Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The Value of Imaging and Composition-Based Biomarkers in Duchenne Muscular Dystrophy Clinical Trials

Abstract

As the drug development pipeline for Duchenne muscular dystrophy (DMD) rapidly advances, clinical trial outcomes need to be optimized. Effective assessment of disease burden, natural history progression, and response to therapy in clinical trials for Duchenne muscular dystrophy are critical factors for clinical trial success. By choosing optimal biomarkers to better assess therapeutic efficacy, study costs and sample size requirements can be reduced. Currently, functional measures continue to serve as the primary outcome for the majority of DMD clinical trials. Quantitative measures of muscle health, including magnetic resonance imaging and spectroscopy, electrical impedance myography, and ultrasound, sensitively identify diseased muscle, disease progression, and response to a therapeutic intervention. Furthermore, such non-invasive techniques have the potential to identify disease pathology prior to onset of clinical symptoms. Despite robust supportive evidence, non-invasive quantitative techniques are still not frequently utilized in clinical trials for Duchenne muscular dystrophy. Non-invasive quantitative techniques have demonstrated the ability to quantify disease progression and potential response to therapeutic intervention, and should be used as a supplement to current standard functional measures. Such methods have the potential to significantly accelerate the development and approval of therapies for DMD.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Bushby K, Connor E. Clinical outcome measures for trials in Duchenne muscular dystrophy: report from International Working Group meetings. Clin. Investig. 2011;1:1217–1235.

  2. 2.

    Hoffman EP, Brown Jr. RH, Kunkel LM. Dystrophin: The protein product of the duchenne muscular dystrophy locus. Cell. 1987;51:919–928.

  3. 3.

    Mah JK, Korngut L, Fiest KM, et al. A Systematic Review and Meta-analysis on the Epidemiology of the Muscular Dystrophies. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 2016;43:163–177.

  4. 4.

    Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17:251–267.

  5. 5.

    Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17:347–361.

  6. 6.

    Birnkrant DJ, Bushby K, Bann CM, et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 2018;17:445–455.

  7. 7.

    Duchenne G-B. Physiologie des mouvements démontrée à l’aide de l’experimentation électrique et de l’observation clinique: et applicable à l’étude des paralysies et des déformations. Baillière; 1867.

  8. 8.

    Ervasti JM, Campbell KP. Membrane organization of the dystrophin-glycoprotein complex. Cell. 1991;66:1121–1131.

  9. 9.

    Sacco A, Mourkioti F, Tran R, et al. Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell. 2010;143:1059–1071.

  10. 10.

    Tidball JG, Wehling-Henricks M. Macrophages promote muscle membrane repair and muscle fibre growth and regeneration during modified muscle loading in mice in vivo. J. Physiol. 2007;578:327–336.

  11. 11.

    Lee T, Takeshima Y, Kusunoki N, et al. Differences in carrier frequency between mothers of Duchenne and Becker muscular dystrophy patients. J. Hum. Genet. 2014;59:46–50.

  12. 12.

    McNally EM, Kaltman JR, Benson DW, et al. Contemporary Cardiac Issues in Duchenne Muscular Dystrophy. Circulation. 2015;131:1590–1598.

  13. 13.

    Melacini P, Vianello A, Villanova C, et al. Cardiac and respiratory involvement in advanced stage Duchenne muscular dystrophy. Neuromuscul. Disord. NMD. 1996;6:367–376.

  14. 14.

    Fayssoil A, Ogna A, Chaffaut C, et al. Natural history of cardiac function in Duchenne and Becker muscular dystrophies on home mechanical ventilation. Medicine (Baltimore). 2018;97:e11381.

  15. 15.

    Okubo M, Minami N, Goto K, et al. Genetic diagnosis of Duchenne/Becker muscular dystrophy using next-generation sequencing: validation analysis of DMD mutations. J. Hum. Genet. 2016;61:483–489.

  16. 16.

    Fenichel GM, Florence JM, Pestronk A, et al. Long-term benefit from prednisone therapy in Duchenne muscular dystrophy. Neurology. 1991;41:1874–1877.

  17. 17.

    Mendell JR, Moxley RT, Griggs RC, et al. Randomized, double-blind six-month trial of prednisone in Duchenne’s muscular dystrophy. N. Engl. J. Med. 1989;320:1592–1597.

  18. 18.

    Lebel DE, Corston JA, McAdam LC, et al. Glucocorticoid treatment for the prevention of scoliosis in children with Duchenne muscular dystrophy: long-term follow-up. J. Bone Joint Surg. Am. 2013;95:1057–1061.

  19. 19.

    Kinnett K, Noritz G. The PJ Nicholoff Steroid Protocol for Duchenne and Becker Muscular Dystrophy and Adrenal Suppression. PLoS Curr. 2017;9.

  20. 20.

    Eagle M, Baudouin SV, Chandler C, et al. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul. Disord. NMD. 2002;12:926–929.

  21. 21.

    McDonald CM, Campbell C, Torricelli RE, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Lond. Engl. 2017;390:1489–1498.

  22. 22.

    Bushby K, Finkel R, Wong B, et al. Ataluren treatment of patients with nonsense mutation dystrophinopathy. Muscle Nerve. 2014;50:477–487.

  23. 23.

    Mendell JR, Goemans N, Lowes LP, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann. Neurol. 2016;79:257–271.

  24. 24.

    Syed YY. Eteplirsen: First Global Approval. Drugs. 2016;76:1699–1704.

  25. 25.

    Goemans NM, Tulinius M, van den Hauwe M, et al. Long-Term Efficacy, Safety, and Pharmacokinetics of Drisapersen in Duchenne Muscular Dystrophy: Results from an Open-Label Extension Study. PLoS ONE [Internet]. 2016;11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5010191/.

  26. 26.

    Ricotti V, Spinty S, Roper H, et al. Safety, Tolerability, and Pharmacokinetics of SMT C1100, a 2-Arylbenzoxazole Utrophin Modulator, following Single- and Multiple-Dose Administration to Pediatric Patients with Duchenne Muscular Dystrophy. PLoS ONE [Internet]. 2016;11. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4824384/.

  27. 27.

    Mazzone E, Vasco G, Sormani MP, et al. Functional changes in Duchenne muscular dystrophy: a 12-month longitudinal cohort study. Neurology. 2011;77:250–256.

  28. 28.

    Fleming TR, Powers JH. Biomarkers and surrogate endpoints in clinical trials. Stat. Med. 2012;31:2973–2984.

  29. 29.

    US Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Guidance for Industry and FDA Staff: Qualification Process for Drug Development Tools. 2014.

  30. 30.

    Katz R. Biomarkers and Surrogate Markers: An FDA Perspective. NeuroRx. 2004;1:189–195.

  31. 31.

    Hamuro L, Chan P, Tirucherai G, et al. Developing a Natural History Progression Model for Duchenne Muscular Dystrophy Using the Six-Minute Walk Test. CPT Pharmacomet. Syst. Pharmacol. 2017;6:596–603.

  32. 32.

    Bohannon RW, Bubela D, Magasi S, et al. Comparison of walking performance over the first 2 minutes and the full 6 minutes of the Six-Minute Walk Test. BMC Res. Notes. 2014;7:269.

  33. 33.

    Goemans N, Vanden Hauwe M, Signorovitch J, et al. Individualized Prediction of Changes in 6-Minute Walk Distance for Patients with Duchenne Muscular Dystrophy. PloS One. 2016;11:e0164684.

  34. 34.

    Pane M, Mazzone ES, Sivo S, et al. Long term natural history data in ambulant boys with Duchenne muscular dystrophy: 36-month changes. PloS One. 2014;9:e108205.

  35. 35.

    Chrzanowski SM, Baligand C, Willcocks RJ, et al. Multi-slice MRI reveals heterogeneity in disease distribution along the length of muscle in Duchenne muscular dystrophy. Acta Myol. Myopathies Cardiomyopathies Off. J. Mediterr. Soc. Myol. 2017;36:151–162.

  36. 36.

    Cacchiarelli D, Legnini I, Martone J, et al. miRNAs as serum biomarkers for Duchenne muscular dystrophy. EMBO Mol. Med. 2011;3:258–265.

  37. 37.

    Arpan I, Forbes SC, Lott DJ, et al. T2 mapping provides multiple approaches for the characterization of muscle involvement in neuromuscular diseases: a cross-sectional study of lower leg muscles in 5-15-year-old boys with Duchenne muscular dystrophy. NMR Biomed. 2013;26:320–328.

  38. 38.

    Arpan I, Willcocks RJ, Forbes SC, et al. Examination of effects of corticosteroids on skeletal muscles of boys with DMD using MRI and MRS. Neurology. 2014;83:974–980.

  39. 39.

    Carlier PG, Mercuri E, Straub V. Applications of MRI in muscle diseases. Neuromuscul. Disord. NMD. 2012;22 Suppl 2:S41.

  40. 40.

    Wary C, Azzabou N, Giraudeau C, et al. Quantitative NMRI and NMRS identify augmented disease progression after loss of ambulation in forearms of boys with Duchenne muscular dystrophy. NMR Biomed. 2015;28:1150–1162.

  41. 41.

    Hogrel J-Y, Wary C, Moraux A, et al. Longitudinal functional and NMR assessment of upper limbs in Duchenne muscular dystrophy. Neurology. 2016;86:1022–1030.

  42. 42.

    Forbes SC, Willcocks RJ, Triplett WT, et al. Magnetic Resonance Imaging and Spectroscopy Assessment of Lower Extremity Skeletal Muscles in Boys with Duchenne Muscular Dystrophy: A Multicenter Cross Sectional Study. PLoS ONE. 2014;9:e106435.

  43. 43.

    Mathur S, Lott DJ, Senesac C, et al. Age-related differences in lower-limb muscle cross-sectional area and torque production in boys with Duchenne muscular dystrophy. Arch. Phys. Med. Rehabil. 2010;91:1051–1058.

  44. 44.

    Mercuri E, Talim B, Moghadaszadeh B, et al. Clinical and imaging findings in six cases of congenital muscular dystrophy with rigid spine syndrome linked to chromosome 1p (RSMD1). Neuromuscul. Disord. 2002;12:631–638.

  45. 45.

    Burakiewicz J, Sinclair CDJ, Fischer D, et al. Quantifying fat replacement of muscle by quantitative MRI in muscular dystrophy. J. Neurol. 2017;264:2053–2067.

  46. 46.

    Hooijmans MT, Niks EH, Burakiewicz J, et al. Non-uniform muscle fat replacement along the proximodistal axis in Duchenne muscular dystrophy. Neuromuscul. Disord. NMD. 2017;27:458–464.

  47. 47.

    Fischmann A, Hafner P, Gloor M, et al. Quantitative MRI and loss of free ambulation in Duchenne muscular dystrophy. J. Neurol. 2013;260:969–974.

  48. 48.

    Forbes SC, Walter GA, Rooney WD, et al. Skeletal muscles of ambulant children with Duchenne muscular dystrophy: validation of multicenter study of evaluation with MR imaging and MR spectroscopy. Radiology. 2013;269:198–207.

  49. 49.

    Gaeta M, Messina S, Mileto A, et al. Muscle fat-fraction and mapping in Duchenne muscular dystrophy: evaluation of disease distribution and correlation with clinical assessments. Preliminary experience. Skeletal Radiol. 2012;41:955–961.

  50. 50.

    Willcocks RJ, Triplett WT, Forbes SC, et al. Magnetic resonance imaging of the proximal upper extremity musculature in boys with Duchenne muscular dystrophy. J. Neurol. 2017;264:64–71.

  51. 51.

    Wokke BH, Bos C, Reijnierse M, et al. Comparison of dixon and T1-weighted MR methods to assess the degree of fat infiltration in duchenne muscular dystrophy patients. J. Magn. Reson. Imaging. 2013;38:619–624.

  52. 52.

    Wren TAL, Bluml S, Tseng-Ong L, et al. Three-point technique of fat quantification of muscle tissue as a marker of disease progression in Duchenne muscular dystrophy: preliminary study. AJR Am. J. Roentgenol. 2008;190:W8–12.

  53. 53.

    Hooijmans MT, Doorenweerd N, Baligand C, et al. Spatially localized phosphorous metabolism of skeletal muscle in Duchenne muscular dystrophy patients: 24-month follow-up. PloS One. 2017;12:e0182086.

  54. 54.

    Davies RC, Eston RG, Fulford J, et al. Muscle damage alters the metabolic response to dynamic exercise in humans: a 31P-MRS study. J. Appl. Physiol. 2011;111:782–790.

  55. 55.

    Lodi R, Muntoni F, Taylor J, et al. Correlative MR imaging and 31P-MR spectroscopy study in sarcoglycan deficient limb girdle muscular dystrophy. Neuromuscul. Disord. 1997;7:505–511.

  56. 56.

    Lott DJ, Forbes SC, Mathur S, et al. Assessment of intramuscular lipid and metabolites of the lower leg using magnetic resonance spectroscopy in boys with Duchenne muscular dystrophy. Neuromuscul. Disord. 2014;24:574–582.

  57. 57.

    Willcocks RJ, Arpan IA, Forbes SC, et al. Longitudinal measurements of MRI-T2 in boys with Duchenne muscular dystrophy: Effects of age and disease progression. Neuromuscul. Disord. 2014;24:393–401.

  58. 58.

    Kim HK, Laor T, Horn PS, et al. T2 Mapping in Duchenne Muscular Dystrophy: Distribution of Disease Activity and Correlation with Clinical Assessments1. Radiology. 2010;255:899–908.

  59. 59.

    Mankodi A, Azzabou N, Bulea T, et al. Skeletal muscle water T2as a biomarker of disease status and exercise effects in patients with Duchenne muscular dystrophy. Neuromuscul. Disord. NMD. 2017;27:705–714.

  60. 60.

    Bishop CA, Ricotti V, Sinclair CDJ, et al. Semi-Automated Analysis of Diaphragmatic Motion with Dynamic Magnetic Resonance Imaging in Healthy Controls and Non-Ambulant Subjects with Duchenne Muscular Dystrophy. Front. Neurol. 2018;9:9.

  61. 61.

    Barnard AM, Willcocks RJ, Finanger EL, et al. Skeletal muscle magnetic resonance biomarkers correlate with function and sentinel events in Duchenne muscular dystrophy. PloS One. 2018;13:e0194283.

  62. 62.

    Willcocks RJ, Rooney WD, Triplett WT, et al. Multicenter prospective longitudinal study of magnetic resonance biomarkers in a large duchenne muscular dystrophy cohort. Ann. Neurol. 2016;79:535–547.

  63. 63.

    Bonati U, Hafner P, Schädelin S, et al. Quantitative muscle MRI: A powerful surrogate outcome measure in Duchenne muscular dystrophy. Neuromuscul. Disord. NMD. 2015;25:679–685.

  64. 64.

    Rutkove SB, Darras BT. Electrical impedance myography for the assessment of children with muscular dystrophy: a preliminary study. J. Phys. Conf. Ser. 2013;434.

  65. 65.

    Rutkove SB, Kapur K, Zaidman CM, et al. Electrical impedance myography for assessment of Duchenne muscular dystrophy. Ann. Neurol. 2017;81:622–632.

  66. 66.

    Rutkove SB, Geisbush TR, Mijailovic A, et al. Cross-sectional Evaluation of Electrical Impedance Myography and Quantitative Ultrasound for the Assessment of Duchenne Muscular Dystrophy in a Clinical Trial Setting. Pediatr. Neurol. 2014;51:88–92.

  67. 67.

    Zaidman CM, Wang LL, Connolly AM, et al. Electrical impedance myography in Duchenne muscular dystrophy and healthy controls: A multicenter study of reliability and validity. Muscle Nerve. 2015;52:592–597.

  68. 68.

    Rutkove SB, Shefner JM, Gregas M, et al. Characterizing Spinal Muscular Atrophy with Electrical Impedance Myography. Muscle Nerve. 2010;42:915–921.

  69. 69.

    Kolb SJ, Coffey CS, Yankey JW, et al. Baseline results of the NeuroNEXT spinal muscular atrophy infant biomarker study. Ann. Clin. Transl. Neurol. 2016;3:132–145.

  70. 70.

    Rutkove SB, Esper GJ, Lee KS, et al. Electrical impedance myography in the detection of radiculopathy. Muscle Nerve. 2005;32:335–341.

  71. 71.

    Statland JM, Heatwole C, Eichinger K, et al. Electrical impedance myography in facioscapulohumeral muscular dystrophy. Muscle Nerve. 2016;54:696–701.

  72. 72.

    Rutkove SB, Aaron R, Shiffman CA. Localized bioimpedance analysis in the evaluation of neuromuscular disease. Muscle Nerve. 2002;25:390–397.

  73. 73.

    Rutkove SB, Caress JB, Cartwright MS, et al. Electrical impedance myography as a biomarker to assess ALS progression. Amyotroph. Lateral Scler. 2012;13:439–445.

  74. 74.

    Rutkove SB, Zhang H, Schoenfeld DA, et al. Electrical impedance myography to assess outcome in amyotrophic lateral sclerosis clinical trials. Clin. Neurophysiol. 2007;118:2413–2418.

  75. 75.

    Shefner JM, Rutkove SB, Caress JB, et al. Reducing sample size requirements for future ALS clinical trials with a dedicated electrical impedance myography system. Amyotroph. Lateral Scler. Front. Degener. 2018;1–7.

  76. 76.

    Rodriguez S, Ollmar S, Waqar M, et al. A Batteryless Sensor ASIC for Implantable Bio-Impedance Applications. IEEE Trans. Biomed. Circuits Syst. 2016;10:533–544.

  77. 77.

    Pillen S, Arts IMP, Zwarts MJ. Muscle ultrasound in neuromuscular disorders. Muscle Nerve. 2008;37:679–693.

  78. 78.

    Heckmatt JZ, Dubowitz V, Leeman S. Detection of pathological change in dystrophic muscle with B-scan ultrasound imaging. Lancet Lond. Engl. 1980;1:1389–1390.

  79. 79.

    Zaidman CM, Connolly AM, Malkus EC, et al. Quantitative ultrasound using backscatter analysis in Duchenne and Becker muscular dystrophy. Neuromuscul. Disord. NMD. 2010;20:805–809.

  80. 80.

    Zaidman CM, Malkus EC, Connolly AM. Muscle ultrasound quantifies disease progression over time in infants and young boys with duchenne muscular dystrophy. Muscle Nerve. 2015;52:334–338.

  81. 81.

    Jansen M, van Alfen N, Nijhuis van der Sanden MWG, et al. Quantitative muscle ultrasound is a promising longitudinal follow-up tool in Duchenne muscular dystrophy. Neuromuscul. Disord. NMD. 2012;22:306–317.

  82. 82.

    Baumer TG, Davis L, Dischler J, et al. Shear wave elastography of the supraspinatus muscle and tendon: Repeatability and preliminary findings. J. Biomech. 2017;53:201–204.

  83. 83.

    Food and Drug Administration C for DE and. Development & Approval Process (Drugs) - Drug Development Tools: Fit-for-Purpose Initiative [Internet]. [cited 2019 Mar 3]. Available from: https://www.fda.gov/drugs/developmentapprovalprocess/ucm505485.htm.

Download references

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Correspondence to Stephen M. Chrzanowski.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 3341 kb)

EAppendix Supplement

EAppendix Supplement

Search terms

Duchenne muscular dystrophymagnetic resonance imagingmagnetic resonance spectroscopyelectrical impedance myographyclinical trialsbiomarkersoutcome measures

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chrzanowski, S.M., Darras, B.T. & Rutkove, S.B. The Value of Imaging and Composition-Based Biomarkers in Duchenne Muscular Dystrophy Clinical Trials. Neurotherapeutics 17, 142–152 (2020). https://doi.org/10.1007/s13311-019-00825-1

Download citation

Keywords

  • Duchenne muscular dystrophy
  • Clinical trial
  • Biomarkers
  • Magnetic resonance imaging
  • Electrical impedance myography
  • Ultrasound