, Volume 16, Issue 1, pp 203–215 | Cite as

Mitochondrial Modulation by Dichloroacetate Reduces Toxicity of Aberrant Glial Cells and Gliosis in the SOD1G93A Rat Model of Amyotrophic Lateral Sclerosis

  • Laura Martínez-PalmaEmail author
  • Ernesto Miquel
  • Valentina Lagos-Rodríguez
  • Luis Barbeito
  • Adriana Cassina
  • Patricia CassinaEmail author
Original Article


Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by motor neuron (MN) degeneration and gliosis. Neonatal astrocytes obtained from the SOD1G93A rat model of ALS exhibit mitochondrial dysfunction and neurotoxicity that can be reduced by dichloroacetate (DCA), a metabolic modulator that has been used in humans, and shows beneficial effects on disease outcome in SOD1G93A mice. Aberrant glial cells (AbGC) isolated from the spinal cords of adult paralytic SOD1G93A rats exhibit highly proliferative and neurotoxic properties and may contribute to disease progression. Here we analyze the mitochondrial activity of AbGC and whether metabolic modulation would modify their phenotypic profile. Our studies revealed fragmented mitochondria and lower respiratory control ratio in AbGC compared to neonatal SOD1G93A and nontransgenic rat astrocytes. DCA (5 mM) exposure improved AbGC mitochondrial function, reduced their proliferative rate, and importantly, decreased their toxicity to MNs. Furthermore, oral DCA administration (100 mg/kg, 10 days) to symptomatic SOD1G93A rats reduced MN degeneration, gliosis, and the number of GFAP/S100β double-labeled hypertrophic glial cells in the spinal cord. DCA treatment of AbGC reduced extracellular lactate levels indicating that the main recognized DCA action, targeting the pyruvate dehydrogenase kinase/pyruvate dehydrogenase complex, may underlie our findings. Our results show that AbGC metabolic phenotype is related to their toxicity to MNs and indicate that its modulation can reduce glial mediated pathology in the spinal cord. Together with previous findings, these results further support glial metabolic modulation as a valid therapeutic strategy in ALS.

Key Words

Mitochondria metabolic modulation DCA glial toxicity aberrant glial cells ALS 



The authors thank Drs. Mariela Bollati and Karen Perelmuter from the Cell Biology Unit at the Institut Pasteur de Montevideo for lactate and glucose measurements. This work was supported by Comisión Sectorial de Investigación Científica (CSIC), Universidad de la República, Uruguay; Grupos I+D Program, #1104 to PC and LB.

Compliance with Ethical Standards

Procedures using laboratory animals were in accordance with international guidelines and were approved by the Institutional Animal Committee: Comisión Honoraria de Experimentación Animal de la Universidad de la República (CHEA;; protocol no. 070153-000528-14.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

13311_2018_659_MOESM1_ESM.pdf (437 kb)
ESM 1 (PDF 436 kb)
13311_2018_659_MOESM2_ESM.pdf (434 kb)
ESM 2 (PDF 433 kb)


  1. 1.
    Brown RH, Al-Chalabi A. Amyotrophic lateral sclerosis. N Engl J Med 2017;377:162–172.Google Scholar
  2. 2.
    Smith EF, Shaw PJ, De Vos KJ. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci Lett2017.
  3. 3.
    Dupuis L, Pradat P-F, Ludolph AC, Loeffler J-P. Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 2011;10:75–82.Google Scholar
  4. 4.
    Cassina P, Cassina A, Pehar M, et al. Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci 2008;28:4115–4122.Google Scholar
  5. 5.
    Miquel E, Cassina A, Martínez-Palma L, et al. Modulation of astrocytic mitochondrial function by dichloroacetate improves survival and motor performance in inherited amyotrophic lateral sclerosis. PLoS One 2012;7:1–9.Google Scholar
  6. 6.
    Stacpoole PW, Gilbert LR, Neiberger RE, et al. Evaluation of long-term treatment of children with congenital lactic acidosis with dichloroacetate. Pediatrics 2008;121:e1223–e1228.Google Scholar
  7. 7.
    Abdelmalak M, Lew A, Ramezani R, et al. Long-term safety of dichloroacetate in congenital lactic acidosis. Mol Genet Metab 2013;109:139–43.Google Scholar
  8. 8.
    James MO, Jahn SC, Zhong G, et al. Therapeutic applications of dichloroacetate and the role of glutathione transferase zeta-1. Pharmacol Ther 2017;170:166–180.Google Scholar
  9. 9.
    Jha MK, Jeon S, Suk K. Pyruvate dehydrogenase kinases in the nervous system: their principal functions in neuronal-glial metabolic interaction and neuro-metabolic disorders. Curr Neuropharmacol 2012;10:393–403.Google Scholar
  10. 10.
    Stacpoole PW. Therapeutic targeting of the pyruvate dehydrogenase complex/pyruvate dehydrogenase kinase (PDC/PDK) axis in cancer. J Natl Cancer Inst 2017;109:1–14.Google Scholar
  11. 11.
    Boillée S, Vande Velde C, Cleveland DW. ALS: a disease of motor neurons and their nonneuronal neighbors. Neuron 2006;52:39–59.Google Scholar
  12. 12.
    Cassina P, Peluffo H, Pehar M, et al. Peroxynitrite triggers a phenotypic transformation in spinal cord astrocytes that induces motor neuron apoptosis. J Neurosci Res 2002;67:21–29.Google Scholar
  13. 13.
    Cassina P, Pehar M, Vargas MR, et al. Astrocyte activation by fibroblast growth factor-1 and motor neuron apoptosis: Implications for amyotrophic lateral sclerosis. J Neurochem 2005;93:38–46.Google Scholar
  14. 14.
    Vargas MR, Pehar M, Cassina P, et al. Fibroblast growth factor-1 induces heme oxygenase-1 via nuclear factor erythroid 2-related factor 2 (Nrf2) in spinal cord astrocytes: consequences for motor neuron survival. J Biol Chem 2005;280:25571–25579.Google Scholar
  15. 15.
    Vargas MR, Pehar M, Cassina P, Beckman JS, Barbeito L. Increased glutathione biosynthesis by Nrf2 activation in astrocytes prevents p75NTR-dependent motor neuron apoptosis. J Neurochem 2006;97:687–696.Google Scholar
  16. 16.
    Nagai M, Re DB, Nagata T, et al. Astrocytes expressing ALS-linked mutated SOD1 release factors selectively toxic to motor neurons. Nat Neurosci 2007;10:615–622.Google Scholar
  17. 17.
    Re DB, Le Verche V, Yu C, et al. Necroptosis drives motor neuron death in models of both sporadic and familial ALS. Neuron 2014;81:1001–1008.Google Scholar
  18. 18.
    Haidet-Phillips AM, Hester ME, Miranda CJ, et al. Astrocytes from familial and sporadic ALS patients are toxic to motor neurons. Nat Biotechnol 2012;29:824–828.Google Scholar
  19. 19.
    Diaz-Amarilla P, Olivera-Bravo S, Trias E, et al. Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proc Natl Acad Sci 2011;108:18126–18131.Google Scholar
  20. 20.
    Trias E, Díaz-Amarilla P, Olivera-Bravo S, et al. Phenotypic transition of microglia into astrocyte-like cells associated with disease onset in a model of inherited ALS. Front Cell Neurosci 2013;7:274.Google Scholar
  21. 21.
    Jiménez-Riani M, Díaz-Amarilla P, Isasi E, et al. Ultrastructural features of aberrant glial cells isolated from the spinal cord of paralytic rats expressing the amyotrophic lateral sclerosis-linked SOD1G93A mutation. Cell Tissue Res 2017;370:391–401.Google Scholar
  22. 22.
    Ibarburu S, Trias E, Lago N, et al. Focal transplantation of aberrant glial cells carrying the SOD1G93A mutation into rat spinal cord induces extensive gliosis. Neuroimmunomodulation 2017;24:143–153.Google Scholar
  23. 23.
    Howland DS, Liu J, She Y, et al. Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Natl Acad Sci U S A 2002;99:1604–1609.Google Scholar
  24. 24.
    Saneto RP, De Vellis J. Neuronal and glial cells: cell culture of the central nervous system. . In: Turner A, Brachelard H (eds) Neurochemistry: a practical approach. Oxford: IRL Press, 1987, pp. 27–63.Google Scholar
  25. 25.
    Chandler CE, Parsons LM, Hosang M, Shooter EM. A monoclonal antibody modulates the interaction of nerve growth factor with PC12 cells. J Biol Chem 1984;259:6882–6889.Google Scholar
  26. 26.
    Brand MD, Nicholls DG. Assessing mitochondrial dysfunction in cells. Biochem J 2011;435:297–312.Google Scholar
  27. 27.
    Cassina A, Silveira P, Cantu L, et al. Defective human sperm cells are associated with mitochondrial dysfunction and oxidant production. Biol Reprod 2015;93:119.Google Scholar
  28. 28.
    Andreassen OA, Ferrante RJ, Huang H-M, et al. Dichloroacetate exerts therapeutic effects in transgenic mouse models of Huntington’s disease. Ann Neurol 2001;50:112–116.Google Scholar
  29. 29.
    Galloway CA Lee H, Yoon Y. Mitochondrial morphology—Emerging role in bioenergetics. Free Radic Biol Med 2012;53:1–11.Google Scholar
  30. 30.
    Willems PHGM, Rossignol R, Dieteren CEJ, Murphy MP, Koopman WJH. Redox Homeostasis and Mitochondrial Dynamics. Cell Metab 2015;22:207–218.Google Scholar
  31. 31.
    Trias E, Ibarburu S, Barreto-Núñez R, et al. Post-paralysis tyrosine kinase inhibition with masitinib abrogates neuroinflammation and slows disease progression in inherited amyotrophic lateral sclerosis. J Neuroinflammation 2016;13:177.Google Scholar
  32. 32.
    Kashatus DF. The regulation of tumor cell physiology by mitochondrial dynamics. Biochem Biophys Res Commun 2017;500:9–16.Google Scholar
  33. 33.
    Sun X, Cao H, Zhan L, et al. Mitochondrial fission promotes cell migration by Ca2+/CaMKII/ERK/FAK pathway in hepatocellular carcinoma. Liver Int 2018.
  34. 34.
    Rambold AS, Pearce EL. Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol 2018;39:6–18.Google Scholar
  35. 35.
    Jha MK, Lee IK, Suk K. Metabolic reprogramming by the pyruvate dehydrogenase kinase-lactic acid axis: linking metabolism and diverse neuropathophysiologies. Neurosci Biobehav Rev 2016;68:1–19.Google Scholar
  36. 36.
    Orihuela R, McPherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol 2016;173:649–665.Google Scholar
  37. 37.
    Delaney LM, Ho N, Morrison J, et al. Dichloroacetate affects proliferation but not survival of human colorectal cancer cells. Apoptosis 2015;20:63–74.Google Scholar
  38. 38.
    James MO, Stacpoole PW. Pharmacogenetic considerations with dichloroacetate dosing. Pharmacogenomics 2016;17:743–753.Google Scholar
  39. 39.
    Stockwin LH, Yu SX, Borgel S, et al. Sodium dichloroacetate selectively targets cells with defects in the mitochondrial ETC. Int J Cancer 2010;127:2510–2519.Google Scholar
  40. 40.
    Barros LF, Brown A, Swanson RA. Glia in brain energy metabolism: a perspective. Glia 2018;10–13.Google Scholar
  41. 41.
    Dienel GA. Lack of appropriate stoichiometry: strong evidence against an energetically important astrocyte–neuron lactate shuttle in brain. J Neurosci Res 2017;95:2103–2125.Google Scholar
  42. 42.
    Valbuena GN, Tortarolo M, Bendotti C, Cantoni L, Keun HC. Altered metabolic profiles associate with toxicity in SOD1G93Aastrocyte-neuron co-cultures. Sci Rep 2017;7:1–14.Google Scholar
  43. 43.
    Halim ND, Mcfate T, Mohyeldin A, et al. Phosphorylation status of pyruvate dehydrogenase distinguishes metabolic phenotypes of cultured rat brain astrocytes and neurons. Glia 2010;58:1168–1176.Google Scholar
  44. 44.
    Gavillet M, Allaman I, Magistretti PJ. Modulation of astrocytic metabolic phenotype by proinflammatory cytokines. Glia 2008;56:975–989.Google Scholar
  45. 45.
    Amici SA, Dong J, Guerau-de-Arellano M. Molecular mechanisms modulating the phenotype of macrophages and microglia. Front Immunol 2017;8:1–18.Google Scholar
  46. 46.
    Hooten KG, Beers DR, Zhao W, Appel SH. Protective and toxic neuroinflammation in amyotrophic lateral sclerosis. Neurotherapeutics 2015;364–375.Google Scholar
  47. 47.
    Palamiuc L, Schlagowski A, Ngo ST, et al. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis. EMBO Mol Med 2015;7:526–46.Google Scholar
  48. 48.
    Michelakis ED, Sutendra G, Dromparis P, et al. Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2010;2:31ra34.Google Scholar
  49. 49.
    Frakes AE, Braun L, Ferraiuolo L, Guttridge DC, Kaspar BK. Additive amelioration of ALS by co-targeting independent pathogenic mechanisms. Ann Clin Transl Neurol 2017;4:76–86.Google Scholar
  50. 50.
    Calcutt NA, Lopez VL, Bautista AD, et al. Peripheral Neuropathy in Rats Exposed to Dichloroacetate. J Neuropathol Exp Neurol 2010;68:985–993.Google Scholar
  51. 51.
    Langaee T, Wagner R, Horne LP, et al. Personalized dosing of dichloroacetate using GSTZ1 clinical genotyping assay. Genet Test Mol Biomarkers 2018;22:266–269.Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  1. 1.Departamento de Histología y Embriología, Facultad de MedicinaUniversidad de la RepúblicaMontevideoUruguay
  2. 2.Centro de Investigaciones Biomédicas (CEINBIO), Facultad de MedicinaUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Institut Pasteur de MontevideoMontevideoUruguay
  4. 4.Departamento de Bioquímica, Facultad de MedicinaUniversidad de la RepúblicaMontevideoUruguay

Personalised recommendations