Advertisement

Neurotherapeutics

, Volume 16, Issue 3, pp 554–568 | Cite as

Sleep as a Therapeutic Target in the Aging Brain

  • Thierno M. Bah
  • James Goodman
  • Jeffrey J. IliffEmail author
Review

Abstract

Sleep is a behavioral phenomenon conserved among mammals and some invertebrates, yet the biological functions of sleep are still being elucidated. In humans, sleep time becomes shorter, more fragmented, and of poorer quality with advancing age. Epidemiologically, the development of age-related neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease is associated with pronounced sleep disruption, whereas emerging mechanistic studies suggest that sleep disruption may be causally linked to neurodegenerative pathology, suggesting that sleep may represent a key therapeutic target in the prevention of these conditions. In this review, we discuss the physiology of sleep, the pathophysiology of neurodegenerative disease, and the current literature supporting the relationship between sleep, aging, and neurodegenerative disease.

Key Words

Sleep aging cognitive decline dementia Alzheimer’s disease treatment. 

Notes

Acknowledgments

This work was supported by grant from the National Institutes of Health to Jeffrey J. Iliff (AG054456, NS089709) and to James Goodman (AG060681).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Compliance with Ethical Standards

Disclosure Statement

This study was not industry-supported and the authors declare that they have no financial conflicts of interest.

Supplementary material

13311_2019_769_MOESM1_ESM.pdf (507 kb)
ESM 1 (PDF 506 kb)

References

  1. 1.
    Cirelli, C. & Tononi, G. Is sleep essential? PLoS Biol 6, e216,  https://doi.org/10.1371/journal.pbio.0060216 (2008).Google Scholar
  2. 2.
    Rosenwasser, A. M. Functional neuroanatomy of sleep and circadian rhythms. Brain Res Rev 61, 281–306,  https://doi.org/10.1016/j.brainresrev.2009.08.001 (2009).Google Scholar
  3. 3.
    Scammell, T. E., Arrigoni, E. & Lipton, J. O. Neural circuitry of wakefulness and sleep. Neuron 93, 747–765,  https://doi.org/10.1016/j.neuron.2017.01.014 (2017).Google Scholar
  4. 4.
    Fuller, P. M., Gooley, J. J. & Saper, C. B. Neurobiology of the sleep-wake cycle: sleep architecture, circadian regulation, and regulatory feedback. J Biol Rhythm 21, 482–493,  https://doi.org/10.1177/0748730406294627 (2006).Google Scholar
  5. 5.
    Berry, R. B., Brooks, R., Gamaldo, C., et al. AASM scoring manual updates for 2017 (Version 2.4). J Clin Sleep Med 13, 665–666,  https://doi.org/10.5664/jcsm.6576 (2017).Google Scholar
  6. 6.
    Malhotra RK, Avidan AY. in Atlas of sleep medicine (ed Saunders) Ch. 3, 77–99. Elsevier Inc., 2014.Google Scholar
  7. 7.
    Ohayon, M. M., Carskadon, M. A., Guilleminault, C. & Vitiello, M. V. Meta-analysis of quantitative sleep parameters from childhood to old age in healthy individuals: developing normative sleep values across the human lifespan. Sleep 27, 1255–1273 (2004).Google Scholar
  8. 8.
    Khalsa, S. B. S., Jewett, M. E., Duffy, J. F. & Czeisler, C. A. The timing of the human circadian clock is accurately represented by the core body temperature rhythm following phase shifts to a three-cycle light stimulus near the critical zone. J Biol Rhythm 15, 524–530,  https://doi.org/10.1177/074873040001500609 (2000).Google Scholar
  9. 9.
    Van Dongen, H. P. & Dinges, D. F. Investigating the interaction between the homeostatic and circadian processes of sleep-wake regulation for the prediction of waking neurobehavioural performance. J Sleep Res 12, 181–187 (2003).Google Scholar
  10. 10.
    Borbely, A. A. A two process model of sleep regulation. Hum Neurobiol 1, 195–204 (1982).Google Scholar
  11. 11.
    von Economo, C. Sleep as a problem of localization. J Nerv Ment Dis 71, 249–259 (1930).Google Scholar
  12. 12.
    Nauta, W. J. Hypothalamic regulation of sleep in rats; an experimental study. J Neurophysiol 9, 285–316,  https://doi.org/10.1152/jn.1946.9.4.285 (1946).Google Scholar
  13. 13.
    Saper, C. B., Lu, J., Chou, T. C. & Gooley, J. The hypothalamic integrator for circadian rhythms. Trends Neurosci 28, 152–157,  https://doi.org/10.1016/j.tins.2004.12.009 (2005).Google Scholar
  14. 14.
    Brown, R. E., Basheer, R., McKenna, J. T., Strecker, R. E. & McCarley, R. W. Control of sleep and wakefulness. Physiol Rev 92, 1087–1187,  https://doi.org/10.1152/physrev.00032.2011 (2012).Google Scholar
  15. 15.
    Saper, C. B., Scammell, T. E. & Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257–1263,  https://doi.org/10.1038/nature04284 (2005).Google Scholar
  16. 16.
    Marano, G., Traversi, G., Catalano, V., et al. Sleep regulation: a bidirectional interaction between brain and the endocrine system. Clin Neuropsychiatry 8, 192–203 (2011).Google Scholar
  17. 17.
    Song, J., Um, Y.H., Kim, T.W., Kim, S.M., Kwon, S.Y., & Hong, S.C. Sleep and anesthesia. Sleep Med Res 9, 11–19 (2018).Google Scholar
  18. 18.
    Akeju, O. & Brown, E. N. Neural oscillations demonstrate that general anesthesia and sedative states are neurophysiologically distinct from sleep. Curr Opin Neurobiol 44, 178–185,  https://doi.org/10.1016/j.conb.2017.04.011 (2017).Google Scholar
  19. 19.
    Lim, J. & Dinges, D. F. A meta-analysis of the impact of short-term sleep deprivation on cognitive variables. Psychol Bull 136, 375–389,  https://doi.org/10.1037/a0018883 (2010).Google Scholar
  20. 20.
    Rangtell, F. H. et al. A single night of sleep loss impairs objective but not subjective working memory performance in a sex-dependent manner. J Sleep Res,  https://doi.org/10.1111/jsr.12651 (2018).
  21. 21.
    Van Dongen, H. P., Maislin, G., Mullington, J. M. & Dinges, D. F. The cumulative cost of additional wakefulness: dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 26, 117–126 (2003).Google Scholar
  22. 22.
    Belenky, G. et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: a sleep dose-response study. J Sleep Res 12, 1–12 (2003).Google Scholar
  23. 23.
    Banks, S., Van Dongen, H. P., Maislin, G. & Dinges, D. F. Neurobehavioral dynamics following chronic sleep restriction: dose-response effects of one night for recovery. Sleep 33, 1013–1026 (2010).Google Scholar
  24. 24.
    McGaugh, J. L. Memory—a century of consolidation. Science 287, 248–251 (2000).Google Scholar
  25. 25.
    Stickgold, R. & Walker, M. P. Sleep-dependent memory triage: evolving generalization through selective processing. Nat Neurosci 16, 139–145,  https://doi.org/10.1038/nn.3303 (2013).Google Scholar
  26. 26.
    Ji, D. & Wilson, M. A. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat Neurosci 10, 100–107,  https://doi.org/10.1038/nn1825 (2007).Google Scholar
  27. 27.
    Massimini, M. et al. Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci U S A 104, 8496–8501,  https://doi.org/10.1073/pnas.0702495104 (2007).Google Scholar
  28. 28.
    Peigneux, P. et al. Are spatial memories strengthened in the human hippocampus during slow wave sleep? Neuron 44, 535–545,  https://doi.org/10.1016/j.neuron.2004.10.007 (2004).Google Scholar
  29. 29.
    Rasch, B., Buchel, C., Gais, S. & Born, J. Odor cues during slow-wave sleep prompt declarative memory consolidation. Science 315, 1426–1429,  https://doi.org/10.1126/science.1138581 (2007).Google Scholar
  30. 30.
    Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679,  https://doi.org/10.1126/science.8036517 (1994).Google Scholar
  31. 31.
    Poe, G. R., Walsh, C. M. & Bjorness, T. E. Cognitive neuroscience of sleep. Prog Brain Res 185, 1–19,  https://doi.org/10.1016/B978-0-444-53702-7.00001-4 (2010).Google Scholar
  32. 32.
    Portell Cortes, I. & Morgado Bernal, I. [Learning and subsequent paradoxical sleep]. Arch Neurobiol (Madr) 51, 305–315 (1988).Google Scholar
  33. 33.
    Smith, C. Sleep states and learning: a review of the animal literature. Neurosci Biobehav Rev 9, 157–168 (1985).Google Scholar
  34. 34.
    Smith, C. Sleep states, memory processes and synaptic plasticity. Behav Brain Res 78, 49–56 (1996).Google Scholar
  35. 35.
    Smith, C. Sleep states and memory processing in rodents: a review. Sleep Med Clinics Sleep Med Clin 6, 59–70 (2011).Google Scholar
  36. 36.
    Portell-Cortes, I., Marti-Nicolovius, M., Segura-Torres, P. & Morgado-Bernal, I. Correlations between paradoxical sleep and shuttle-box conditioning in rats. Behav Neurosci 103, 984–990 (1989).Google Scholar
  37. 37.
    Smith, C. Sleep states and memory processes in humans: procedural versus declarative memory systems. Sleep Med Rev 5, 491–506,  https://doi.org/10.1053/smrv.2001.0164 (2001).Google Scholar
  38. 38.
    Smith, C. & Peters, K. R. Sleep, memory, and molecular neurobiology. Handb Clin Neurol 98, 259–272,  https://doi.org/10.1016/B978-0-444-52006-7.00017-4 (2011).Google Scholar
  39. 39.
    Smith, C. & Wong, P. T. Paradoxical sleep increases predict successful learning in a complex operant task. Behav Neurosci 105, 282–288 (1991).Google Scholar
  40. 40.
    Smith, C., Young, J. & Young, W. Prolonged increases in paradoxical sleep during and after avoidance-task acquisition. Sleep 3, 67–81 (1980).Google Scholar
  41. 41.
    Smith, C. & Lapp, L. Increases in number of REMS and REM density in humans following an intensive learning period. Sleep 14, 325–330 (1991).Google Scholar
  42. 42.
    Wetzel, W., Wagner, T. & Balschun, D. REM sleep enhancement induced by different procedures improves memory retention in rats. Eur J Neurosci 18, 2611–2617 (2003).Google Scholar
  43. 43.
    Fogel, S. M. & Smith, C. T. Learning-dependent changes in sleep spindles and stage 2 sleep. J Sleep Res 15, 250–255,  https://doi.org/10.1111/j.1365-2869.2006.00522.x (2006).Google Scholar
  44. 44.
    Laventure, S. et al. NREM2 and sleep spindles are instrumental to the consolidation of motor sequence memories. PLoS Biol 14, e1002429,  https://doi.org/10.1371/journal.pbio.1002429 (2016).Google Scholar
  45. 45.
    Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A. & Stickgold, R. Practice with sleep makes perfect: sleep-dependent motor skill learning. Neuron 35, 205–211 (2002).Google Scholar
  46. 46.
    Morin, A. et al. Motor sequence learning increases sleep spindles and fast frequencies in post-training sleep. Sleep 31, 1149–1156 (2008).Google Scholar
  47. 47.
    Nishida, M. & Walker, M. P. Daytime naps, motor memory consolidation and regionally specific sleep spindles. PLoS One 2, e341,  https://doi.org/10.1371/journal.pone.0000341 (2007).Google Scholar
  48. 48.
    Tamaki, M. et al. Enhanced spontaneous oscillations in the supplementary motor area are associated with sleep-dependent offline learning of finger-tapping motor-sequence task. J Neurosci 33, 13894–13902,  https://doi.org/10.1523/JNEUROSCI.1198-13.2013 (2013).Google Scholar
  49. 49.
    Marshall, L., Helgadottir, H., Molle, M. & Born, J. Boosting slow oscillations during sleep potentiates memory. Nature 444, 610–613,  https://doi.org/10.1038/nature05278 (2006).Google Scholar
  50. 50.
    Smith, C. & MacNeill, C. Impaired motor memory for a pursuit rotor task following stage 2 sleep loss in college students. J Sleep Res 3, 206–213 (1994).Google Scholar
  51. 51.
    Collingridge, G. L., Peineau, S., Howland, J. G. & Wang, Y. T. Long-term depression in the CNS. Nat Rev Neurosci 11, 459–473,  https://doi.org/10.1038/nrn2867 (2010).Google Scholar
  52. 52.
    Kandel, E. R. The molecular biology of memory storage: a dialogue between genes and synapses. Science 294, 1030–1038,  https://doi.org/10.1126/science.1067020 (2001).Google Scholar
  53. 53.
    Tsanov, M. & Manahan-Vaughan, D. Synaptic plasticity from visual cortex to hippocampus: systems integration in spatial information processing. Neuroscientist 14, 584–597,  https://doi.org/10.1177/1073858408315655 (2008).Google Scholar
  54. 54.
    de Vivo, L. et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science 355, 507–510,  https://doi.org/10.1126/science.aah5982 (2017).Google Scholar
  55. 55.
    Gilestro, G. F., Tononi, G. & Cirelli, C. Widespread changes in synaptic markers as a function of sleep and wakefulness in Drosophila. Science 324, 109–112,  https://doi.org/10.1126/science.1166673 (2009).Google Scholar
  56. 56.
    Tononi, G. & Cirelli, C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81, 12–34,  https://doi.org/10.1016/j.neuron.2013.12.025 (2014).Google Scholar
  57. 57.
    Vyazovskiy, V. V., Cirelli, C., Pfister-Genskow, M., Faraguna, U. & Tononi, G. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat Neurosci 11, 200–208,  https://doi.org/10.1038/nn2035 (2008).Google Scholar
  58. 58.
    Cirelli, C. & Tononi, G. Differential expression of plasticity-related genes in waking and sleep and their regulation by the noradrenergic system. J Neurosci 20, 9187–9194 (2000).Google Scholar
  59. 59.
    Cirelli, C. & Tononi, G. Gene expression in the brain across the sleep-waking cycle. Brain Res 885, 303–321 (2000).Google Scholar
  60. 60.
    Magistretti, P. J. & Pellerin, L. Cellular mechanisms of brain energy metabolism and their relevance to functional brain imaging. Philos Trans R Soc Lond Ser B Biol Sci 354, 1155–1163,  https://doi.org/10.1098/rstb.1999.0471 (1999).Google Scholar
  61. 61.
    Maquet, P. Sleep function(s) and cerebral metabolism. Behav Brain Res 69, 75–83 (1995).Google Scholar
  62. 62.
    Madsen, P. L. & Vorstrup, S. Cerebral blood flow and metabolism during sleep. Cerebrovasc Brain Metab Rev 3, 281–296 (1991).Google Scholar
  63. 63.
    Holth, J. K. et al. The sleep-wake cycle regulates brain interstitial fluid tau in mice and CSF tau in humans Science (2019)  https://doi.org/10.1126/science.aav2546.
  64. 64.
    Roh, J. H. et al. Disruption of the sleep-wake cycle and diurnal fluctuation of beta-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 4, 150ra122 (2012)  https://doi.org/10.1126/scitranslmed.3004291.Google Scholar
  65. 65.
    Kang, J. E. et al. Amyloid-beta dynamics are regulated by orexin and the sleep-wake cycle. Science 326, 1005–1007 (2009)  https://doi.org/10.1126/science.1180962.Google Scholar
  66. 66.
    Lundgaard, I. et al. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 37, 2112–2124 (2017)  https://doi.org/10.1177/0271678X16661202.Google Scholar
  67. 67.
    Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid beta. Sci Transl Med 4, 147ra111 (2012)  https://doi.org/10.1126/scitranslmed.3003748.Google Scholar
  68. 68.
    Iliff, J. J. et al. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 123, 1299–1309,  https://doi.org/10.1172/JCI67677 (2013).Google Scholar
  69. 69.
    Simon, M. J. & Iliff, J. J. Regulation of cerebrospinal fluid (CSF) flow in neurodegenerative, neurovascular and neuroinflammatory disease. Biochim Biophys Acta 1862, 442–451,  https://doi.org/10.1016/j.bbadis.2015.10.014 (2016).Google Scholar
  70. 70.
    Louveau, A. et al. Understanding the functions and relationships of the glymphatic system and meningeal lymphatics. J Clin Invest 127, 3210–3219,  https://doi.org/10.1172/JCI90603 (2017).Google Scholar
  71. 71.
    Mestre, H. et al. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife 7 (2018)  https://doi.org/10.7554/eLife.40070.
  72. 72.
    Xie, L. et al. Sleep drives metabolite clearance from the adult brain. Science 342, 373–377,  https://doi.org/10.1126/science.1241224 (2013).Google Scholar
  73. 73.
    Ma, Q. et al. Rapid lymphatic efflux limits cerebrospinal fluid flow to the brain. Acta Neuropathol 137, 151–165,  https://doi.org/10.1007/s00401-018-1916-x (2019).Google Scholar
  74. 74.
    Moraes, W. et al. Effects of aging on sleep structure throughout adulthood: a population-based study. Sleep Med 15, 401–409,  https://doi.org/10.1016/j.sleep.2013.11.791 (2014).Google Scholar
  75. 75.
    Redline, S. et al. The effects of age, sex, ethnicity, and sleep-disordered breathing on sleep architecture. Arch Intern Med 164, 406–418,  https://doi.org/10.1001/archinte.164.4.406 (2004).Google Scholar
  76. 76.
    Schwarz, J. F. A. et al. Age affects sleep microstructure more than sleep macrostructure. J Sleep Res 26, 277–287,  https://doi.org/10.1111/jsr.12478 (2017).Google Scholar
  77. 77.
    Carrier, J., Land, S., Buysse, D. J., Kupfer, D. J. & Monk, T. H. The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20–60 years old). Psychophysiology 38, 232–242 (2001).Google Scholar
  78. 78.
    Crowley, K., Trinder, J., Kim, Y., Carrington, M. & Colrain, I. M. The effects of normal aging on sleep spindle and K-complex production. Clin Neurophysiol 113, 1615–1622 (2002).Google Scholar
  79. 79.
    Martin, N. et al. Topography of age-related changes in sleep spindles. Neurobiol Aging 34, 468–476,  https://doi.org/10.1016/j.neurobiolaging.2012.05.020 (2013).Google Scholar
  80. 80.
    Mazzoccoli, G. et al. Circadian variations of cortisol, melatonin and lymphocyte subpopulations in geriatric age. Int J Immunopathol Pharmacol 23, 289–296,  https://doi.org/10.1177/039463201002300127 (2010).Google Scholar
  81. 81.
    Bloom, H. G. et al. Evidence-based recommendations for the assessment and management of sleep disorders in older persons. J Am Geriatr Soc 57, 761–789 (2009).Google Scholar
  82. 82.
    Yaffe, K., Falvey, C. M. & Hoang, T. Connections between sleep and cognition in older adults. Lancet Neurol 13, 1017–1028,  https://doi.org/10.1016/S1474-4422(14)70172-3 (2014).Google Scholar
  83. 83.
    Li, J., Ogrodnik, M., Kolachalama, V. B., Lin, H. & Au, R. Assessment of the mid-life demographic and lifestyle risk factors of dementia using data from the Framingham Heart Study Offspring Cohort. J Alzheimers Dis 63, 1119–1127,  https://doi.org/10.3233/JAD-170917 (2018).Google Scholar
  84. 84.
    Lutsey, P. L. et al. Sleep characteristics and risk of dementia and Alzheimer’s disease: the Atherosclerosis Risk in Communities Study. Alzheimers Dement 14, 157–166,  https://doi.org/10.1016/j.jalz.2017.06.2269 (2018).Google Scholar
  85. 85.
    Reynolds, A. C. & Banks, S. Total sleep deprivation, chronic sleep restriction and sleep disruption. Prog Brain Res 185, 91–103,  https://doi.org/10.1016/B978-0-444-53702-7.00006-3 (2010).Google Scholar
  86. 86.
    Anderson, K. N. & Bradley, A. J. Sleep disturbance in mental health problems and neurodegenerative disease. Nat Sci Sleep 5, 61–75,  https://doi.org/10.2147/NSS.S34842 (2013).Google Scholar
  87. 87.
    Riemann, D. et al. The hyperarousal model of insomnia: a review of the concept and its evidence. Sleep Med Rev 14, 19–31,  https://doi.org/10.1016/j.smrv.2009.04.002 (2010).Google Scholar
  88. 88.
    McCrae, C. S. & Lichstein, K. L. Secondary insomnia: diagnostic challenges and intervention opportunities. Sleep Med Rev 5, 47–61,  https://doi.org/10.1053/smrv.2000.0146 (2001).Google Scholar
  89. 89.
    Ohayon, M. M. Epidemiology of insomnia: what we know and what we still need to learn. Sleep Med Rev 6, 97–111 (2002).Google Scholar
  90. 90.
    Ford, D. E. & Kamerow, D. B. Epidemiologic study of sleep disturbances and psychiatric disorders. An opportunity for prevention? JAMA 262, 1479–1484 (1989).Google Scholar
  91. 91.
    NIH State-of-the-Science Conference Statement on manifestations and management of chronic insomnia in adults. NIH Consens State Sci Statements 22, 1–30 (2005).Google Scholar
  92. 92.
    Cole, M. G. & Dendukuri, N. Risk factors for depression among elderly community subjects: a systematic review and meta-analysis. Am J Psychiatry 160, 1147–1156,  https://doi.org/10.1176/appi.ajp.160.6.1147 (2003).Google Scholar
  93. 93.
    Dryman, A. & Eaton, W. W. Affective symptoms associated with the onset of major depression in the community: findings from the US National Institute of Mental Health Epidemiologic Catchment Area Program. Acta Psychiatr Scand 84, 1–5 (1991).Google Scholar
  94. 94.
    Fava, M. Daytime sleepiness and insomnia as correlates of depression. J Clin Psychiatry 65 Suppl 16, 27–32 (2004).Google Scholar
  95. 95.
    Livingston, G., Blizard, B. & Mann, A. Does sleep disturbance predict depression in elderly people? A study in inner London Br J Gen Pract 43, 445–448 (1993).Google Scholar
  96. 96.
    Nowell, P. D. & Buysse, D. J. Treatment of insomnia in patients with mood disorders. Depress Anxiety 14, 7–18 (2001).Google Scholar
  97. 97.
    Roberts, R. E., Shema, S. J., Kaplan, G. A. & Strawbridge, W. J. Sleep complaints and depression in an aging cohort: a prospective perspective. Am J Psychiatry 157, 81–88,  https://doi.org/10.1176/ajp.157.1.81 (2000).Google Scholar
  98. 98.
    Gooneratne, N. S. & Vitiello, M. V. Sleep in older adults: normative changes, sleep disorders, and treatment options. Clin Geriatr Med 30, 591–627,  https://doi.org/10.1016/j.cger.2014.04.007 (2014).Google Scholar
  99. 99.
    Ancoli-Israel, S., Klauber, M. R., Butters, N., Parker, L. & Kripke, D. F. Dementia in institutionalized elderly: relation to sleep apnea. J Am Geriatr Soc 39, 258–263 (1991).Google Scholar
  100. 100.
    Young, T. et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328, 1230–1235,  https://doi.org/10.1056/NEJM199304293281704 (1993).Google Scholar
  101. 101.
    El-Ad, B. & Lavie, P. Effect of sleep apnea on cognition and mood. Int Rev Psychiatry 17, 277–282,  https://doi.org/10.1080/09540260500104508 (2005).Google Scholar
  102. 102.
    Kerner, N. A. et al. Association of obstructive sleep apnea with episodic memory and cerebral microvascular pathology: a preliminary study. Am J Geriatr Psychiatry 25, 316–325,  https://doi.org/10.1016/j.jagp.2016.11.009 (2017).Google Scholar
  103. 103.
    Ohayon, M. M. The effects of breathing-related sleep disorders on mood disturbances in the general population. J Clin Psychiatry 64, 1195–1200; quiz, 1274–1196 (2003).Google Scholar
  104. 104.
    Peppard, P. E., Szklo-Coxe, M., Hla, K. M. & Young, T. Longitudinal association of sleep-related breathing disorder and depression. Arch Intern Med 166, 1709–1715,  https://doi.org/10.1001/archinte.166.16.1709 (2006).Google Scholar
  105. 105.
    Wheaton, A. G., Perry, G. S., Chapman, D. P. & Croft, J. B. Sleep disordered breathing and depression among U.S. adults: National Health and Nutrition Examination Survey, 2005–2008. Sleep 35, 461–467,  https://doi.org/10.5665/sleep.1724 (2012).Google Scholar
  106. 106.
    Culebras, A. Sleep apnea and stroke. Curr Neurol Neurosci Rep 15, 503,  https://doi.org/10.1007/s11910-014-0503-3 (2015).Google Scholar
  107. 107.
    Culebras, A. & Anwar, S. Sleep apnea is a risk factor for stroke and vascular dementia. Curr Neurol Neurosci Rep 18, 53,  https://doi.org/10.1007/s11910-018-0855-1 (2018).Google Scholar
  108. 108.
    Osorio, R. S. et al. Sleep-disordered breathing advances cognitive decline in the elderly. Neurology 84, 1964–1971 (2015).Google Scholar
  109. 109.
    Faraut, B., Boudjeltia, K. Z., Vanhamme, L. & Kerkhofs, M. Immune, inflammatory and cardiovascular consequences of sleep restriction and recovery. Sleep Med Rev 16, 137–149,  https://doi.org/10.1016/j.smrv.2011.05.001 (2012).Google Scholar
  110. 110.
    Gangwisch, J. E. et al. Short sleep duration as a risk factor for hypertension: analyses of the first National Health and Nutrition Examination Survey. Hypertension 47, 833–839,  https://doi.org/10.1161/01.HYP.0000217362.34748.e0 (2006).Google Scholar
  111. 111.
    Hoevenaar-Blom, M. P., Spijkerman, A. M., Kromhout, D., van den Berg, J. F. & Verschuren, W. M. Sleep duration and sleep quality in relation to 12-year cardiovascular disease incidence: the MORGEN study. Sleep 34, 1487–1492,  https://doi.org/10.5665/sleep.1382 (2011).Google Scholar
  112. 112.
    Lusardi, P. et al. Effects of a restricted sleep regimen on ambulatory blood pressure monitoring in normotensive subjects. Am J Hypertens 9, 503–505 (1996).Google Scholar
  113. 113.
    Meier-Ewert, H. K. et al. Effect of sleep loss on C-reactive protein, an inflammatory marker of cardiovascular risk. J Am Coll Cardiol 43, 678–683,  https://doi.org/10.1016/j.jacc.2003.07.050 (2004).Google Scholar
  114. 114.
    Irwin, M., Thompson, J., Miller, C., Gillin, J. C. & Ziegler, M. Effects of sleep and sleep deprivation on catecholamine and interleukin-2 levels in humans: clinical implications. J Clin Endocrinol Metab 84, 1979–1985,  https://doi.org/10.1210/jcem.84.6.5788 (1999).Google Scholar
  115. 115.
    Verrier, R. L. & Josephson, M. E. Impact of sleep on arrhythmogenesis. Circ Arrhythm Electrophysiol 2, 450–459,  https://doi.org/10.1161/CIRCEP.109.867028 (2009).Google Scholar
  116. 116.
    Palagini, L. et al. Sleep loss and hypertension: a systematic review. Curr Pharm Des 19, 2409–2419 (2013).Google Scholar
  117. 117.
    Miller, R. R., 3rd & Ely, E. W. Delirium and cognitive dysfunction in the intensive care unit. Curr Psychiatry Rep 9, 26–34 (2007).Google Scholar
  118. 118.
    Freedman, N. S., Gazendam, J., Levan, L., Pack, A. I. & Schwab, R. J. Abnormal sleep/wake cycles and the effect of environmental noise on sleep disruption in the intensive care unit. Am J Respir Crit Care Med 163, 451–457,  https://doi.org/10.1164/ajrccm.163.2.9912128 (2001).Google Scholar
  119. 119.
    Friese, R. S., Diaz-Arrastia, R., McBride, D., Frankel, H. & Gentilello, L. M. Quantity and quality of sleep in the surgical intensive care unit: are our patients sleeping? J Trauma 63, 1210–1214,  https://doi.org/10.1097/TA.0b013e31815b83d7 (2007).Google Scholar
  120. 120.
    Gabor, J. Y. et al. Contribution of the intensive care unit environment to sleep disruption in mechanically ventilated patients and healthy subjects. Am J Respir Crit Care Med 167, 708–715,  https://doi.org/10.1164/rccm.2201090 (2003).Google Scholar
  121. 121.
    Aurell, J. & Elmqvist, D. Sleep in the surgical intensive care unit: continuous polygraphic recording of sleep in nine patients receiving postoperative care. Br Med J (Clin Res Ed) 290, 1029–1032 (1985).Google Scholar
  122. 122.
    Cooper, A. B. et al. Sleep in critically ill patients requiring mechanical ventilation. Chest 117, 809–818 (2000).Google Scholar
  123. 123.
    Peterson, J. F. et al. Delirium and its motoric subtypes: a study of 614 critically ill patients. J Am Geriatr Soc 54, 479–484,  https://doi.org/10.1111/j.1532-5415.2005.00621.x (2006).Google Scholar
  124. 124.
    Jackson, J. C., Gordon, S. M., Hart, R. P., Hopkins, R. O. & Ely, E. W. The association between delirium and cognitive decline: a review of the empirical literature. Neuropsychol Rev 14, 87–98 (2004).Google Scholar
  125. 125.
    McCusker, J., Cole, M., Dendukuri, N., Belzile, E. & Primeau, F. Delirium in older medical inpatients and subsequent cognitive and functional status: a prospective study. CMAJ 165, 575–583 (2001).Google Scholar
  126. 126.
    Rodriguez, J. C., Dzierzewski, J. M. & Alessi, C. A. Sleep problems in the elderly. Med Clin North Am 99, 431–439,  https://doi.org/10.1016/j.mcna.2014.11.013 (2015).Google Scholar
  127. 127.
    Carpenter, B. D., Strauss, M. & Patterson, M. B. Sleep disturbances in community-dwelling patients with Alzheimer’s disease. Clin Gerontol 16, 35–49,  https://doi.org/10.1300/J018v16n02_04 (1996).Google Scholar
  128. 128.
    Moran, M. et al. Sleep disturbance in mild to moderate Alzheimer’s disease. Sleep Med 6, 347–352,  https://doi.org/10.1016/j.sleep.2004.12.005 (2005).Google Scholar
  129. 129.
    Askenasy, J. J. M. Sleep disturbances in Parkinsonism. J Neural Transm 110, 125–150,  https://doi.org/10.1007/s007020300001 (2003).Google Scholar
  130. 130.
    Kumar, S., Bhatia, M. & Behari, M. Sleep disorders in Parkinson’s disease. Mov Disord 17, 775–781,  https://doi.org/10.1002/mds.10167 (2002).Google Scholar
  131. 131.
    Tandberg, E., Larsen, J. P. & Karlsen, K. A community-based study of sleep disorders in patients with Parkinson’s disease. Mov Disord 13, 895–899,  https://doi.org/10.1002/mds.870130606 (1998).Google Scholar
  132. 132.
    Abbott, S. M. & Videnovic, A. Sleep disorders in atypical parkinsonism. Mov Disord Clin Pract 1, 89–96,  https://doi.org/10.1002/mdc3.12025 (2014).Google Scholar
  133. 133.
    Hyman, B. T. et al. National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement 8, 1–13,  https://doi.org/10.1016/J.JALZ.2011.10.007 (2012).Google Scholar
  134. 134.
    Bennett, D. A. et al. in Neurology. 1837–1844.Google Scholar
  135. 135.
    Rodrigue, K. M. et al. β-Amyloid burden in healthy aging: regional distribution and cognitive consequences. Neurology 78, 387–395,  https://doi.org/10.1212/WNL.0b013e318245d295 (2012).Google Scholar
  136. 136.
    Weldemichael, D. A. & Grossberg, G. T. Circadian rhythm disturbances in patients with Alzheimer’s disease: a review. Int J Alzheimers Dis 2010, 1–9,  https://doi.org/10.4061/2010/716453 (2010).Google Scholar
  137. 137.
    Landry, G. J., Best, J. R. & Liu-Ambrose, T. Measuring sleep quality in older adults: a comparison using subjective and objective methods. Front Aging Neurosci 7, 166,  https://doi.org/10.3389/fnagi.2015.00166 (2015).Google Scholar
  138. 138.
    Myers, B. L. & Badia, P. Changes in circadian rhythms and sleep quality with aging: mechanisms and interventions. Neurosci Biobehav Rev 19, 553–571 (1995).Google Scholar
  139. 139.
    Sexton, C. E., Storsve, A. B., Walhovd, K. B., Johansen-Berg, H. & Fjell, A. M. Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults. Neurology 83, 967–973 (2014)  https://doi.org/10.1212/WNL.0000000000000774.Google Scholar
  140. 140.
    Patterson, B. W. et al. Age and amyloid effects on human central nervous system amyloid-beta kinetics. Ann Neurol 78, 439–453,  https://doi.org/10.1002/ana.24454 (2015).Google Scholar
  141. 141.
    Brown, B. M., Rainey-Smith, S. R., Bucks, R. S., Weinborn, M. & Martins, R. N. Exploring the bi-directional relationship between sleep and beta-amyloid. Curr Opin Psychiatry 29, 397–401 (2016)  https://doi.org/10.1097/YCO.0000000000000285.Google Scholar
  142. 142.
    Brown, B. M. et al. The relationship between sleep quality and brain amyloid burden. Sleep 39, 1063–1068,  https://doi.org/10.5665/sleep.5756 (2016).Google Scholar
  143. 143.
    Ju, Y.-E. S. et al. Sleep quality and preclinical Alzheimer disease. JAMA Neurology 70, 587,  https://doi.org/10.1001/jamaneurol.2013.2334 (2013).Google Scholar
  144. 144.
    Spira, A. P. et al. Self-reported sleep and β-amyloid deposition in community-dwelling older adults. JAMA Neurology 70, 1537–1543,  https://doi.org/10.1001/jamaneurol.2013.4258 (2013).Google Scholar
  145. 145.
    Sprecher, K. E. et al. Poor sleep is associated with CSF biomarkers of amyloid pathology in cognitively normal adults. Neurology 89, 445–453 (2017)  https://doi.org/10.1212/WNL.0000000000004171.Google Scholar
  146. 146.
    Huang, Y. et al. Effects of age and amyloid deposition on Abeta dynamics in the human central nervous system. Arch Neurol 69, 51–58,  https://doi.org/10.1001/archneurol.2011.235 (2012).Google Scholar
  147. 147.
    Roh, J. H. et al. Disruption of the sleep-wake cycle and diurnal fluctuation of β-amyloid in mice with Alzheimer’s disease pathology. Sci Transl Med 4, 150ra122,  https://doi.org/10.1126/scitranslmed.3004291 (2012).Google Scholar
  148. 148.
    Ju, Y. S. et al. Slow wave sleep disruption increases cerebrospinal fluid amyloid-beta levels. Brain 140, 2104–2111,  https://doi.org/10.1093/brain/awx148 (2017).Google Scholar
  149. 149.
    Ooms, S. et al. Effect of 1 night of total sleep deprivation on cerebrospinal fluid beta-amyloid 42 in healthy middle-aged men: a randomized clinical trial. JAMA Neurol 71, 971–977,  https://doi.org/10.1001/jamaneurol.2014.1173 (2014).Google Scholar
  150. 150.
    Shokri-Kojori, E. et al. β-Amyloid accumulation in the human brain after one night of sleep deprivation. Proc Natl Acad Sci 115, 4483–4488,  https://doi.org/10.1073/pnas.1721694115 (2018).Google Scholar
  151. 151.
    Mander, B. A. et al. β-amyloid disrupts human NREM slow waves and related hippocampus-dependent memory consolidation. Nat Neurosci 18, 1051–1057,  https://doi.org/10.1038/nn.4035 (2015).Google Scholar
  152. 152.
    Parkinson, J. in J Neuropsychiatry Clin Neurosci.Google Scholar
  153. 153.
    Burton, E. J., McKeith, I. G., Burn, D. J., Williams, E. D. & O’Brien, J. T. Cerebral atrophy in Parkinson’s disease with and without dementia: a comparison with Alzheimer’s disease, dementia with Lewy bodies and controls. Brain 127, 791–800,  https://doi.org/10.1093/brain/awh088 (2004).Google Scholar
  154. 154.
    Hughes, A. J., Daniel, S. E., Kilford, L. & Lees, A. J. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 55, 181–184,  https://doi.org/10.1136/JNNP.55.3.181 (1992).Google Scholar
  155. 155.
    Baba, M. et al. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson’s disease and dementia with Lewy bodies. Am J Pathol 152, 879–884 (1998).Google Scholar
  156. 156.
    Spillantini, M. G. et al. α-Synuclein in Lewy bodies. Nature 388, 839–840,  https://doi.org/10.1038/42166 (1997).Google Scholar
  157. 157.
    Braak, H. et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging 24, 197–211,  https://doi.org/10.1016/S0197-4580(02)00065-9 (2003).Google Scholar
  158. 158.
    Dhawan, V., Healy, D. G., Pal, S. & Chaudhuri, K. R. Sleep-related problems of Parkinson’s disease. Age Ageing 35, 220–228,  https://doi.org/10.1093/ageing/afj087 (2006).Google Scholar
  159. 159.
    Iranzo, A. et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: an observational cohort study. Lancet Neurol 12, 443–453,  https://doi.org/10.1016/S1474-4422(13)70056-5 (2013).Google Scholar
  160. 160.
    Bonuccelli, U. et al. Diurnal motor variations to repeated doses of Levodopa in Parkinson’s disease. Clin Neuropharmacol 23, 28–33,  https://doi.org/10.1097/00002826-200001000-00006 (2000).Google Scholar
  161. 161.
    Pursiainen, V. et al. Circadian heart rate variability in Parkinson’s disease. J Neurol 249, 1535–1540,  https://doi.org/10.1007/s00415-002-0884-0 (2002).Google Scholar
  162. 162.
    Ahsan Ejaz, A., Sekhon, I. S. & Munjal, S. Characteristic findings on 24-h ambulatory blood pressure monitoring in a series of patients with Parkinson’s disease. Eur J Intern Med 17, 417–420,  https://doi.org/10.1016/J.EJIM.2006.02.020 (2006).Google Scholar
  163. 163.
    Bordet, R. et al. Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin Neuropharmacol 26, 65–72,  https://doi.org/10.1097/00002826-200303000-00005 (2003).Google Scholar
  164. 164.
    Breen, D. P. et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurology 71, 589,  https://doi.org/10.1001/jamaneurol.2014.65 (2014).Google Scholar
  165. 165.
    Videnovic, A. et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurology 71, 463,  https://doi.org/10.1001/jamaneurol.2013.6239 (2014).Google Scholar
  166. 166.
    De Pablo-Fernández, E., Courtney, R., Warner, T. T. & Holton, J. L. A histologic study of the circadian system in Parkinson disease, multiple system atrophy, and progressive supranuclear palsy. JAMA Neurology 75, 1008,  https://doi.org/10.1001/jamaneurol.2018.0640 (2018).Google Scholar
  167. 167.
    Gilman, S. et al. Second consensus statement on the diagnosis of multiple system atrophy. Neurology 71, 670–676,  https://doi.org/10.1212/01.wnl.0000324625.00404.15 (2008).Google Scholar
  168. 168.
    McKeith, I. G. et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47, 1113–1124,  https://doi.org/10.1212/WNL.47.5.1113 (1996).Google Scholar
  169. 169.
    Litvan, I. et al. Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): report of the NINDS-SPSP international workshop. Neurology 47, 1–9 (1996).Google Scholar
  170. 170.
    Armstrong, M. J. et al. Criteria for the diagnosis of corticobasal degeneration. Neurology 80, 496–503,  https://doi.org/10.1212/WNL.0b013e31827f0fd1 (2013).Google Scholar
  171. 171.
    Boeve, B. F. et al. Clinicopathologic correlations in 172 cases of rapid eye movement sleep behavior disorder with or without a coexisting neurologic disorder. Sleep Med 14, 754–762,  https://doi.org/10.1016/j.sleep.2012.10.015 (2013).Google Scholar
  172. 172.
    Polymenidou, M. & Cleveland, D. W. Prion-like spread of protein aggregates in neurodegeneration. J Exp Med 209, 889–893,  https://doi.org/10.1084/jem.20120741 (2012).Google Scholar
  173. 173.
    Iliff, J. J. et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid. Sci Transl Med 4, 147ra111,  https://doi.org/10.1126/scitranslmed.3003748 (2012).Google Scholar
  174. 174.
    Xu, Z. et al. Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Abeta accumulation and memory deficits. Mol Neurodegener 10, 58, : https://doi.org/10.1186/s13024-015-0056-1 (2015).Google Scholar
  175. 175.
    Kress, B. T. et al. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76, 845–861, : https://doi.org/10.1002/ana.24271 (2014).Google Scholar
  176. 176.
    Iliff, J. J. et al. Impairment of glymphatic pathway function promotes tau pathology after traumatic brain injury. J Neurosci 34, 16180–16193, : https://doi.org/10.1523/JNEUROSCI.3020-14.2014 (2014).Google Scholar
  177. 177.
    Wang, M. et al. Focal solute trapping and global glymphatic pathway impairment in a murine model of multiple microinfarcts. J Neurosci 37, 2870–2877, : https://doi.org/10.1523/JNEUROSCI.2112-16.2017 (2017).Google Scholar
  178. 178.
    Zeppenfeld, D. M. et al. Association of perivascular localization of aquaporin-4 with cognition and Alzheimer disease in aging brains. JAMA Neurol 74, 91–99, : https://doi.org/10.1001/jamaneurol.2016.4370 (2017).Google Scholar
  179. 179.
    Abbott, N. J., Pizzo, M. E., Preston, J. E., Janigro, D. & Thorne, R. G. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol 135, 387–407, : https://doi.org/10.1007/s00401-018-1812-4 (2018).Google Scholar
  180. 180.
    Holter, K. E. et al. Interstitial solute transport in 3D reconstructed neuropil occurs by diffusion rather than bulk flow. Proc Natl Acad Sci 114, 9894–9899,  https://doi.org/10.1073/pnas.1706942114 (2017).Google Scholar
  181. 181.
    Lee, H. et al. The effect of body posture on brain glymphatic transport. J Neurosci 35, 11034–11044,  https://doi.org/10.1523/JNEUROSCI.1625-15.2015 (2015).Google Scholar
  182. 182.
    Yang, L. et al. Evaluating glymphatic pathway function utilizing clinically relevant intrathecal infusion of CSF tracer. J Transl Med 11, 107,  https://doi.org/10.1186/1479-5876-11-107 (2013).Google Scholar
  183. 183.
    Ringstad, G., Vatnehol, S. A. S. & Eide, P. K. Glymphatic MRI in idiopathic normal pressure hydrocephalus. Brain J Neurol 140, 2691–2705,  https://doi.org/10.1093/brain/awx191 (2017).Google Scholar
  184. 184.
    Eide, P. K. & Ringstad, G. Delayed clearance of cerebrospinal fluid tracer from entorhinal cortex in idiopathic normal pressure hydrocephalus: a glymphatic magnetic resonance imaging study. J Cereb Blood Flow Metab. 271678X18760974,  https://doi.org/10.1177/0271678X18760974 (2018).
  185. 185.
    Ringstad, G. et al. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 3,  https://doi.org/10.1172/jci.insight.121537 (2018).
  186. 186.
    Joseph, A. A. et al. Real-time phase-contrast MRI of cardiovascular blood flow using undersampled radial fast low-angle shot and nonlinear inverse reconstruction. NMR Biomed 25, 917–924,  https://doi.org/10.1002/nbm.1812 (2012).Google Scholar
  187. 187.
    Ohene, Y. et al. Non-invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: an aquaporin-4 study. Neuroimage 188, 515–523,  https://doi.org/10.1016/j.neuroimage.2018.12.026 (2018).Google Scholar
  188. 188.
    Harrison, I. F. et al. Non-invasive imaging of CSF-mediated brain clearance pathways via assessment of perivascular fluid movement with diffusion tensor MRI. eLife 7,  https://doi.org/10.7554/eLife.34028 (2018).
  189. 189.
    Demiral, Ş. B. et al. Apparent diffusion coefficient changes in human brain during sleep—does it inform on the existence of a glymphatic system? NeuroImage 185, 263–273,  https://doi.org/10.1016/j.neuroimage.2018.10.043 (2018).Google Scholar
  190. 190.
    Mattsson, N. et al. CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA 302, 385,  https://doi.org/10.1001/jama.2009.1064 (2009).Google Scholar
  191. 191.
    Paterson, R. W. et al. CSF in the differential diagnosis of Alzheimer’s disease: clinical utility of an extended panel of biomarkers in a specialist cognitive clinic. Alzheimers Dement 12, P203-P204,  https://doi.org/10.1016/J.JALZ.2016.06.356 (2016).Google Scholar
  192. 192.
    Riemenschneider, M. et al. Cerebrospinal fluid tau and beta-amyloid 42 proteins identify Alzheimer disease in subjects with mild cognitive impairment. Arch Neurol 59, 1729–1734 (2002).Google Scholar
  193. 193.
    Visser, P. J. et al. Prevalence and prognostic value of CSF markers of Alzheimer’s disease pathology in patients with subjective cognitive impairment or mild cognitive impairment in the DESCRIPA study: a prospective cohort study. Lancet Neurol 8, 619–627,  https://doi.org/10.1016/S1474-4422(09)70139-5 (2009).Google Scholar
  194. 194.
    Ohayon, M.M. [Prevalence and comorbidity of sleep disorders in general population]. Rev Prat 57, 1521–1528 (2007).Google Scholar
  195. 195.
    Dijk, D. J. Slow-wave sleep deficiency and enhancement: implications for insomnia and its management. World J Biol Psychiatry 11 Suppl 1, 22–28,  https://doi.org/10.3109/15622971003637645 (2010).Google Scholar
  196. 196.
    Deschenes, C. L. & McCurry, S. M. Current treatments for sleep disturbances in individuals with dementia. Curr Psychiatry Rep 11, 20–26 (2009).Google Scholar
  197. 197.
    Mathias, S., Steiger, A. & Lancel, M. The GABA(A) agonist gaboxadol improves the quality of post-nap sleep. Psychopharmacology 157, 299–304,  https://doi.org/10.1007/s002130100819 (2001).Google Scholar
  198. 198.
    Dijk, D. J., James, L. M., Peters, S., Walsh, J. K. & Deacon, S. Sex differences and the effect of gaboxadol and zolpidem on EEG power spectra in NREM and REM sleep. J Psychopharmacol 24, 1613–1618,  https://doi.org/10.1177/0269881109105788 (2010).Google Scholar
  199. 199.
    Pardi, D. & Black, J. gamma-Hydroxybutyrate/sodium oxybate: neurobiology, and impact on sleep and wakefulness. CNS Drugs 20, 993–1018,  https://doi.org/10.2165/00023210-200620120-00004 (2006).Google Scholar
  200. 200.
    Dijk, D. J., Beersma, D. G., Daan, S. & van den Hoofdakker, R. H. Effects of seganserin, a 5-HT2 antagonist, and temazepam on human sleep stages and EEG power spectra. Eur J Pharmacol 171, 207–218 (1989).Google Scholar
  201. 201.
    Landolt, H. P. et al. Serotonin-2 receptors and human sleep: effect of a selective antagonist on EEG power spectra. Neuropsychopharmacology 21, 455–466,  https://doi.org/10.1016/S0893-133X(99)00052-4 (1999).Google Scholar
  202. 202.
    Landolt, H. P. & Wehrle, R. Antagonism of serotonergic 5-HT2A/2C receptors: mutual improvement of sleep, cognition and mood? Eur J Neurosci 29, 1795–1809,  https://doi.org/10.1111/j.1460-9568.2009.06718.x (2009).Google Scholar
  203. 203.
    Deacon, S. et al. Effect of short-term treatment with gaboxadol on sleep maintenance and initiation in patients with primary insomnia. Sleep 30, 281–287 (2007).Google Scholar
  204. 204.
    Lankford, D. A. et al. Effect of gaboxadol on sleep in adult and elderly patients with primary insomnia: results from two randomized, placebo-controlled, 30-night polysomnography studies. Sleep 31, 1359–1370 (2008).Google Scholar
  205. 205.
    Roth, T., Wright, K. P., Jr. & Walsh, J. Effect of tiagabine on sleep in elderly subjects with primary insomnia: a randomized, double-blind, placebo-controlled study. Sleep 29, 335–341 (2006).Google Scholar
  206. 206.
    Walsh, J. K. et al. Tiagabine increases slow-wave sleep in a dose-dependent fashion without affecting traditional efficacy measures in adults with primary insomnia. J Clin Sleep Med 2, 35–41 (2006).Google Scholar
  207. 207.
    Brzezinski, A. et al. Effects of exogenous melatonin on sleep: a meta-analysis. Sleep Med Rev 9, 41–50,  https://doi.org/10.1016/j.smrv.2004.06.004 (2005).Google Scholar
  208. 208.
    Buscemi, N. et al. The efficacy and safety of exogenous melatonin for primary sleep disorders. A meta-analysis. J Gen Intern Med 20, 1151–1158,  https://doi.org/10.1111/j.1525-1497.2005.0243.x (2005).Google Scholar
  209. 209.
    Haimov, I. et al. Melatonin replacement therapy of elderly insomniacs. Sleep 18, 598–603 (1995).Google Scholar
  210. 210.
    Pawlikowski, M., Kolomecka, M., Wojtczak, A. & Karasek, M. Effects of six months melatonin treatment on sleep quality and serum concentrations of estradiol, cortisol, dehydroepiandrosterone sulfate, and somatomedin C in elderly women. Neuro Endocrinol Lett 23 Suppl 1, 17–19 (2002).Google Scholar
  211. 211.
    Zhdanova, I. V. et al. Melatonin treatment for age-related insomnia. J Clin Endocrinol Metab 86, 4727–4730,  https://doi.org/10.1210/jcem.86.10.7901 (2001).Google Scholar
  212. 212.
    Dowling, G. A. et al. Melatonin for sleep disturbances in Parkinson’s disease. Sleep Med 6, 459–466,  https://doi.org/10.1016/j.sleep.2005.04.004 (2005).Google Scholar
  213. 213.
    Singer, C. et al. A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep 26, 893–901 (2003).Google Scholar
  214. 214.
    Vural, E. M., van Munster, B. C. & de Rooij, S. E. Optimal dosages for melatonin supplementation therapy in older adults: a systematic review of current literature. Drugs Aging 31, 441–451,  https://doi.org/10.1007/s40266-014-0178-0 (2014).Google Scholar
  215. 215.
    Raskind, M. A. et al. A parallel group placebo controlled study of prazosin for trauma nightmares and sleep disturbance in combat veterans with post-traumatic stress disorder. Biol Psychiatry 61, 928–934,  https://doi.org/10.1016/j.biopsych.2006.06.032 (2007).Google Scholar
  216. 216.
    Taylor, F. B. et al. Prazosin effects on objective sleep measures and clinical symptoms in civilian trauma posttraumatic stress disorder: a placebo-controlled study. Biol Psychiatry 63, 629–632,  https://doi.org/10.1016/j.biopsych.2007.07.001 (2008).Google Scholar
  217. 217.
    Ruff, R. L., Ruff, S. S. & Wang, X. F. Improving sleep: initial headache treatment in OIF/OEF veterans with blast-induced mild traumatic brain injury. J Rehabil Res Dev 46, 1071–1084 (2009).Google Scholar
  218. 218.
    McCurry, S. M. & Ancoli-Israel, S. Sleep dysfunction in Alzheimer’s disease and other dementias. Curr Treat Options Neurol 5, 261–272 (2003).Google Scholar
  219. 219.
    Ancoli-Israel, S. Sleep and aging: prevalence of disturbed sleep and treatment considerations in older adults. J Clin Psychiatry 66 Suppl 9, 24–30; quiz 42–23 (2005).Google Scholar
  220. 220.
    Ju, Y. S., Zangrilli, M. A., Finn, M. B., Fagan, A. M. & Holtzman, D. M. Obstructive sleep apnea treatment, slow wave activity, and amyloid-beta. Ann Neurol 85, 291–295,  https://doi.org/10.1002/ana.25408 (2019).Google Scholar
  221. 221.
    Perrault, A. A. et al. Whole-night continuous rocking entrains spontaneous neural oscillations with benefits for sleep and memory. Curr Biol 29, 402–411 e403,  https://doi.org/10.1016/j.cub.2018.12.028 (2019).Google Scholar
  222. 222.
    Kompotis, K. et al. Rocking promotes sleep in mice through rhythmic stimulation of the vestibular system. Curr Biol 29, 392–401 e394,  https://doi.org/10.1016/j.cub.2018.12.007 (2019).Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2019

Authors and Affiliations

  • Thierno M. Bah
    • 1
  • James Goodman
    • 1
  • Jeffrey J. Iliff
    • 1
    • 2
    • 3
    • 4
    • 5
    Email author
  1. 1.Department of Anesthesiology and Perioperative MedicineOregon Health & Science UniversityPortlandUSA
  2. 2.Knight Cardiovascular InstituteOregon Health & Science UniversityPortlandUSA
  3. 3.Veterans Integrated Service Network 20 Mental Illness Research, Education and Clinical CenterPuget Sound Health Care SystemSeattleUSA
  4. 4.Department of Psychiatry and Behavioral SciencesUniversity of Washington School of MedicineSeattleUSA
  5. 5.Department of NeurologyUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations