Advertisement

Neurotherapeutics

, Volume 16, Issue 3, pp 675–684 | Cite as

Plasma-Based Strategies for Therapeutic Modulation of Brain Aging

  • Viktoria Kheifets
  • Steven P. BraithwaiteEmail author
Review

Abstract

Age is the primary risk factor for the vast majority of disorders, including neurodegenerative diseases impacting brain function. Whether the consequences of aging at the biological level can be reversed, or age-related changes prevented, to change the trajectory of such disorders is thus of extreme interest and value. Studies using young plasma, the acellular component of blood, have demonstrated that aging is malleable, with the ability to restore functions in old animals. Fascinatingly, this functional improvement is even observed in the brain, despite the blood-brain barrier, indicating that peripheral sources can effectively impact central sites leading to clinically relevant changes such as enhancement of cognitive function. A plasma-based approach is also attractive as aging is inherently complex, with an array of mechanisms dysregulated in diverse cells and organs throughout the body leading to disturbed function. Plasma, containing a natural mixture of components, has the ability to act multimodally, modulating diverse mechanisms that can converge to change the trajectory of age-related diseases. Here we review the evidence that plasma modulates aging processes in the brain and consider the therapeutic applications that derive from these observations. Plasma and plasma-derived therapeutics are an attractive translation of this concept, requiring critical consideration of benefits, risks, and ethics. Ultimately, knowledge derived from this science will drive a comprehensive molecular understanding to deliver optimized therapeutics. The potential of highly differentiated, multimodal therapeutics for treatment of age-related brain disorders provides an exciting new clinical approach to address the complex etiology of aging.

Key Words

Blood plasma plasma fractions parabiosis heterochronic parabiosis chronokine transfusion 

Notes

Compliance with Ethical Standards

Disclosures

The authors are employees of Alkahest, Inc.

Supplementary material

13311_2019_746_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1823 kb)

References

  1. 1.
    López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging. Cell 2013;153:1194–217.CrossRefGoogle Scholar
  2. 2.
    Castellano JM. Blood-Based Therapies to Combat Aging. Gerontology 2019;65:84–9.CrossRefGoogle Scholar
  3. 3.
    Meletis J, Konstantopoulos K. The beliefs, myths, and reality surrounding the word hema (blood) from homer to the present. Anemia 2010;2010:857657.CrossRefGoogle Scholar
  4. 4.
    Huestis DW. Alexander Bogdanov: The Forgotten Pioneer of Blood Transfusion. Transfus Med Rev 2007;21:337–40.CrossRefGoogle Scholar
  5. 5.
    Heselhaus H. The temporality of anti-aging: a short history of the fight against time. Area Studies Tsukuba 2018;39:109–22.Google Scholar
  6. 6.
    Bert P. Expériences et Considérations Sur la Greffe Animale. J Anat Physiol 1864;1:69–87.Google Scholar
  7. 7.
    Ludwig FC, Elashoff RM. Mortality in syngeneic rat parabionts of different chronological age. Trans N Y Acad Sci 1972;34:582–7.CrossRefGoogle Scholar
  8. 8.
    Conboy MJ, Conboy IM, Rando TA. Heterochronic parabiosis: Historical perspective and methodological considerations for studies of aging and longevity. Aging Cell 2013;12:525–30.CrossRefGoogle Scholar
  9. 9.
    Eggel A, Wyss-Coray T. A revival of parabiosis in biomedical research. Swiss Med Wkly 2014;144:w13914.Google Scholar
  10. 10.
    Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando T A. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005;433:760–4.CrossRefGoogle Scholar
  11. 11.
    Salpeter SJ, Khalaileh A, Weinberg-Corem N, Ziv O, Glaser B, Dor Y. Systemic regulation of the age-related decline of pancreatic β-cell replication. Diabetes 2013;62:2843–8.CrossRefGoogle Scholar
  12. 12.
    Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, et al. Growth Differentiation Factor 11 Is a Circulating Factor that Reverses Age-Related Cardiac Hypertrophy. Cell 2013;153:828–39.CrossRefGoogle Scholar
  13. 13.
    Montagne A, Barnes SR, Sweeney MD, Halliday MR, Sagare AP, Zhao Z, et al. Blood-brain barrier breakdown in the aging human hippocampus. Neuron 2015;85:296–302.CrossRefGoogle Scholar
  14. 14.
    Erdő F, Denes L, de Lange E. Age-associated physiological and pathological changes at the blood-brain barrier: A review. J Cereb Blood Flow Metab 2017;37:4–24.CrossRefGoogle Scholar
  15. 15.
    Sharif Y, Jumah F, Coplan L, Krosser A, Sharif K, Tubbs RS. Blood brain barrier: A review of its anatomy and physiology in health and disease. Clin Anat 2018;31:812–23.CrossRefGoogle Scholar
  16. 16.
    Villeda SA, Luo J, Mosher KI, Zou B, Britschgi M, Bieri G, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 2011;477:90–4.CrossRefGoogle Scholar
  17. 17.
    Katsimpardi L, Litterman NK, Schein PA, Miller CM, Loffredo FS, Wojtkiewicz GR, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science 2014;344:630–4.CrossRefGoogle Scholar
  18. 18.
    Villeda SA, Plambeck KE, Middeldorp J, Castellano JM, Mosher KI, Luo J, et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice. Nat Med 2014;20:659–63.CrossRefGoogle Scholar
  19. 19.
    Rebo J, Mehdipour M, Gathwala R, Causey K, Liu Y, Conboy MJ, et al. A single heterochronic blood exchange reveals rapid inhibition of multiple tissues by old blood. Nat Commun 2016;7:13363.CrossRefGoogle Scholar
  20. 20.
    Gibney BC, Chamoto K, Lee GS, Simpson DC, Miele LF, Tsuda A, et al. Cross-circulation and cell distribution kinetics in parabiotic mice. J Cell Physiol 2012;227:821–8.CrossRefGoogle Scholar
  21. 21.
    Khrimian L, Obri A, Ramos-Brossier M, Rousseaud A, Moriceau S, Nicot A-S, et al. Gpr158 mediates osteocalcin’s regulation of cognition. J Exp Med 2017;214:2859–73.CrossRefGoogle Scholar
  22. 22.
    Castellano JM, Mosher KI, Abbey RJ, McBride AA, James ML, Berdnik D, et al. Human umbilical cord plasma proteins revitalize hippocampal function in aged mice. Nature 2017;544:488–92.CrossRefGoogle Scholar
  23. 23.
    Middeldorp J, Lehallier B, Villeda SA, Miedema SSM, Evans E, Czirr E, et al. Preclinical Assessment of Young Blood Plasma for Alzheimer Disease. JAMA Neurol 2016;73:1325.CrossRefGoogle Scholar
  24. 24.
    Liu Y-H, Wang Y-R, Xiang Y, Zhou H-D, Giunta B, Mañucat-Tan NB, et al. Clearance of Amyloid-Beta in Alzheimer’s Disease: Shifting the Action Site from Center to Periphery. Mol Neurobiol 2015;51:1–7.CrossRefGoogle Scholar
  25. 25.
    Xiang Y, Bu X-L, Liu Y-H, Zhu C, Shen L-L, Jiao S-S, et al. Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol 2015;130:487–99.CrossRefGoogle Scholar
  26. 26.
    Liu Y, Conboy MJ, Mehdipour M, Liu Y, Tran TP, Blotnick A, et al. Application of bio-orthogonal proteome labeling to cell transplantation and heterochronic parabiosis. Nat Commun 2017;8:643.CrossRefGoogle Scholar
  27. 27.
    Elahy M, Jackaman C, Mamo JC, Lam V, Dhaliwal SS, Giles C, et al. Blood-brain barrier dysfunction developed during normal aging is associated with inflammation and loss of tight junctions but not with leukocyte recruitment. Immun Ageing 2015;12:2.CrossRefGoogle Scholar
  28. 28.
    Ozek C, Krolewski RC, Buchanan SM, Rubin LL. Growth Differentiation Factor 11 treatment leads to neuronal and vascular improvements in the hippocampus of aged mice. Sci Rep 2018;8:17293.CrossRefGoogle Scholar
  29. 29.
    Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, et al. Plasma proteomic signature of age in healthy humans. Aging Cell 2018;17:e12799.CrossRefGoogle Scholar
  30. 30.
    Schöneich C. Mass spectrometry in aging research. Mass Spectrom Rev 2005;24:701–18.CrossRefGoogle Scholar
  31. 31.
    Hoffman JM, Lyu Y, Pletcher SD, Promislow DEL. Proteomics and metabolomics in ageing research: from biomarkers to systems biology. Essays Biochem 2017;61:379–88.CrossRefGoogle Scholar
  32. 32.
    Moreno-Villanueva M, Bernhard J, Blasco M, Zondag G, Hoeijmakers JHJ, Toussaint O, et al. MARK-AGE biomarkers of ageing. Mech Ageing Dev 2015;151:2–12.CrossRefGoogle Scholar
  33. 33.
    Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, et al. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Cell Metab 2015;22:164–74.CrossRefGoogle Scholar
  34. 34.
    Corre J, Hébraud B, Bourin P. Concise review: growth differentiation factor 15 in pathology: a clinical role? Stem Cells Transl Med 2013;2:946–52.CrossRefGoogle Scholar
  35. 35.
    Smith LK, He Y, Park J-S, Bieri G, Snethlage CE, Lin K, et al. Β2-Microglobulin Is a Systemic Pro-Aging Factor That Impairs Cognitive Function and Neurogenesis. Nat Med 2015;21:932–7.CrossRefGoogle Scholar
  36. 36.
    Harper SC, Brack A, MacDonnell S, Franti M, Olwin BB, Bailey BA, et al. Is Growth Differentiation Factor 11 a Realistic Therapeutic for Aging-Dependent Muscle Defects? Circ Res 2016;118:1143–50; discussion 1150.CrossRefGoogle Scholar
  37. 37.
    McNally EM. Questions and Answers About Myostatin, GDF11, and the Aging Heart. Circ Res 2016;118:6–8.CrossRefGoogle Scholar
  38. 38.
    Walker RG, Poggioli T, Katsimpardi L, Buchanan SM, Oh J, Wattrus S, et al. Biochemistry and Biology of GDF11 and Myostatin: Similarities, Differences, and Questions for Future Investigation. Circ Res 2016;118:1125–41; discussion 1142CrossRefGoogle Scholar
  39. 39.
    Baptista P, Andrade JP. Adult Hippocampal Neurogenesis: Regulation and Possible Functional and Clinical Correlates. Front Neuroanat 2018;12:44.CrossRefGoogle Scholar
  40. 40.
    Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med 1998;4:1313–7.CrossRefGoogle Scholar
  41. 41.
    Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 2018.Google Scholar
  42. 42.
    Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, et al. Human Hippocampal Neurogenesis Persists throughout Aging. Cell Stem Cell 2018:589–99.Google Scholar
  43. 43.
    Galvan V, Jin K. Neurogenesis in the aging brain. Clin Interv Aging 2007;2:605–10.Google Scholar
  44. 44.
    Yang T-T, Lo C-P, Tsai P-S, Wu S-Y, Wang T-F, Chen Y-W, et al. Aging and Exercise Affect Hippocampal Neurogenesis via Different Mechanisms. PLoS One 2015;10:e0132152.CrossRefGoogle Scholar
  45. 45.
    Bordiuk OL, Smith K, Morin PJ, Semënov M V. Cell Proliferation and Neurogenesis in Adult Mouse Brain. PLoS One 2014;9:e111453.CrossRefGoogle Scholar
  46. 46.
    Ming G-L, Song H. Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 2011;70:687–702.CrossRefGoogle Scholar
  47. 47.
    Delgado-Garcia LM, Amorim RM International Journal of Stem Cell Research & Therapy Adult Brain Neurogenesis, Neural Stem Cells and Neurogenic Niches. Int J Stem Cell Res Ther 2016;3:39.CrossRefGoogle Scholar
  48. 48.
    Benveniste H, Liu X, Koundal S, Sanggaard S, Lee H, Wardlaw J. The Glymphatic System and Waste Clearance with Brain Aging: A Review. Gerontology 2018:1–14.Google Scholar
  49. 49.
    Bátiz LF, Castro MA, Burgos P V, Velásquez ZD, Muñoz RI, Lafourcade CA, et al. Exosomes as Novel Regulators of Adult Neurogenic Niches. Front Cell Neurosci 2015;9:501.Google Scholar
  50. 50.
    Mirescu C, Gould E. Stress and adult neurogenesis. Hippocampus 2006;16:233–8.CrossRefGoogle Scholar
  51. 51.
    Bjornsson CS, Apostolopoulou M, Tian Y, Temple S. It takes a village: constructing the neurogenic niche. Dev Cell 2015;32:435–46.CrossRefGoogle Scholar
  52. 52.
    Chesnokova V, Pechnick RN, Wawrowsky K. Chronic peripheral inflammation, hippocampal neurogenesis, and behavior. Brain Behav Immun 2016;58:1–8.CrossRefGoogle Scholar
  53. 53.
    Solano Fonseca R, Mahesula S, Apple DM, Raghunathan R, Dugan A, Cardona A, et al. Neurogenic Niche Microglia Undergo Positional Remodeling and Progressive Activation Contributing to Age-Associated Reductions in Neurogenesis. Stem Cells Dev 2016;25:542–55.CrossRefGoogle Scholar
  54. 54.
    Licht T, Keshet E. The vascular niche in adult neurogenesis. Mech Dev 2015;138:56–62.CrossRefGoogle Scholar
  55. 55.
    Moreno-jiménez EP, Flor-garcía M, Terreros-roncal J, Rábano A, Cafini F, Pallas-bazarra N, et al. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer ’ s disease. Nat Med 2019.Google Scholar
  56. 56.
    Boldrini M, Galfalvy H, Dwork AJ, Rosoklija GB, Trencevska-Ivanovska I, Pavlovski G, et al. Resilience Is Associated With Larger Dentate Gyrus, While Suicide Decedents With Major Depressive Disorder Have Fewer Granule Neurons. Biol Psychiatry 2019;85:850–62.CrossRefGoogle Scholar
  57. 57.
    El-Hage W, Leman S, Camus V, Belzung C. Mechanisms of antidepressant resistance. Front Pharmacol 2013;4:146.CrossRefGoogle Scholar
  58. 58.
    Smith LK, White CW, Villeda SA, Villeda SA. The systemic environment: at the interface of aging and adult neurogenesis. Cell Tissue Res 2018;371:105–13.CrossRefGoogle Scholar
  59. 59.
    Windisch M. We Can Treat Alzheimer’s Disease Successfully in Mice but Not in Men: Failure in Translation? A Perspective. Neurodegener Dis 2014;13:147–50.CrossRefGoogle Scholar
  60. 60.
    Laub R, Baurin S, Timmerman D, Branckaert T, Strengers P. Specific protein content of pools of plasma for fractionation from different sources: impact of frequency of donations. Vox Sang 2010;99:220–31.CrossRefGoogle Scholar
  61. 61.
    Roback JD, Caldwell S, Carson J, Davenport R, Drew MJ, Eder A, et al. Evidence-based practice guidelines for plasma transfusion. Transfusion 2010;50:1227–39.CrossRefGoogle Scholar
  62. 62.
    Cooling L. ABO, H and Lewis Blood Groups. In: Fung MK, Grossman BJ, Hillyer CD, Westhoff CM, editors. Tech. Man. 18th ed., AABB; 2014, p. 291–315.Google Scholar
  63. 63.
    Storry JR. Other Blood Group Systems and Antigens. In: Fung MK, Grossman BJ, Hillyer CD, Westhoff CM, editors. Tech. Man. 18th ed., AABB; 2014, p. 337–52.Google Scholar
  64. 64.
    Velthove KJ, Over J, Abbink K, Janssen MP. Viral Safety of Human Plasma–Derived Medicinal Products: Impact of Regulation Requirements. Transfus Med Rev 2013;27:179–83.CrossRefGoogle Scholar
  65. 65.
    Katz LM, Rossmann SN. Zika and the blood supply: A work in progress. Arch Pathol Lab Med 2017;141:85–92.CrossRefGoogle Scholar
  66. 66.
    Pandey S, Vyas GN. Adverse effects of plasma transfusion. Transfusion 2012;52:65S–79S.CrossRefGoogle Scholar
  67. 67.
    Gottlieb S. Statement from FDA Commissioner Scott Gottlieb, M.D., and Director of FDA’s Center for Biologics Evaluation and Research Peter Marks, M.D., Ph.D., cautioning consumers against receiving young donor plasma infusions that are promoted as unproven treatment for varying conditions 2019. https://www.fda.gov/news-events/press-announcements/statement-fda-commissioner-scott-gottlieb-md-and-director-fdas-center-biologics-evaluation-and-0 (accessed May 6, 2019).
  68. 68.
    Sha SJ, Deutsch GK, Tian L, Richardson K, Coburn M, Gaudioso JL, et al. Safety, Tolerability, and Feasibility of Young Plasma Infusion in the Plasma for Alzheimer Symptom Amelioration Study. JAMA Neurol 2018.Google Scholar
  69. 69.
    Cohn EJ, Strong LE, Hughes WL, Mulford DJ, Ashworth JN, Melin M, et al. Preparation and Properties of Serum and Plasma Proteins. IV. A System for the Separation into Fractions of the Protein and Lipoprotein Components of Biological Tissues and Fluids. J Am Chem Soc 1946;68:459–75.CrossRefGoogle Scholar
  70. 70.
    Schneider W, Wolter D, McCarty LJ. Alternatives for Plasma Fractionation. Vox Sang 1976;31:141–51.CrossRefGoogle Scholar
  71. 71.
    Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, Lent RW, et al. 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 2009;30:1728–36.CrossRefGoogle Scholar
  72. 72.
    Relkin N. Clinical Trials of Intravenous Immunoglobulin for Alzheimer’s Disease. J Clin Immunol 2014;34:74–9.CrossRefGoogle Scholar
  73. 73.
    Milojevic J, Costa M, Ortiz AM, Jorquera JI, Melacini G. In Vitro Amyloid-β Binding and Inhibition of Amyloid-β Self-Association by Therapeutic Albumin. J Alzheimers Dis 2013;38:753–65.CrossRefGoogle Scholar
  74. 74.
    Boada M, Anaya F, Ortiz P, Olazarán J, Shua-Haim JR, Obisesan TO, et al. Efficacy and safety of plasma exchange with 5% albumin to modify cerebrospinal fluid and plasma amyloid-β concentrations and cognition outcomes in Alzheimer’s disease patients: A multicenter, randomized, controlled clinical trial. J Alzheimers Dis 2017;56:129–43.CrossRefGoogle Scholar
  75. 75.
    Zhang Y, Lee DHS. Sink Hypothesis and Therapeutic Strategies for Attenuating Aβ Levels. Neurosci 2011;17:163–73.Google Scholar
  76. 76.
    Boada M, López O, Núñez L, Szczepiorkowski ZM, Torres M, Grifols C, et al. Plasma exchange for Alzheimer’s disease Management by Albumin Replacement (AMBAR) trial: Study design and progress. Alzheimers Dement (New York, N Y) 2019;5:61–9.Google Scholar
  77. 77.
    Thornton PL, Ingram RL, Sonntag WE. Chronic [D-Ala 2 ]-Growth Hormone-Releasing Hormone Administration Attenuates Age-Related Deficits in Spatial Memory. vol. 55. 2000.Google Scholar
  78. 78.
    Mariño G, Ugalde AP, Fernández AF, Osorio FG, Fueyo A, Freije JMP, et al. Insulin-like growth factor 1 treatment extends longevity in a mouse model of human premature aging by restoring somatotroph axis function. Proc Natl Acad Sci U S A 2010;107:16268–73.CrossRefGoogle Scholar
  79. 79.
    Junnila RK, List EO, Berryman DE, Murrey JW, Kopchick JJ. The GH/IGF-1 axis in ageing and longevity. Nat Rev Endocrinol 2013;9:366–76.CrossRefGoogle Scholar
  80. 80.
    Mao K, Quipildor GF, Tabrizian T, Novaj A, Guan F, Walters RO, et al. Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice. Nat Commun 2018;9:2394.CrossRefGoogle Scholar
  81. 81.
    Elabd C, Cousin W, Upadhyayula P, Chen RY, Chooljian MS, Li J, et al. Oxytocin is an age-specific circulating hormone that is necessary for muscle maintenance and regeneration. Nat Commun 2014;5:4082.CrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2019

Authors and Affiliations

  1. 1.Alkahest Inc.San CarlosUSA

Personalised recommendations