al. Bacterial strain-specific induction of Foxp3+ T regulatory cells is protective in murine allergy models. Clin Exp Allergy. 2010;40:811–819.PubMedGoogle Scholar

Copyright information

© Indian Academy of Pediatrics 2013

Authors and Affiliations

  • Teng-Yi Lin
    • 1
  • Chia-Jung Chen
    • 2
  • Li-Kuang Chen
    • 3
  • Shu-Hui Wen
    • 4
  • Rong-Hwa Jan
    • 5
    • 6
  1. 1.Department of Laboratory MedicineTzu Chi UniversityHualienTaiwan.
  2. 2.Department of Pediatrics, Buddhist Tzu Chi General HospitalTzu Chi UniversityHualienTaiwan
  3. 3.Department of NursingTzu Chi UniversityHualienTaiwan
  4. 4.Institute of Medical SciencesTzu Chi UniversityHualienTaiwan
  5. 5.Institute of Public Health, College of MedicinTzu Chi UniversityHualienTaiwan
  6. 6.Department of PediatricsBuddhist Tzu Chi General HospitalHualienTaiwan

Personalised recommendations