The Medical Management of Cerebral Edema: Past, Present, and Future Therapies

  • Michael R. HalsteadEmail author
  • Romergryko G. Geocadin
Current Perspectives


Cerebral edema is commonly associated with cerebral pathology, and the clinical manifestation is largely related to the underlying lesioned tissue. Brain edema usually amplifies the dysfunction of the lesioned tissue and the burden of cerebral edema correlates with increased morbidity and mortality across diseases. Our modern-day approach to the medical management of cerebral edema has largely revolved around, an increasingly artificial distinction between cytotoxic and vasogenic cerebral edema. These nontargeted interventions such as hyperosmolar agents and sedation have been the mainstay in clinical practice and offer noneloquent solutions to a dire problem. Our current understanding of the underlying molecular mechanisms driving cerebral edema is becoming much more advanced, with differences being identified across diseases and populations. As our understanding of the underlying molecular mechanisms in neuronal injury continues to expand, so too is the list of targeted therapies in the pipeline. Here we present a brief review of the molecular mechanisms driving cerebral edema and a current overview of our understanding of the molecular targets being investigated.

Key Words

Cerebral edema cytotoxic edema vasogenic edema hyperosmolar therapy elevated ICP. 



Dr. Halstead and Dr. Geocadin do not have any commercial support. Dr. Halstead is supported in part by an educational fellowship from the American Academy of Neurology. Dr. Geocadin is supported in part by a grant from the National Institutes of Health.


  1. 1.
    Shah S, Kimberly WT. Today’s approach to treating brain swelling in the neuro intensive care unit. Semin Neurol 2016;36(6):502–7.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jha RM, Kochanek PM, Simard JM. Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2019;145:230–46.CrossRefPubMedGoogle Scholar
  3. 3.
    Battey TW, Karki M, Singhal AB, et al. Brain edema predicts outcome after nonlacunar ischemic stroke. Stroke 2014;45(12):3643–8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Urday S, Beslow LA, Dai F, et al. Rate of perihematomal edema expansion predicts outcome after intracerebral hemorrhage. Crit Care Med 2016;44(4):790–7.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Tucker B, Aston J, Dines M, et al. Early brain edema is a predictor of in-hospital mortality in traumatic brain injury. J Emerg Med 2017;53(1):18–29.CrossRefPubMedGoogle Scholar
  6. 6.
    Kok B, Karvellas CJ. Management of cerebral edema in acute liver failure. Semin Respir Crit Care Med 2017;38(6):821–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Stokum JA, Gerzanich V, Simard JM. Molecular pathophysiology of cerebral edema. J Cereb Blood Flow Metab 2016;36(3):513–38.CrossRefPubMedGoogle Scholar
  8. 8.
    Winkler EA, Minter D, Yue JK, Manley GT. Cerebral edema in traumatic brain injury: pathophysiology and prospective therapeutic targets. Neurosurg Clin N Am 2016;27(4):473–88.CrossRefPubMedGoogle Scholar
  9. 9.
    Zheng H, Chen C, Zhang J, Hu Z. Mechanism and therapy of brain edema after intracerebral hemorrhage. Cerebrovasc Dis 2016;42(3–4):155–69.CrossRefPubMedGoogle Scholar
  10. 10.
    Koenig MA. Cerebral edema and elevated intracranial pressure. Continuum (Minneap Minn) 2018;24(6):1588–602.Google Scholar
  11. 11.
    Rungta RL, Choi HB, Tyson JR, et al. The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell 2015;161(3):610–21.CrossRefPubMedGoogle Scholar
  12. 12.
    Norenberg MD. Astrocyte responses to CNS injury. J Neuropathol Exp Neurol 1994;53(3):213–20.CrossRefPubMedGoogle Scholar
  13. 13.
    Jayakumar AR, Liu M, Moriyama M, et al. Na-K-Cl cotransporter-1 in the mechanism of ammonia-induced astrocyte swelling. J Biol Chem 2008;283(49):33874–82.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Jayakumar AR, Norenberg MD. The Na-K-Cl co-transporter in astrocyte swelling. Metab Brain Dis 2010;25(1):31–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Saadoun S, Papadopoulos MC, Watanabe H, Yan D, Manley GT, Verkman AS. Involvement of aquaporin-4 in astroglial cell migration and glial scar formation. J Cell Sci 2005;118(Pt 24):5691–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Haj-Yasein NN, Vindedal GF, Eilert-Olsen M, et al. Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci U S A 2011;108(43):17815–20.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Higashida T, Kreipke CW, Rafols JA, et al. The role of hypoxia-inducible factor-1alpha, aquaporin-4, and matrix metalloproteinase-9 in blood-brain barrier disruption and brain edema after traumatic brain injury. J Neurosurg 2011;114(1):92–101.CrossRefPubMedGoogle Scholar
  18. 18.
    Manley GT, Fujimura M, Ma T, et al. Aquaporin-4 deletion in mice reduces brain edema after acute water intoxication and ischemic stroke. Nat Med 2000;6(2):159–63.CrossRefPubMedGoogle Scholar
  19. 19.
    Lam TI, Wise PM, O'Donnell ME. Cerebral microvascular endothelial cell Na/H exchange: evidence for the presence of NHE1 and NHE2 isoforms and regulation by arginine vasopressin. Am J Phys Cell Physiol 2009;297(2):C278–89.CrossRefGoogle Scholar
  20. 20.
    Mehta RI, Tosun C, Ivanova S, et al. Sur1-Trpm4 cation channel expression in human cerebral infarcts. J Neuropathol Exp Neurol 2015;74(8):835–49.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Stokum JA, Kwon MS, Woo SK, et al. SUR1-TRPM4 and AQP4 form a heteromultimeric complex that amplifies ion/water osmotic coupling and drives astrocyte swelling. Glia 2018;66(1):108–25.CrossRefPubMedGoogle Scholar
  22. 22.
    Simard JM, Chen M, Tarasov KV, et al. Newly expressed SUR1-regulated NC(Ca-ATP) channel mediates cerebral edema after ischemic stroke. Nat Med 2006;12(4):433–40.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Chen M, Simard JM. Cell swelling and a nonselective cation channel regulated by internal Ca2+ and ATP in native reactive astrocytes from adult rat brain. J Neurosci 2001;21(17):6512.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Obrenovitch TP, Urenjak J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma 1997;14(10):677–98.CrossRefPubMedGoogle Scholar
  25. 25.
    Guyot LL, Diaz FG, O'Regan MH, McLeod S, Park H, Phillis JW. Real-time measurement of glutamate release from the ischemic penumbra of the rat cerebral cortex using a focal middle cerebral artery occlusion model. Neurosci Lett 2001;299(1–2):37–40.CrossRefPubMedGoogle Scholar
  26. 26.
    Schneider GH, Baethmann A, Kempski O. Mechanisms of glial swelling induced by glutamate. Can J Physiol Pharmacol 1992;70(Suppl):S334–43.CrossRefPubMedGoogle Scholar
  27. 27.
    Illarionova NB, Gunnarson E, Li Y, et al. Functional and molecular interactions between aquaporins and Na,K-ATPase. Neuroscience 2010;168(4):915–25.CrossRefPubMedGoogle Scholar
  28. 28.
    Izumi Y, Kirby CO, Benz AM, Olney JW, Zorumski CF. Muller cell swelling, glutamate uptake, and excitotoxic neurodegeneration in the isolated rat retina. Glia 1999;25(4):379–89.CrossRefPubMedGoogle Scholar
  29. 29.
    Unterberg AW, Stover J, Kress B, Kiening KL. Edema and brain trauma. Neuroscience 2004;129(4):1021–9.CrossRefPubMedGoogle Scholar
  30. 30.
    Vorbrodt AW, Lossinsky AS, Wisniewski HM, et al. Ultrastructural observations on the transvascular route of protein removal in vasogenic brain edema. Acta Neuropathol 1985;66(4):265–73.CrossRefPubMedGoogle Scholar
  31. 31.
    Durward QJ, Del Maestro RF, Amacher AL, Farrar JK. The influence of systemic arterial pressure and intracranial pressure on the development of cerebral vasogenic edema. J Neurosurg 1983;59(5):803–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Garcia JG, Siflinger-Birnboim A, Bizios R, Del Vecchio PJ, Fenton JW 2nd, Malik AB. Thrombin-induced increase in albumin permeability across the endothelium. J Cell Physiol 1986;128(1):96–104.CrossRefPubMedGoogle Scholar
  33. 33.
    Dore-Duffy P, Wang X, Mehedi A, Kreipke CW, Rafols JA. Differential expression of capillary VEGF isoforms following traumatic brain injury. Neurol Res 2007;29(4):395–403.CrossRefPubMedGoogle Scholar
  34. 34.
    Fischer S, Wobben M, Marti HH, Renz D, Schaper W. Hypoxia-induced hyperpermeability in brain microvessel endothelial cells involves VEGF-mediated changes in the expression of zonula occludens-1. Microvasc Res 2002;63(1):70–80.CrossRefPubMedGoogle Scholar
  35. 35.
    Simard JM, Kent TA, Chen M, Tarasov KV, Gerzanich V. Brain oedema in focal ischaemia: molecular pathophysiology and theoretical implications. Lancet Neurol 2007;6(3):258–68.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Fukuda S, Fini CA, Mabuchi T, Koziol JA, Eggleston LL Jr, del Zoppo GJ. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 2004;35(4):998–1004.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Duan X, Wen Z, Shen H, Shen M, Chen G. Intracerebral hemorrhage, oxidative stress, and antioxidant therapy. Oxidative Med Cell Longev 2016;2016:1203285.CrossRefGoogle Scholar
  38. 38.
    Aronowski J, Zhao X. Molecular pathophysiology of cerebral hemorrhage: secondary brain injury. Stroke 2011;42(6):1781–6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Urday S, Kimberly WT, Beslow LA, et al. Targeting secondary injury in intracerebral haemorrhage—perihaematomal oedema. Nat Rev Neurol 2015;11(2):111–22.CrossRefPubMedGoogle Scholar
  40. 40.
    Shima K. Hydrostatic brain edema: basic mechanisms and clinical aspect. Presented at: Brain Edema XII.Google Scholar
  41. 41.
    Halperin JL, Levine GN, Al-Khatib SM, et al. Further evolution of the ACC/AHA Clinical Practice Guideline Recommendation Classification System: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2016;133(14):1426–8.CrossRefPubMedGoogle Scholar
  42. 42.
    Qureshi AI, Suarez JI. Use of hypertonic saline solutions in treatment of cerebral edema and intracranial hypertension. Crit Care Med 2000;28(9):3301–13.CrossRefPubMedGoogle Scholar
  43. 43.
    Scallan J, Huxley VH, Korthuis RJ. Chapter 1, Fluid movement across the endothelial barrier. In: Capillary fluid exchange: regulation, functions, and pathology. Anonymous Morgan & Claypool Life Sciences, San Rafael (CA); 2010.Google Scholar
  44. 44.
    Diringer MN. New trends in hyperosmolar therapy? Curr Opin Crit Care 2013;19(2):77–82.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Javid M, Settlage P. Effect of urea on cerebrospinal fluid pressure in human subjects: preliminary report. JAMA 1956;160(11):943–9.CrossRefGoogle Scholar
  46. 46.
    Raslan A, Bhardwaj A. Medical management of cerebral edema. Neurosurg Focus 2007;22(5):E12.CrossRefPubMedGoogle Scholar
  47. 47.
    Otvos B, Kshettry VR, Benzel EC. The history of urea as a hyperosmolar agent to decrease brain swelling. Neurosurg Focus FOC 2014;36(4):E3.CrossRefGoogle Scholar
  48. 48.
    Javid M, Settlage P, Monfore T. Urea in the management of increased intracranial pressure. Surg Forum 1957;7:528–32.PubMedGoogle Scholar
  49. 49.
    Clasen RA, Cooke PM, Pandolfi S, Carnecki G, Bryar G. Hypertonic urea in experimental cerebral edema. NEUR 1965;12(4):424–34.Google Scholar
  50. 50.
    Wise BL, Chater N. Use of hypertonic mannitol solutions to lower cerebrospinal fluid pressure and decrease brain bulk in man. Surg Forum 1961;12:398–9.PubMedGoogle Scholar
  51. 51.
    Palma L, Bruni G, Fiaschi AI, Mariottini A. Passage of mannitol into the brain around gliomas: a potential cause of rebound phenomenon. A study on 21 patients. J Neurosurg Sci 2006;50(3):63–6.PubMedGoogle Scholar
  52. 52.
    Sorani MD, Manley GT. Dose-response relationship of mannitol and intracranial pressure: a metaanalysis. J Neurosurg 2008;108(1):80–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Muizelaar JP, Wei EP, Kontos HA, Becker DP. Mannitol causes compensatory cerebral vasoconstriction and vasodilation in response to blood viscosity changes. J Neurosurg 1983;59(5):822–8.CrossRefPubMedGoogle Scholar
  54. 54.
    Fandino W. Understanding the physiological changes induced by mannitol: from the theory to the clinical practice in neuroanaesthesia. J Neuroanaesthesiol Crit Care 2017;4(3):138–46.CrossRefGoogle Scholar
  55. 55.
    Boone MD, Oren-Grinberg A, Robinson TM, Chen CC, Kasper EM. Mannitol or hypertonic saline in the setting of traumatic brain injury: what have we learned? Surg Neurol Int 2015;6:177–7806.170248. eCollection 2015.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Fisher B, Thomas D, Peterson B. Hypertonic saline lowers raised intracranial pressure in children after head trauma. J Neurosurg Anesthesiol 1992;4(1):4–10.CrossRefPubMedGoogle Scholar
  57. 57.
    Bhardwaj A, Ulatowski JA. Cerebral edema: hypertonic saline solutions. Curr Treat Options Neurol 1999;1(3):179–88.CrossRefPubMedGoogle Scholar
  58. 58.
    Koenig MA, Bryan M, Lewin JL, Mirski MA, Geocadin RG, Stevens RD. Reversal of transtentorial herniation with hypertonic saline. Neurology 2008;70(13):1023–9.CrossRefPubMedGoogle Scholar
  59. 59.
    Qureshi AI, Suarez JI, Bhardwaj A, et al. Use of hypertonic (3%) saline/acetate infusion in the treatment of cerebral edema: effect on intracranial pressure and lateral displacement of the brain. Crit Care Med 1998;26(3):440–6.CrossRefPubMedGoogle Scholar
  60. 60.
    Stevens RD, Huff JS, Duckworth J, Papangelou A, Weingart SD, Smith WS. Emergency neurological life support: intracranial hypertension and herniation. Neurocrit Care 2012;17(Suppl 1):S60–5.CrossRefPubMedGoogle Scholar
  61. 61.
    Pfortmueller CA, Schefold JC. Hypertonic saline in critical illness—a systematic review. J Crit Care 2017;42:168–77.CrossRefPubMedGoogle Scholar
  62. 62.
    Todd MM, Cutkomp J, Brian JE. Influence of mannitol and furosemide, alone and in combination, on brain water content after fluid percussion injury. Anesthesiology 2006;105(6):1176–81.CrossRefPubMedGoogle Scholar
  63. 63.
    Jha SK. Cerebral edema and its management. Med J Armed Forces India 2003;59(4):326–31.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Bassin SL, Bleck TP. Barbiturates for the treatment of intracranial hypertension after traumatic brain injury. Crit Care 2008;12(5):185–5.Google Scholar
  65. 65.
    Roberts I, Sydenham E. Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev 2012;12:CD000033.PubMedGoogle Scholar
  66. 66.
    Carney N, Totten AM, O'Reilly C, et al. Guidelines for the management of severe traumatic brain injury, fourth edition. Neurosurgery 2017;80(1):6–15.PubMedGoogle Scholar
  67. 67.
    Zheng YY, Lan YP, Tang HF, Zhu SM. Propofol pretreatment attenuates aquaporin-4 over-expression and alleviates cerebral edema after transient focal brain ischemia reperfusion in rats. Anesth Analg 2008;107(6):2009–16.CrossRefPubMedGoogle Scholar
  68. 68.
    Ding Z, Zhang J, Xu J, Sheng G, Huang G. Propofol administration modulates AQP-4 expression and brain edema after traumatic brain injury. Cell Biochem Biophys 2013;67(2):615–22.CrossRefPubMedGoogle Scholar
  69. 69.
    Alnemari AM, Krafcik BM, Mansour TR, Gaudin D. A comparison of pharmacologic therapeutic agents used for the reduction of intracranial pressure after traumatic brain injury. World Neurosurg 2017;106:509–28.CrossRefPubMedGoogle Scholar
  70. 70.
    Fong JJ, Sylvia L, Ruthazer R, Schumaker G, Kcomt M, Devlin JW. Predictors of mortality in patients with suspected propofol infusion syndrome. Crit Care Med 2008;36(8):2281–7.CrossRefPubMedGoogle Scholar
  71. 71.
    Krajcova A, Waldauf P, Andel M, Duska F. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care 2015;19:398–015–1112-5.CrossRefGoogle Scholar
  72. 72.
    Lazaridis C, Robertson CS. Hypothermia for increased intracranial pressure: is it dead? Curr Neurol Neurosci Rep 2016;16(9):78–016–0681-2.CrossRefGoogle Scholar
  73. 73.
    Baker AJ, Zornow MH, Grafe MR, et al. Hypothermia prevents ischemia-induced increases in hippocampal glycine concentrations in rabbits. Stroke 1991;22(5):666–73.CrossRefPubMedGoogle Scholar
  74. 74.
    van der Worp HB, Sena ES, Donnan GA, Howells DW, Macleod MR. Hypothermia in animal models of acute ischaemic stroke: a systematic review and meta-analysis. Brain 2007;130(Pt 12):3063–74.CrossRefPubMedGoogle Scholar
  75. 75.
    Karibe H, Zarow GJ, Graham SH, Weinstein PR. Mild intraischemic hypothermia reduces postischemic hyperperfusion, delayed postischemic hypoperfusion, blood-brain barrier disruption, brain edema, and neuronal damage volume after temporary focal cerebral ischemia in rats. J Cereb Blood Flow Metab 1994;14(4):620–7.CrossRefPubMedGoogle Scholar
  76. 76.
    Choi HA, Badjatia N, Mayer SA. Hypothermia for acute brain injury—mechanisms and practical aspects. Nat Rev Neurol 2012;8(4):214–22.CrossRefPubMedGoogle Scholar
  77. 77.
    Andrews PJ, Sinclair HL, Rodriguez A, et al. Hypothermia for intracranial hypertension after traumatic brain injury. N Engl J Med 2015;373(25):2403–12.CrossRefPubMedGoogle Scholar
  78. 78.
    Murayi R, Chittiboina P. Glucocorticoids in the management of peritumoral brain edema: a review of molecular mechanisms. Childs Nerv Syst 2016;32(12):2293–302.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Dietrich J, Rao K, Pastorino S, Kesari S. Corticosteroids in brain cancer patients: benefits and pitfalls. Expert Rev Clin Pharmacol 2011;4(2):233–42.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Witek E, Hickman D, Lahiri DK, Srinivasan M. Glucocorticoid induced leucine zipper in lipopolysaccharide induced neuroinflammation. Front Aging Neurosci 2019;10:432.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Newton R. Anti-inflammatory glucocorticoids: changing concepts. Eur J Pharmacol 2014;724:231–6.CrossRefPubMedGoogle Scholar
  82. 82.
    Barnes PJ. Molecular mechanisms and cellular effects of glucocorticosteroids. Immunol Allergy Clin N Am 2005;25(3):451–68.CrossRefGoogle Scholar
  83. 83.
    Poungvarin N, Bhoopat W, Viriyavejakul A, et al. Effects of dexamethasone in primary supratentorial intracerebral hemorrhage. N Engl J Med 1987;316(20):1229–33.CrossRefPubMedGoogle Scholar
  84. 84.
    Sandercock PA, Soane T. Corticosteroids for acute ischaemic stroke. Cochrane Database Syst Rev 2011;(9):CD000064.Google Scholar
  85. 85.
    Feigin VL, Anderson N, Rinkel GJ, Algra A, van Gijn J, Bennett DA. Corticosteroids for aneurysmal subarachnoid haemorrhage and primary intracerebral haemorrhage. Cochrane Database Syst Rev 2005;(3):CD004583.Google Scholar
  86. 86.
    Walcott BP, Kahle KT, Simard JM. Novel treatment targets for cerebral edema. Neurotherapeutics 2012;9(1):65–72.CrossRefPubMedGoogle Scholar
  87. 87.
    Jha RM, Kochanek PM. A precision medicine approach to cerebral edema and intracranial hypertension after severe traumatic brain injury: quo vadis? Curr Neurol Neurosci Rep 2018;18(12):105-018-0912-9.CrossRefGoogle Scholar
  88. 88.
    Maki T, Hayakawa K, Pham LD, Xing C, Lo EH, Arai K. Biphasic mechanisms of neurovascular unit injury and protection in CNS diseases. CNS Neurol Disord Drug Targets 2013;12(3):302–15.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Xing C, Hayakawa K, Lok J, Arai K, Lo EH. Injury and repair in the neurovascular unit. Neurol Res 2012;34(4):325–30.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Lok J, Wang XS, Xing CH, et al. Targeting the neurovascular unit in brain trauma. CNS Neurosci Ther 2015;21(4):304–8.CrossRefPubMedGoogle Scholar
  91. 91.
    Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013;62(16):e147–239.CrossRefGoogle Scholar
  92. 92.
    Wilkinson CM, Fedor BA, Aziz JR, et al. Failure of bumetanide to improve outcome after intracerebral hemorrhage in rat. PLoS One 2019;14(1):e0210660.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Zhang J, Pu H, Zhang H, et al. Inhibition of Na(+)-K(+)-2Cl(-) cotransporter attenuates blood-brain-barrier disruption in a mouse model of traumatic brain injury. Neurochem Int 2017;111:23–31.CrossRefPubMedGoogle Scholar
  94. 94.
    O'Donnell ME, Tran L, Lam TI, Liu XB, Anderson SE. Bumetanide inhibition of the blood-brain barrier Na-K-Cl cotransporter reduces edema formation in the rat middle cerebral artery occlusion model of stroke. J Cereb Blood Flow Metab 2004;24(9):1046–56.CrossRefPubMedGoogle Scholar
  95. 95.
    Wallace BK, Foroutan S, O’Donnell ME. Ischemia-induced stimulation of Na-K-Cl cotransport in cerebral microvascular endothelial cells involves AMP kinase. Am J Phys Cell Physiol 2011;301(2):C316–26.CrossRefGoogle Scholar
  96. 96.
    Lu KT, Wu CY, Yen HH, Peng JH, Wang CL, Yang YL. Bumetanide administration attenuated traumatic brain injury through IL-1 overexpression. Neurol Res 2007;29(4):404–9.CrossRefPubMedGoogle Scholar
  97. 97.
    Lam TI, Anderson SE, Glaser N, O'Donnell ME. Bumetanide reduces cerebral edema formation in rats with diabetic ketoacidosis. Diabetes 2005;54(2):510–6.CrossRefPubMedGoogle Scholar
  98. 98.
    Lu KT, Huang TC, Tsai YH, Yang YL. Transient receptor potential vanilloid type 4 channels mediate Na-K-Cl-co-transporter-induced brain edema after traumatic brain injury. J Neurochem 2017;140(5):718–27.CrossRefPubMedGoogle Scholar
  99. 99.
    Papadopoulos MC, Verkman AS. Aquaporin water channels in the nervous system. Nat Rev Neurosci 2013;14(4):265–77.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Papadopoulos MC, Manley GT, Krishna S, Verkman AS. Aquaporin-4 facilitates reabsorption of excess fluid in vasogenic brain edema. FASEB J 2004;18(11):1291–3.CrossRefPubMedGoogle Scholar
  101. 101.
    Nielsen S, Nagelhus EA, Amiry-Moghaddam M, Bourque C, Agre P, Ottersen OP. Specialized membrane domains for water transport in glial cells: high-resolution immunogold cytochemistry of aquaporin-4 in rat brain. J Neurosci 1997;17(1):171–80.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Mader S, Brimberg L. Aquaporin-4 water channel in the brain and its implication for health and disease. Cells 2019;8(2).Google Scholar
  103. 103.
    Filippidis AS, Carozza RB, Rekate HL. Aquaporins in brain edema and neuropathological conditions. Int J Mol Sci 2016;18(1).
  104. 104.
    Hubbard JA, Szu JI, Binder DK. The role of aquaporin-4 in synaptic plasticity, memory and disease. Brain Res Bull 2018;136:118–29.CrossRefPubMedGoogle Scholar
  105. 105.
    Taya K, Marmarou CR, Okuno K, Prieto R, Marmarou A. Effect of secondary insults upon aquaporin-4 water channels following experimental cortical contusion in rats. J Neurotrauma 2010;27(1):229–39.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Kiening KL, van Landeghem FKH, Schreiber S, et al. Decreased hemispheric aquaporin-4 is linked to evolving brain edema following controlled cortical impact injury in rats. Neurosci Lett 2002;324(2):105–8.CrossRefPubMedGoogle Scholar
  107. 107.
    Yao X, Uchida K, Papadopoulos MC, Zador Z, Manley GT, Verkman AS. Mildly reduced brain swelling and improved neurological outcome in aquaporin-4 knockout mice following controlled cortical impact brain injury. J Neurotrauma 2015;32(19):1458–64.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Ren Z, Iliff JJ, Yang L, et al. ‘Hit & run’ model of closed-skull traumatic brain injury (TBI) reveals complex patterns of post-traumatic AQP4 dysregulation. J Cereb Blood Flow Metab 2013;33(6):834–45.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Papadopoulos MC, Verkman AS. Aquaporin-4 gene disruption in mice reduces brain swelling and mortality in pneumococcal meningitis. J Biol Chem 2005;280(14):13906–12.CrossRefPubMedGoogle Scholar
  110. 110.
    Dardiotis E, Paterakis K, Tsivgoulis G, et al. AQP4 tag single nucleotide polymorphisms in patients with traumatic brain injury. J Neurotrauma 2014;31(23):1920–6.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Saadoun S, Papadopoulos MC, Davies DC, Krishna S, Bell BA. Aquaporin-4 expression is increased in oedematous human brain tumours. J Neurol Neurosurg Psychiatry 2002;72(2):262.CrossRefPubMedPubMedCentralGoogle Scholar
  112. 112.
    Aoki K, Uchihara T, Tsuchiya K, Nakamura A, Ikeda K, Wakayama Y. Enhanced expression of aquaporin 4 in human brain with infarction. Acta Neuropathol 2003;106(2):121–4.CrossRefPubMedGoogle Scholar
  113. 113.
    Badaut J, Brunet JF, Grollimund L et al. Aquaporin 1 and aquaporin 4 expression in human brain after subarachnoid hemorrhage and in peritumoral tissue. Presented at: Brain Edema XII.Google Scholar
  114. 114.
    Warth A, Kröger S, Wolburg H. Redistribution of aquaporin-4 in human glioblastoma correlates with loss of agrin immunoreactivity from brain capillary basal laminae. Acta Neuropathol 2004;107(4):311–8.CrossRefPubMedGoogle Scholar
  115. 115.
    Wallisch JS, Janesko-Feldman K, Alexander H, et al. The aquaporin-4 inhibitor AER-271 blocks acute cerebral edema and improves early outcome in a pediatric model of asphyxial cardiac arrest. Pediatr Res 2019;85(4):511–7.CrossRefPubMedGoogle Scholar
  116. 116.
    Farr GW, Hall CH, Farr SM, et al. Functionalized phenylbenzamides inhibit aquaporin-4 reducing cerebral edema and improving outcome in two models of CNS injury. Neuroscience 2019;404:484–98.CrossRefPubMedGoogle Scholar
  117. 117.
    Laird MD, Sukumari-Ramesh S, Swift AEB, Meiler SE, Vender JR, Dhandapani KM. Curcumin attenuates cerebral edema following traumatic brain injury in mice: a possible role for aquaporin-4? J Neurochem 2010;113(3):637–48.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Ito H, Yamamoto N, Arima H, et al. Interleukin-1beta induces the expression of aquaporin-4 through a nuclear factor-kappaB pathway in rat astrocytes. J Neurochem 2006;99(1):107–18.CrossRefPubMedGoogle Scholar
  119. 119.
    Yu L, Fan Y, Ye G, et al. Curcumin alleviates brain edema by lowering AQP4 expression levels in a rat model of hypoxia-hypercapnia-induced brain damage. Exp Ther Med 2016;11(3):709–16.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Li W, Suwanwela NC, Patumraj S. Curcumin prevents reperfusion injury following ischemic stroke in rats via inhibition of NF‑ΰB, ICAM-1, MMP-9 and caspase-3 expression. Mol Med Rep 2017;16(4):4710–20.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Wang BF, Cui ZW, Zhong ZH, et al. Curcumin attenuates brain edema in mice with intracerebral hemorrhage through inhibition of AQP4 and AQP9 expression. Acta Pharmacol Sin 2015;36(8):939–48.CrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Klinger NV, Mittal S. Therapeutic potential of curcumin for the treatment of brain tumors. Oxidative Med Cell Longev 2016;2016:14.CrossRefGoogle Scholar
  123. 123.
    Simard JM, Kilbourne M, Tsymbalyuk O, et al. Key role of sulfonylurea receptor 1 in progressive secondary hemorrhage after brain contusion. J Neurotrauma 2009;26(12):2257–67.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Simard JM, Woo SK, Schwartzbauer GT, Gerzanich V. Sulfonylurea receptor 1 in central nervous system injury: a focused review. J Cereb Blood Flow Metab 2012;32(9):1699–717.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Patel AD, Gerzanich V, Geng Z, Simard JM. Glibenclamide reduces hippocampal injury and preserves rapid spatial learning in a model of traumatic brain injury. J Neuropathol Exp Neurol 2010;69(12):1177–90.CrossRefPubMedGoogle Scholar
  126. 126.
    Zweckberger K, Hackenberg K, Jung CS, et al. Glibenclamide reduces secondary brain damage after experimental traumatic brain injury. Neuroscience 2014;272:199–206.CrossRefPubMedGoogle Scholar
  127. 127.
    Jha RM, Molyneaux BJ, Jackson TC, et al. Glibenclamide produces region-dependent effects on cerebral edema in a combined injury model of traumatic brain injury and hemorrhagic shock in mice. J Neurotrauma 2018;35(17):2125–35.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Khalili H, Derakhshan N, Niakan A, et al. Effects of oral glibenclamide on brain contusion volume and functional outcome of patients with moderate and severe traumatic brain injuries: a randomized double-blind placebo-controlled clinical trial. World Neurosurg 2017;101:130–6.CrossRefPubMedGoogle Scholar
  129. 129.
    Zafardoost P, Ghasemi AA, Salehpour F, Piroti C, Ziaeii E. Evaluation of the effect of glibenclamide in patients with diffuse axonal injury due to moderate to severe head trauma. Trauma Mon 2016;21(5):e25113.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Sheth KN, Elm JJ, Beslow LA, Sze GK, Kimberly WT. Glyburide Advantage in Malignant Edema and Stroke (GAMES-RP) Trial: rationale and design. Neurocrit Care 2016;24(1):132–9.CrossRefPubMedGoogle Scholar
  131. 131.
    Kimberly WT, Bevers MB, von Kummer R, et al. Effect of IV glyburide on adjudicated edema endpoints in the GAMES-RP Trial. Neurology 2018;91(23):e2163–9.CrossRefPubMedGoogle Scholar
  132. 132.
    Turner RJ, Sharp FR. Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke. Front Cell Neurosci 2016;10:56.CrossRefPubMedPubMedCentralGoogle Scholar
  133. 133.
    ROSENBERG GA. Matrix metalloproteinases in brain injury. J Neurotrauma 1995;12(5):833–42.CrossRefPubMedGoogle Scholar
  134. 134.
    Shigemori Y, Katayama Y, Mori T, Maeda T, Kawamata T. Matrix metalloproteinase-9 is associated with blood-brain barrier opening and brain edema formation after cortical contusion in rats. Acta Neurochir Suppl 2006;96:130–3.CrossRefPubMedGoogle Scholar
  135. 135.
    Nguyen JH, Yamamoto S, Steers J, et al. Matrix metalloproteinase-9 contributes to brain extravasation and edema in fulminant hepatic failure mice. J Hepatol 2006;44(6):1105–14.CrossRefPubMedGoogle Scholar
  136. 136.
    Feiler S, Plesnila N, Thal SC, Zausinger S, Scholler K. Contribution of matrix metalloproteinase-9 to cerebral edema and functional outcome following experimental subarachnoid hemorrhage. Cerebrovasc Dis 2011;32(3):289–95.CrossRefPubMedGoogle Scholar
  137. 137.
    Hadass O, Tomlinson BN, Gooyit M, et al. Selective inhibition of matrix metalloproteinase-9 attenuates secondary damage resulting from severe traumatic brain injury. PLoS One 2013;8(10):e76904.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Gu Z, Cui J, Brown S, et al. A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci 2005;25(27):6401.CrossRefPubMedPubMedCentralGoogle Scholar
  139. 139.
    Cui J, Chen S, Zhang C, et al. Inhibition of MMP-9 by a selective gelatinase inhibitor protects neurovasculature from embolic focal cerebral ischemia. Mol Neurodegener 2012;7:21–1.Google Scholar
  140. 140.
    Jia F, Yin YH, Gao GY, Wang Y, Cen L, Jiang J. MMP-9 inhibitor SB-3CT attenuates behavioral impairments and hippocampal loss after traumatic brain injury in rat. J Neurotrauma 2014;31(13):1225–34.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Chesler M. Regulation and modulation of pH in the brain. Physiol Rev 2003;83(4):1183–221.CrossRefPubMedGoogle Scholar
  142. 142.
    Suzuki Y, Matsumoto Y, Ikeda Y, Kondo K, Ohashi N, Umemura K. SM-20220, a Na(+)/H(+) exchanger inhibitor: effects on ischemic brain damage through edema and neutrophil accumulation in a rat middle cerebral artery occlusion model. Brain Res 2002;945(2):242–8.CrossRefPubMedGoogle Scholar
  143. 143.
    O'Donnell ME, Chen YJ, Lam TI, Taylor KC, Walton JH, Anderson SE. Intravenous HOE-642 reduces brain edema and Na uptake in the rat permanent middle cerebral artery occlusion model of stroke: evidence for participation of the blood-brain barrier Na/H exchanger. J Cereb Blood Flow Metab 2013;33(2):225–34.CrossRefPubMedGoogle Scholar
  144. 144.
    Soltoff SP, Mandel LJ. Amiloride directly inhibits the Na,K-ATPase activity of rabbit kidney proximal tubules. Science 1983;220(4600):957–8.CrossRefPubMedGoogle Scholar
  145. 145.
    Vaz R, Sarmento A, Borges N, Cruz C, Azevedo I. Effect of mechanogated membrane ion channel blockers on experimental traumatic brain oedema. Acta Neurochir 1998;140(4):371–5.CrossRefPubMedGoogle Scholar
  146. 146.
    Buijs RM. Immunocytochemical demonstration of vasopressin and oxytocin in the rat brain by light and electron microscopy. J Histochem Cytochem 1980;28(4):357–60.CrossRefPubMedGoogle Scholar
  147. 147.
    Schrier RW. The sea within us: disorders of body water homeostasis. Curr Opin Investig Drugs 2007;8(4):304–11.PubMedGoogle Scholar
  148. 148.
    Kleindienst A, Dunbar JG, Glisson R, Marmarou A. The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir 2013;155(1):151–64.CrossRefPubMedGoogle Scholar
  149. 149.
    Vakili A, Kataoka H, Plesnila N. Role of arginine vasopressin V1 and V2 receptors for brain damage after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2005;25(8):1012–9.CrossRefPubMedGoogle Scholar
  150. 150.
    Trabold R, Krieg S, Schöller K, Plesnila N. Role of vasopressin V1a and V2 receptors for the development of secondary brain damage after traumatic brain injury in mice. J Neurotrauma 2008;25(12):1459–65.CrossRefPubMedGoogle Scholar
  151. 151.
    Manaenko A, Fathali N, Khatibi NH, et al. Post-treatment with SR49059 improves outcomes following an intracerebral hemorrhagic stroke in mice. Acta Neurochir Suppl 2011;111:191–6.CrossRefPubMedPubMedCentralGoogle Scholar
  152. 152.
    Kleindienst A, Fazzina G, Dunbar JG, Glisson R, Marmarou A. Protective effect of the V1a receptor antagonist SR49059 on brain edema formation following middle cerebral artery occlusion in the rat. Acta Neurochir Suppl 2006;96:303–6.CrossRefPubMedGoogle Scholar
  153. 153.
    Krieg SM, Trabold R, Plesnila N. Time-dependent effects of arginine-vasopressin V1 Receptor inhibition on secondary brain damage after traumatic brain injury. J Neurotrauma 2017;34(7):1329–36.CrossRefPubMedGoogle Scholar
  154. 154.
    Ansari S, Krishnan R, Shahripour RB, et al. Combined antagonism of vasopressin receptor subtypes with conivaptan attenuates cerebral edema following ischemic stroke (P5.202). Neurology 2018;90(15):P5.202.Google Scholar
  155. 155.
    Zeynalov E, Jones SM, Elliott JP. Therapeutic time window for conivaptan treatment against stroke-evoked brain edema and blood-brain barrier disruption in mice. PLoS One 2017;12(8):e0183985.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Allen CJ, Subhawong TK, Hanna MM, et al. Does vasopressin exacerbate cerebral edema in patients with severe traumatic brain injury? Am Surg 2018;84(1):43–50.PubMedGoogle Scholar
  157. 157.
    Rossi JL, Todd T, Bazan NG, Belayev L. Inhibition of myosin light-chain kinase attenuates cerebral edema after traumatic brain injury in postnatal mice. J Neurotrauma 2013;30(19):1672–9.CrossRefPubMedPubMedCentralGoogle Scholar
  158. 158.
    Luh C, Kuhlmann CR, Ackermann B, et al. Inhibition of myosin light chain kinase reduces brain edema formation after traumatic brain injury. J Neurochem 2010;112(4):1015–25.CrossRefPubMedGoogle Scholar
  159. 159.
    Chavez A, Smith M, Mehta D. Chapter six—new insights into the regulation of vascular permeability. In: International review of cell and molecular biology (volume 290). Jeon KW(Ed.), Academic Press, p. 205–248, 2011.Google Scholar
  160. 160.
    Licht T, Keshet E. Delineating multiple functions of VEGF-A in the adult brain. Cell Mol Life Sci 2013;70(10):1727–37.CrossRefPubMedGoogle Scholar
  161. 161.
    Zhang ZG, Zhang L, Jiang Q, et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain. J Clin Invest 2000;106(7):829–38.CrossRefPubMedPubMedCentralGoogle Scholar
  162. 162.
    Geiseler SJ, Morland C. The Janus face of VEGF in stroke. Int J Mol Sci 2018;19(5).
  163. 163.
    Rosenstein JM, Krum JM, Ruhrberg C. VEGF in the nervous system. Organogenesis 2010;6(2):107–14.CrossRefPubMedPubMedCentralGoogle Scholar
  164. 164.
    Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011;473:298.CrossRefPubMedPubMedCentralGoogle Scholar
  165. 165.
    Stockhammer G, Obwegeser A, Kostron H, et al. Vascular endothelial growth factor (VEGF) is elevated in brain tumor cysts and correlates with tumor progression. Acta Neuropathol 2000;100(1):101–5.CrossRefPubMedGoogle Scholar
  166. 166.
    Kim W, Lee H. Brain angiogenesis in developmental and pathological processes: mechanism and therapeutic intervention in brain tumors. FEBS J 2009;276(17):4653–64.CrossRefPubMedPubMedCentralGoogle Scholar
  167. 167.
    Vredenburgh JJ, Desjardins A, Herndon JE 2nd, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res 2007;13(4):1253–9.CrossRefPubMedGoogle Scholar
  168. 168.
    van Bruggen N, Thibodeaux H, Palmer JT, et al. VEGF antagonism reduces edema formation and tissue damage after ischemia/reperfusion injury in the mouse brain. J Clin Invest 1999;104(11):1613–20.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Pignataro G, Ziaco B, Tortiglione A, et al. Neuroprotective effect of VEGF-mimetic peptide QK in experimental brain ischemia induced in rat by middle cerebral artery occlusion. ACS Chem Neurosci. 2015;6(9):1517–25.CrossRefPubMedGoogle Scholar
  170. 170.
    Chodobski A, Chung I, KoÅ°niewska E et al. Early neutrophilic expression of vascular endothelial growth factor after traumatic brain injury. Neuroscience 122(4), 853–867 (2003).Google Scholar
  171. 171.
    Koyama J, Miyake S, Sasayama T, Kondoh T, Kohmura E. Effect of VEGF receptor antagonist (VGA1155) on brain edema in the rat cold injury model. Kobe J Med Sci 2007;53(5):199–207.PubMedGoogle Scholar
  172. 172.
    Shore PM, Clark RSB, Jackson EK, Wisniewski SR, Adelson PD, Kochanek PM. Vascular endothelial growth factor is increased in cerebrospinal fluid after traumatic brain injury in infants and children. Neurosurgery 2004;54(3):605–12.CrossRefPubMedGoogle Scholar
  173. 173.
    Vink R, Gabrielian L, Thornton E. The role of substance P in secondary pathophysiology after traumatic brain injury. Front Neurol 2017;8:304.CrossRefPubMedPubMedCentralGoogle Scholar
  174. 174.
    Gabrielian L, Helps SC, Thornton E, Turner RJ, Leonard AV, Vink R. Substance P antagonists as a novel intervention for brain edema and raised intracranial pressure. Acta Neurochir Suppl 2013;118:201–4.PubMedGoogle Scholar
  175. 175.
    Donkin JJ, Nimmo AJ, Cernak I, Blumbergs PC, Vink R. Substance P is associated with the development of brain edema and functional deficits after traumatic brain injury. J Cereb Blood Flow Metab 2009;29(8):1388–98.CrossRefPubMedGoogle Scholar
  176. 176.
    Leonard AV, Vink R. The effect of an NK1 receptor antagonist on blood spinal cord barrier permeability following balloon compression-induced spinal cord injury. Acta Neurochir Suppl 2013;118:303–6.PubMedGoogle Scholar
  177. 177.
    Newbold P, Brain SD. An investigation into the mechanism of capsaicin-induced oedema in rabbit skin. Br J Pharmacol 1995;114(3):570–7.CrossRefPubMedPubMedCentralGoogle Scholar
  178. 178.
    Donkin JJ, Turner RJ, Hassan I, Vink R. Substance P in traumatic brain injury. Prog Brain Res 2007;161:97–109.CrossRefPubMedGoogle Scholar
  179. 179.
    Turner R, Vink R. Inhibition of neurogenic inflammation as a novel treatment for ischemic stroke. Timely Top Med Cardiovasc Dis 2007;11:E24.PubMedGoogle Scholar
  180. 180.
    Bruno G, Tega F, Bruno A, et al. The role of substance P in cerebral ischemia. Int J Immunopathol Pharmacol 2003;16(1):67–72.CrossRefPubMedGoogle Scholar
  181. 181.
    Yu Z, Cheng G, Huang X, Li K, Cao X. Neurokinin-1 receptor antagonist SR140333: a novel type of drug to treat cerebral ischemia. Neuroreport 1997;8(9–10):2117–9.CrossRefPubMedGoogle Scholar
  182. 182.
    Lorente L, Martin MM, Almeida T, et al. Serum substance P levels are associated with severity and mortality in patients with severe traumatic brain injury. Crit Care 2015;19:192–015-0911-z.Google Scholar
  183. 183.
    Mandrekar-Colucci S, Sauerbeck A, Popovich PG, McTigue DM. PPAR agonists as therapeutics for CNS trauma and neurological diseases. ASN Neuro 2013;5(5):e00129.CrossRefPubMedPubMedCentralGoogle Scholar
  184. 184.
    Moreno S, Farioli-Vecchioli S, Cerù MP. Immunolocalization of peroxisome proliferator-activated receptors and retinoid x receptors in the adult rat CNS. Neuroscience 2004;123(1):131–45.CrossRefPubMedGoogle Scholar
  185. 185.
    Thal SC, Neuhaus W. The blood-brain barrier as a target in traumatic brain injury treatment. Arch Med Res 2014;45(8):698–710.CrossRefPubMedGoogle Scholar
  186. 186.
    Besson VC, Chen XR, Plotkine M, Marchand-Verrecchia C. Fenofibrate, a peroxisome proliferator-activated receptor alpha agonist, exerts neuroprotective effects in traumatic brain injury. Neurosci Lett 2005;388(1):7–12.CrossRefPubMedGoogle Scholar
  187. 187.
    Pilipovic K, Zupan Z, Dolenec P, Mrsic-Pelcic J, Zupan G. A single dose of PPARgamma agonist pioglitazone reduces cortical oxidative damage and microglial reaction following lateral fluid percussion brain injury in rats. Prog Neuro-Psychopharmacol Biol Psychiatry 2015;59:8–20.CrossRefGoogle Scholar
  188. 188.
    Yi J, Park S, Brooks N, Lang B, Vemuganti R. PPARgamma agonist rosiglitazone is neuroprotective after traumatic brain injury via anti-inflammatory and anti-oxidative mechanisms (Volume 1244). 2008.Google Scholar
  189. 189.
    Sobrado M, Pereira MP, Ballesteros I, et al. Synthesis of lipoxin A4 by 5-lipoxygenase mediates PPARÎ3-dependent neuroprotective effects of rosiglitazone in experimental stroke. J Neurosci 2009;29(12):3875.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Gautier S, Ouk T, Pétrault M, Pétrault O, Bérézowski V, Bordet R. PPAR-alpha agonist used at the acute phase of experimental ischemic stroke reduces occurrence of thrombolysis-induced hemorrhage in rats. PPAR Res 2015;2015(6).Google Scholar
  191. 191.
    Lee S, Kim H, Hong J, Baek W, Park J. PPARÎ3 agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia. Biochem Biophys Res Commun 2009;380(1):17–21.CrossRefPubMedGoogle Scholar
  192. 192.
    Chehaibi K, le Maire L, Bradoni S, Escola JC, Blanco-Vaca F, Slimane MN. Effect of PPAR-beta/delta agonist GW0742 treatment in the acute phase response and blood-brain barrier permeability following brain injury. Transl Res 2017;182:27–48.CrossRefPubMedGoogle Scholar
  193. 193.
    Hyong A, Jadhav V, Lee S et al. Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents (Volume 1215) (2008).Google Scholar
  194. 194.
    Zhao XR, Gonzales N, Aronowski J. Pleiotropic role of PPARgamma in intracerebral hemorrhage: an intricate system involving Nrf2, RXR, and NF-kappaB. CNS Neurosci Ther 2015;21(4):357–66.CrossRefPubMedGoogle Scholar
  195. 195.
    Zhao X, Sun G, Zhang J, et al. Hematoma resolution as a target for intracerebral hemorrhage treatment: role for peroxisome proliferator-activated receptor gamma in microglia/macrophages. Ann Neurol 2007;61(4):352–62.CrossRefPubMedGoogle Scholar
  196. 196.
    Laird MD, Shields JS, Sukumari-Ramesh S, et al. High mobility group box protein-1 promotes cerebral edema after traumatic brain injury via activation of Toll-like receptor 4. Glia 2014;62(1):26–38.CrossRefPubMedGoogle Scholar
  197. 197.
    Aucott H, Lundberg J, Salo H, et al. Neuroinflammation in Response to Intracerebral Injections of Different HMGB1 Redox Isoforms. J Innate Immun 2018;10(3):215–27.CrossRefPubMedPubMedCentralGoogle Scholar
  198. 198.
    Yang L, Wang F, Yang L, et al. HMGB1 a-Box Reverses Brain Edema and Deterioration of Neurological Function in a Traumatic Brain Injury Mouse Model. Cell Physiol Biochem 2018;46(6):2532–42.CrossRefPubMedGoogle Scholar
  199. 199.
    Wang D, Liu K, Wake H, Teshigawara K, Mori S, Nishibori M. Anti-high mobility group box-1 (HMGB1) antibody inhibits hemorrhage-induced brain injury and improved neurological deficits in rats. Sci Rep 2017;7:46243.CrossRefPubMedPubMedCentralGoogle Scholar
  200. 200.
    Haruma J, Teshigawara K, Hishikawa T, et al. Anti-high mobility group box-1 (HMGB1) antibody attenuates delayed cerebral vasospasm and brain injury after subarachnoid hemorrhage in rats. Sci Rep 2016;6:37755.CrossRefPubMedPubMedCentralGoogle Scholar
  201. 201.
    Musumeci D, Roviello GN, Montesarchio D. An overview on HMGB1 inhibitors as potential therapeutic agents in HMGB1-related pathologies. Pharmacol Ther 2014;141(3):347–57.CrossRefPubMedGoogle Scholar
  202. 202.
    Robbins N, Koch SE, Tranter M, Rubinstein J. The history and future of probenecid. Cardiovasc Toxicol 2012;12(1):1–9.CrossRefPubMedGoogle Scholar
  203. 203.
    Xiong XX, Gu LJ, Shen J, et al. Probenecid protects against transient focal cerebral ischemic injury by inhibiting HMGB1 release and attenuating AQP4 expression in mice. Neurochem Res 2014;39(1):216–24.CrossRefPubMedGoogle Scholar
  204. 204.
    Sun N, Shen Y, Han W, et al. Selective sphingosine-1-phosphate receptor 1 modulation attenuates experimental intracerebral hemorrhage. Stroke 2016;47(7):1899–906.CrossRefPubMedGoogle Scholar
  205. 205.
    Lu L, Barfejani AH, Qin T, Dong Q, Ayata C, Waeber C. Fingolimod exerts neuroprotective effects in a mouse model of intracerebral hemorrhage. Brain Res 2014;1555:89–96.CrossRefPubMedPubMedCentralGoogle Scholar
  206. 206.
    Li H, Zhou X, Li Y et al. The selective sphingosine 1-phosphate receptor 1 modulator RP101075 improves microvascular circulation after cerebrovascular thrombosis. FASEB J 2019;fj201900282R.Google Scholar
  207. 207.
    Bleck TP. Historical aspects of critical care and the nervous system. Crit Care Clin 2009;25(1):153–64, ix.CrossRefPubMedGoogle Scholar
  208. 208.
    Korbakis G, Bleck T. The evolution of neurocritical care. Crit Care Clin 2014;30(4):657–71.CrossRefPubMedGoogle Scholar
  209. 209.
    Marcolini EG, Seder DB, Bonomo JB, et al. The present state of neurointensivist training in the united states: a comparison to other critical care training programs. Crit Care Med 2018;46(2):307–15.CrossRefPubMedGoogle Scholar
  210. 210.
    Donkin JJ, Vink R. Mechanisms of cerebral edema in traumatic brain injury: therapeutic developments. Curr Opin Neurol 2010;23(3):293–9.CrossRefPubMedGoogle Scholar
  211. 211.
    Askenase MH, Sansing LH. Stages of the inflammatory response in pathology and tissue repair after intracerebral hemorrhage. Semin Neurol 2016;36(3):288–97.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2019

Authors and Affiliations

  1. 1.Neurosciences Critical Care Division, Departments of Neurology, Anesthesiology-Critical Care Medicine and NeurosurgeryJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations