Advertisement

Inclusion Body Myositis: Update on Pathogenesis and Treatment

  • Elie Naddaf
  • Richard J. Barohn
  • Mazen M. Dimachkie
Review
  • 151 Downloads

Abstract

Inclusion body myositis is the most common acquired myopathy after the age of 50. It is characterized by progressive asymmetric weakness predominantly affecting the quadriceps and/or finger flexors. Loss of ambulation and dysphagia are major complications of the disease. Inclusion body myositis can be associated with cytosolic 5′-nucleotidase 1A antibodies. Muscle biopsy usually shows inflammatory cells surrounding and invading non-necrotic muscle fibers, rimmed vacuoles, congophilic inclusions, and protein aggregates. Disease pathogenesis remains poorly understood and consists of an interplay between inflammatory and degenerative pathways. Antigen-driven, clonally restricted, cytotoxic T cells represent a main feature of the inflammatory component, whereas abnormal protein homeostasis with protein misfolding, aggregation, and dysfunctional protein disposal is the hallmark of the degenerative component. Inclusion body myositis remains refractory to treatment. Better understanding of the disease pathogenesis led to the identification of novel therapeutic targets, addressing both the inflammatory and degenerative pathways.

Key Words

Inclusion body myositis idiopathic inflammatory myopathies muscle homeostasis immunotherapy neurodegenerative disorder. 

Notes

Acknowledgments

This work was supported by a Clinical and Translational Science Awards grant from National Center for Advancing Translational Sciences awarded to the University of Kansas Medical Center for Frontiers: The Heartland Institute for Clinical and Translational Research (# UL1TR000001). The contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health or National Center for Advancing Translational Sciences.

Supplementary material

13311_2018_658_MOESM1_ESM.pdf (498 kb)
ESM 1 (PDF 498 kb)
13311_2018_658_MOESM2_ESM.pdf (1.2 mb)
ESM 2 (PDF 1224 kb)
13311_2018_658_MOESM3_ESM.pdf (1.2 mb)
ESM 3 (PDF 1225 kb)

References

  1. 1.
    Callan A, Capkun G, Vasanthaprasad V, Freitas R, Needham M (2017) A systematic review and meta-analysis of prevalence studies of sporadic inclusion body myositis. J Neuromuscul Dis 4:127–137PubMedCrossRefGoogle Scholar
  2. 2.
    Capkun G, Callan A, Tian H, Wei Z, Zhao C, Agashivala N, Barghout V (2017) Burden of illness and healthcare resource use in United States patients with sporadic inclusion body myositis. Muscle Nerve 56:861–867PubMedCrossRefGoogle Scholar
  3. 3.
    Dimachkie MM, Barohn RJ (2014) Inclusion body myositis. Neurol Clin 32:629–646, viiGoogle Scholar
  4. 4.
    Lotz BP, Engel AG, Nishino H, Stevens JC, Litchy WJ (1989) Inclusion body myositis. Observations in 40 patients. Brain 112 (Pt 3):727–747PubMedCrossRefGoogle Scholar
  5. 5.
    Oh TH, Brumfield KA, Hoskin TL, Stolp KA, Murray JA, Basford JR (2007) Dysphagia in inflammatory myopathy: clinical characteristics, treatment strategies, and outcome in 62 patients. Mayo Clin Proc 82:441–447PubMedCrossRefGoogle Scholar
  6. 6.
    Ghosh PS, Milone M (2015) Camptocormia as presenting manifestation of a spectrum of myopathic disorders. Muscle Nerve 52:1008–1012PubMedCrossRefGoogle Scholar
  7. 7.
    Ghosh PS, Laughlin RS, Engel AG (2014) Inclusion-body myositis presenting with facial diplegia. Muscle Nerve 49:287–289PubMedCrossRefGoogle Scholar
  8. 8.
    Voermans NC, Vaneker M, Hengstman GJD, ter Laak HJ, Zimmerman C, Schelhaas HJ, Zwarts MJ (2004) Primary respiratory failure in inclusion body myositis. Neurology 63:2191–2192PubMedCrossRefGoogle Scholar
  9. 9.
    Chahin N, Engel AG (2008) Correlation of muscle biopsy, clinical course, and outcome in PM and sporadic IBM. Neurology 70:418–424PubMedCrossRefGoogle Scholar
  10. 10.
    Brady S, Squier W, Sewry C, Hanna M, Hilton-Jones D, Holton JL (2014) A retrospective cohort study identifying the principal pathological features useful in the diagnosis of inclusion body myositis. BMJ Open 4:e004552PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Bernier FP, Boneh A, Dennett X, Chow CW, Cleary MA, Thorburn DR (2002) Diagnostic criteria for respiratory chain disorders in adults and children. Neurology 59:1406–1411PubMedCrossRefGoogle Scholar
  12. 12.
    Griggs RC, Askanas V, DiMauro S, Engel A, Karpati G, Mendell JR, Rowland LP (1995) Inclusion body myositis and myopathies. Ann Neurol 38:705–713PubMedCrossRefGoogle Scholar
  13. 13.
    Hilton-Jones D, Miller A, Parton M, Holton J, Sewry C, Hanna MG (2010) Inclusion body myositis: MRC Centre for Neuromuscular Diseases, IBM workshop, London, 13 June 2008. Neuromuscul Disord 20:142–147PubMedCrossRefGoogle Scholar
  14. 14.
    Salajegheh M, Pinkus JL, Taylor JP, Amato AA, Nazareno R, Baloh RH, Greenberg SA (2009) Sarcoplasmic redistribution of nuclear TDP-43 in inclusion body myositis. Muscle Nerve 40:19–31PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Nogalska A, Terracciano C, D’Agostino C, King Engel W, Askanas V (2009) p62/SQSTM1 is overexpressed and prominently accumulated in inclusions of sporadic inclusion-body myositis muscle fibers, and can help differentiating it from polymyositis and dermatomyositis. Acta Neuropathol 118:407–413PubMedCrossRefGoogle Scholar
  16. 16.
    Dubourg O, Wanschitz J, Maisonobe T, Béhin A, Allenbach Y, Herson S, Benveniste O (2011) Diagnostic value of markers of muscle degeneration in sporadic inclusion body myositis. Acta Myol 30(2):103–8Google Scholar
  17. 17.
    Rose MR (2013) 188th ENMC International Workshop: inclusion body myositis, 2–4 December 2011, Naarden, The Netherlands. Neuromuscul Disord 23:1044–1055PubMedCrossRefGoogle Scholar
  18. 18.
    Salajegheh M, Lam T, Greenberg SA (2011) Autoantibodies against a 43 kDa muscle protein in inclusion body myositis. PLoS One 6:e20266PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Pluk H, van Hoeve BJA, van Dooren SHJ, et al (2013) Autoantibodies to cytosolic 5′-nucleotidase 1A in inclusion body myositis. Ann Neurol 73:397–407PubMedCrossRefGoogle Scholar
  20. 20.
    Larman BH, Salajegheh M, Nazareno R, et al (2013) Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol 73:408–418PubMedCrossRefGoogle Scholar
  21. 21.
    Tawara N, Yamashita S, Zhang X, et al (2017) Pathomechanisms of anti-cytosolic 5′-nucleotidase 1A autoantibodies in sporadic inclusion body myositis. Ann Neurol 81:512–525PubMedCrossRefGoogle Scholar
  22. 22.
    Lloyd TE, Christopher-Stine L, Pinal-Fernandez I, Tiniakou E, Petri M, Baer A, Danoff SK, Pak K, Casciola-Rosen LA, Mammen AL (2016) Cytosolic 5’-nucleotidase 1A as a target of circulating autoantibodies in autoimmune diseases Arthritis Care Res (Hoboken) 68:66–71CrossRefGoogle Scholar
  23. 23.
    Goyal NA, Cash TM, Alam U, Enam S, Tierney P, Araujo N, Mozaffar FH, Pestronk A, Mozaffar T (2016) Seropositivity for NT5c1A antibody in sporadic inclusion body myositis predicts more severe motor, bulbar and respiratory involvement. J Neurol Neurosurg Psychiatry 87:373–378PubMedCrossRefGoogle Scholar
  24. 24.
    Lilleker JB, Rietveld A, Pye SR, et al (2017) Cytosolic 5′-nucleotidase 1A autoantibody profile and clinical characteristics in inclusion body myositis. Ann Rheum Dis 76:862–868PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Herbert MK, Stammen-Vogelzangs J, Verbeek MM, et al (2016) Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Ann Rheum Dis 75:696–701PubMedCrossRefGoogle Scholar
  26. 26.
    Kazamel M, Sorenson EJ, Milone M (2016) Clinical and electrophysiological findings in hereditary inclusion body myopathy compared with sporadic inclusion body myositis. J Clin Neuromuscul Dis 17:190–196PubMedCrossRefGoogle Scholar
  27. 27.
    Badrising UA, Maat-Schieman M, van Duinen SG, et al (2000) Epidemiology of inclusion body myositis in the Netherlands: a nationwide study. Neurology 55:1385–1387PubMedCrossRefGoogle Scholar
  28. 28.
    Hilton-Jones D, Miller A, Parton M, Holton J, Sewry C, Hanna MG (2010) Inclusion body myositis. Neuromuscul Disord 20:142–147PubMedCrossRefGoogle Scholar
  29. 29.
    Lloyd TE, Mammen AL, Amato AA, Weiss MD, Needham M, Greenberg SA (2014) Evaluation and construction of diagnostic criteria for inclusion body myositis. Neurology 83:426–433PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Jones KL, Sejersen T, Amato AA, Hilton-Jones D, Schmidt J, Wallace AC, Badrising UA, Rose MR, IBM Guideline Development Group (2016) A protocol to develop clinical guidelines for inclusion-body myositis. Muscle Nerve 53:503–507PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Engel AG, Arahata K (1984) Monoclonal antibody analysis of mononuclear cells in myopathies. II: phenotypes of autoinvasive cells in polymyositis and inclusion body myositis. Ann Neurol 16:209–215PubMedCrossRefGoogle Scholar
  32. 32.
    Amemiya K, Granger RP, Dalakas MC (2000) Clonal restriction of T-cell receptor expression by infiltrating lymphocytes in inclusion body myositis persists over time. Studies in repeated muscle biopsies. Brain 123 (Pt 10):2030–2039PubMedCrossRefGoogle Scholar
  33. 33.
    Salajegheh M, Rakocevic G, Raju R, Shatunov A, Goldfarb LG, Dalakas MC (2007) T cell receptor profiling in muscle and blood lymphocytes in sporadic inclusion body myositis. Neurology 69:1672–1679PubMedCrossRefGoogle Scholar
  34. 34.
    Tateyama M, Fujihara K, Misu T, Itoyama Y (2009) CCR7+ myeloid dendritic cells together with CCR7+ T cells and CCR7+ macrophages invade CCL19+ nonnecrotic muscle fibers in inclusion body myositis. J Neurol Sci 279:47–52PubMedCrossRefGoogle Scholar
  35. 35.
    Greenberg SA, Pinkus GS, Amato AA, Pinkus JL (2007) Myeloid dendritic cells in inclusion-body myositis and polymyositis. Muscle Nerve 35:17–23PubMedCrossRefGoogle Scholar
  36. 36.
    Greenberg SA, Bradshaw EM, Pinkus JL, Pinkus GS, Burleson T, Due B, Bregoli LS, O’Connor KC, Amato AA, Amato AA (2005) Plasma cells in muscle in inclusion body myositis and polymyositis. Neurology 65:1782–1787PubMedCrossRefGoogle Scholar
  37. 37.
    Bradshaw EM, Orihuela A, McArdel SL, Salajegheh M, Amato AA, Hafler DA, Greenberg SA, O’Connor KC (2007) A local antigen-driven humoral response is present in the inflammatory myopathies. J Immunol 178:547–556PubMedCrossRefGoogle Scholar
  38. 38.
    Uruha A, Noguchi S, Hayashi YK, Tsuburaya RS, Yonekawa T, Nonaka I, Nishino I (2016) Hepatitis C virus infection in inclusion body myositis. Neurology 86:211–217PubMedCrossRefGoogle Scholar
  39. 39.
    Alverne ARSM, Marie SKN, Levy-Neto M, de Souza FHC, de Carvalho MS, Shinjo SK (2013) Inclusion body myositis: series of 30 cases from a Brazilian tertiary center. Acta Reumatol Port 38:179–185PubMedGoogle Scholar
  40. 40.
    Cupler EJ, Leon-Monzon M, Miller J, Semino-Mora C, Anderson TL, Dalakas MC (1996) Inclusion body myositis in HIV-1 and HTLV-1 infected patients. Brain 119 (Pt 6):1887–1893PubMedCrossRefGoogle Scholar
  41. 41.
    Dalakas MC, Rakocevic G, Shatunov A, Goldfarb L, Raju R, Salajegheh M (2007) Inclusion body myositis with human immunodeficiency virus infection: four cases with clonal expansion of viral-specific T cells. Ann Neurol 61:466–475PubMedCrossRefGoogle Scholar
  42. 42.
    Greenberg SA, Pinkus JL, Amato AA, Kristensen T, Dorfman DM (2016) Association of inclusion body myositis with T cell large granular lymphocytic leukaemia. Brain 139:1348–1360PubMedCrossRefGoogle Scholar
  43. 43.
    Bareau B, Rey J, Hamidou M, et al (2010) Analysis of a French cohort of patients with large granular lymphocyte leukemia: a report on 229 cases. Haematologica 95:1534–41PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Hohlfeld R, Schulze-Koops H (2016) Cytotoxic T cells go awry in inclusion body myositis. Brain 139:1312–1314PubMedCrossRefGoogle Scholar
  45. 45.
    Lamy T, Moignet A, Loughran TP (2017) LGL leukemia: from pathogenesis to treatment. Blood 129:1082–1094PubMedCrossRefGoogle Scholar
  46. 46.
    Zanusso G, Vattemi G, Ferrari S, et al (2001) Increased expression of the normal cellular isoform of prion protein in inclusion-body myositis, inflammatory myopathies and denervation atrophy. Brain Pathol 11:182–189PubMedCrossRefGoogle Scholar
  47. 47.
    Askanas V, Engel WK, Alvarez RB, Glenner GG (1992) beta-Amyloid protein immunoreactivity in muscle of patients with inclusion-body myositis. Lancet (London, England) 339:560–561CrossRefGoogle Scholar
  48. 48.
    Mendell JR, Sahenk Z, Gales T, Paul L (1991) Amyloid filaments in inclusion body myositis. Novel findings provide insight into nature of filaments. Arch Neurol 48:1229–1234PubMedCrossRefGoogle Scholar
  49. 49.
    Catalán-García M, Garrabou G, Morén C, et al (2015) BACE-1, PS-1 and sAPPβ levels are increased in plasma from sporadic inclusion body myositis patients: surrogate biomarkers among inflammatory myopathies. Mol Med 21:1CrossRefGoogle Scholar
  50. 50.
    Nogalska A, D’Agostino C, Engel WK, Klein WL, Askanas V (2010) Novel demonstration of amyloid-β oligomers in sporadic inclusion-body myositis muscle fibers. Acta Neuropathol 120:661–666PubMedCrossRefGoogle Scholar
  51. 51.
    Sarkozi E, Askanas V, Johnson SA, Engel WK, Alvarez RB (1993) beta-Amyloid precursor protein mRNA is increased in inclusion-body myositis muscle. Neuroreport 4:815–818PubMedCrossRefGoogle Scholar
  52. 52.
    Abdo WF, van Mierlo T, Hengstman GJ, Schelhaas HJ, van Engelen BG, Verbeek MM (2009) Increased plasma amyloid-beta42 protein in sporadic inclusion body myositis. Acta Neuropathol 118:429–431PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Nogalska A, D’Agostino C, Engel WK, Cacciottolo M, Asada S, Mori K, Askanas V (2015) Activation of the unfolded protein response in sporadic inclusion-body myositis but not in hereditary GNE inclusion-body myopathy. J Neuropathol Exp Neurol 74:538–546PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Fratta P, Engel WK, McFerrin J, Davies KJA, Lin SW, Askanas V (2005) Proteasome inhibition and aggresome formation in sporadic inclusion-body myositis and in amyloid-beta precursor protein-overexpressing cultured human muscle fibers. Am J Pathol 167:517–526PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Fukuhara N, Kumamoto T, Tsubaki T (1980) Rimmed vacuoles. Acta Neuropathol 51:229–235PubMedCrossRefGoogle Scholar
  57. 57.
    Güttsches A-K, Brady S, Krause K, et al (2017) Proteomics of rimmed vacuoles define new risk allele in inclusion body myositis. Ann Neurol 81:227–239PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Ju J-S, Varadhachary AS, Miller SE, Weihl CC (2010) Quantitation of “autophagic flux” in mature skeletal muscle Autophagy 6:929–935PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ching JK, Elizabeth S V., Ju J-S, Lusk C, Pittman SK, Weihl CC (2013) mTOR dysfunction contributes to vacuolar pathology and weakness in valosin-containing protein associated inclusion body myopathy. Hum Mol Genet 22:1167–1179PubMedCrossRefGoogle Scholar
  60. 60.
    Nalbandian A, Llewellyn KJ, Nguyen C, Yazdi PG, Kimonis VE (2015) Rapamycin and chloroquine: the in vitro and in vivo effects of autophagy-modifying drugs show promising results in valosin containing protein multisystem proteinopathy. PLoS One 10:e0122888PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Nogalska A, D’Agostino C, Terracciano C, Engel WK, Askanas V (2010) Impaired autophagy in sporadic inclusion-body myositis and in endoplasmic reticulum stress-provoked cultured human muscle fibers. Am J Pathol 177:1377–1387PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lünemann JD, Schmidt J, Dalakas MC, Münz C (2007) Macroautophagy as a pathomechanism in sporadic inclusion body myositis. Autophagy 3:384–386PubMedCrossRefGoogle Scholar
  63. 63.
    Kumamoto T, Ueyama H, Tsumura H, Toyoshima I, Tsuda T (2004) Expression of lysosome-related proteins and genes in the skeletal muscles of inclusion body myositis. Acta Neuropathol 107:59–65PubMedCrossRefGoogle Scholar
  64. 64.
    Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome 1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation. Mol Cell Biol 24:8055–8068PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Nakano S, Oki M, Kusaka H (2017) The role of p62/SQSTM1 in sporadic inclusion body myositis. Neuromuscul Disord 27:363–369PubMedCrossRefGoogle Scholar
  66. 66.
    Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233PubMedCrossRefGoogle Scholar
  67. 67.
    Brown IR (2007) Heat shock proteins and protection of the nervous system. Ann N Y Acad Sci 1113:147–158PubMedCrossRefGoogle Scholar
  68. 68.
    Cacciottolo M, Nogalska A, D’Agostino C, Engel WK, Askanas V (2013) Chaperone-mediated autophagy components are upregulated in sporadic inclusion-body myositis muscle fibres. Neuropathol Appl Neurobiol 39:750–761PubMedCrossRefGoogle Scholar
  69. 69.
    Nogalska A, Engel WK, McFerrin J, Kokame K, Komano H, Askanas V (2006) Homocysteine-induced endoplasmic reticulum protein (Herp) is up-regulated in sporadic inclusion-body myositis and in endoplasmic reticulum stress-induced cultured human muscle fibers. J Neurochem 96:1491–1499PubMedCrossRefGoogle Scholar
  70. 70.
    Banwell BL, Engel AG (2000) AlphaB-crystallin immunolocalization yields new insights into inclusion body myositis. Neurology 54:1033–1041PubMedCrossRefGoogle Scholar
  71. 71.
    Wójcik S, Engel WK, McFerrin J, Askanas V (2005) Myostatin is increased and complexes with amyloid-β within sporadic inclusion-body myositis muscle fibers. Acta Neuropathol 110:173–177PubMedCrossRefGoogle Scholar
  72. 72.
    Nogalska A, Wojcik S, King Engel W, McFerrin J, Askanas V (2007) Endoplasmic reticulum stress induces myostatin precursor protein and NF-κB in cultured human muscle fibers: Relevance to inclusion body myositis. Exp Neurol 204:610–618PubMedCrossRefGoogle Scholar
  73. 73.
    Sachdev R, Kappes-Horn K, Paulsen L, Duernberger Y, Pleschka C, Denner P, Kundu B, Reimann J, Vorberg I (2018) Endoplasmic reticulum stress induces myostatin high molecular weight aggregates and impairs mature myostatin secretion. Mol Neurobiol. doi:  https://doi.org/10.1007/s12035-018-0997-9
  74. 74.
    Gonzalez-Cadavid NF, Bhasin S (2004) Role of myostatin in metabolism. Curr Opin Clin Nutr Metab Care 7:451–457PubMedCrossRefGoogle Scholar
  75. 75.
    Catalan-Garcia M, Garrabou G, Moren C, et al (2016) Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis. Clin Sci 130:1741–1751PubMedCrossRefGoogle Scholar
  76. 76.
    Rygiel KA, Tuppen HA, Grady JP, Vincent A, Blakely EL, Reeve AK, Taylor RW, Picard M, Miller J, Turnbull DM (2016) Complex mitochondrial DNA rearrangements in individual cells from patients with sporadic inclusion body myositis. Nucleic Acids Res 44:5313–5329PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Bhattarai S, Ghannam K, Krause S, et al (2016) The immunoproteasomes are key to regulate myokines and MHC class I expression in idiopathic inflammatory myopathies. J Autoimmun 75:118–129PubMedCrossRefGoogle Scholar
  78. 78.
    Fréret M, Drouot L, Obry A, Ahmed-Lacheheb S, Dauly C, Adriouch S, Cosette P, Authier F-J, Boyer O (2013) Overexpression of MHC class I in muscle of lymphocyte-deficient mice causes a severe myopathy with induction of the unfolded protein response. Am J Pathol 183:893–904PubMedCrossRefGoogle Scholar
  79. 79.
    Ahmed M, Machado PM, Miller A, et al (2016) Targeting protein homeostasis in sporadic inclusion body myositis. Sci Transl Med 8:331ra41–331ra41PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Schmidt J, Barthel K, Wrede A, Salajegheh M, Bähr M, Dalakas MC (2008) Interrelation of inflammation and APP in sIBM: IL-1 beta induces accumulation of beta-amyloid in skeletal muscle. Brain 131:1228–1240PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Adams V, Nehrhoff B, Späte U, Linke A, Schulze PC, Baur A, Gielen S, Hambrecht R, Schuler G (2002) Induction of iNOS expression in skeletal muscle by IL-1beta and NFkappaB activation: an in vitro and in vivo study. Cardiovasc Res 54:95–104PubMedCrossRefGoogle Scholar
  82. 82.
    Rygiel KA, Miller J, Grady JP, Rocha MC, Taylor RW, Turnbull DM (2015) Mitochondrial and inflammatory changes in sporadic inclusion body myositis. Neuropathol Appl Neurobiol 41:288–303PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Rojana-udomsart A, Bundell C, James I, Castley A, Martinez P, Christiansen F, Hollingsworth P, Mastaglia F (2012) Frequency of autoantibodies and correlation with HLA-DRB1 genotype in sporadic inclusion body myositis (s-IBM): a population control study. J Neuroimmunol 249:66–70PubMedCrossRefGoogle Scholar
  84. 84.
    Rothwell S, Cooper RG, Lundberg IE, et al (2017) Immune-array analysis in sporadic inclusion body myositis reveals HLA-DRB1 amino acid heterogeneity across the myositis spectrum. Arthritis Rheumatol 69:1090–1099PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Mastaglia FL, Needham M, Scott A, et al (2009) Sporadic inclusion body myositis: HLA-DRB1 allele interactions influence disease risk and clinical phenotype. Neuromuscul Disord 19:763–765PubMedCrossRefGoogle Scholar
  86. 86.
    Rojana-udomsart A, James I, Castley A, et al (2012) High-resolution HLA-DRB1 genotyping in an Australian inclusion body myositis (s-IBM) cohort: an analysis of disease-associated alleles and diplotypes. J Neuroimmunol 250:77–82PubMedCrossRefGoogle Scholar
  87. 87.
    Weihl CC, Baloh RH, Lee Y, Chou T-F, Pittman SK, Lopate G, Allred P, Jockel-Balsarotti J, Pestronk A, Harms MB (2015) Targeted sequencing and identification of genetic variants in sporadic inclusion body myositis. Neuromuscul Disord 25:289–296PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Gang Q, Bettencourt C, Machado PM, et al (2016) Rare variants in SQSTM1 and VCP genes and risk of sporadic inclusion body myositis. Neurobiol Aging 47:218.e1–218.e9CrossRefGoogle Scholar
  89. 89.
    Gang Q, Bettencourt C, Machado PM, et al (2015) The effects of an intronic polymorphism in TOMM40 and APOE genotypes in sporadic inclusion body myositis. Neurobiol Aging 36:1766.e1–1766.e3CrossRefGoogle Scholar
  90. 90.
    Mastaglia FL, Rojana-udomsart A, James I, et al (2013) Polymorphism in the TOMM40 gene modifies the risk of developing sporadic inclusion body myositis and the age of onset of symptoms. Neuromuscul Disord 23:969–974PubMedCrossRefGoogle Scholar
  91. 91.
    Hansson Petersen CA, Alikhani N, Behbahani H, et al (2008) The amyloid beta-peptide is imported into mitochondria via the TOM import machinery and localized to mitochondrial cristae. Proc Natl Acad Sci U S A 105:13145–13150PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Wild P, McEwan DG, Dikic I (2014) The LC3 interactome at a glance. J Cell Sci 127:3–9PubMedCrossRefGoogle Scholar
  93. 93.
    Leff RL, Miller FW, Hicks J, Fraser DD, Plotz PH (1993) The treatment of inclusion body myositis: a retrospective review and a randomized, prospective trial of immunosuppressive therapy. Medicine (Baltimore) 72:225–235CrossRefGoogle Scholar
  94. 94.
    Amato AA, Barohn RJ, Jackson CE, Pappert EJ, Sahenk Z, Kissel JT (1994) Inclusion body myositis: treatment with intravenous immunoglobulin. Neurology 44:1516–1518PubMedCrossRefGoogle Scholar
  95. 95.
    Dalakas MC, Sonies B, Dambrosia J, Sekul E, Cupler E, Sivakumar K (1997) Treatment of inclusion-body myositis with IVIg: a double-blind, placebo-controlled study. Neurology 48:712–716PubMedCrossRefGoogle Scholar
  96. 96.
    Walter MC, Lochmüller H, Toepfer M, Schlotter B, Reilich P, Schröder M, Müller-Felber W, Pongratz D (2000) High-dose immunoglobulin therapy in sporadic inclusion body myositis: a double-blind, placebo-controlled study. J Neurol 247:22–28PubMedCrossRefGoogle Scholar
  97. 97.
    Badrising UA, Maat-Schieman MLC, Ferrari MD, et al (2002) Comparison of weakness progression in inclusion body myositis during treatment with methotrexate or placebo. Ann Neurol 51:369–372PubMedCrossRefGoogle Scholar
  98. 98.
    Barohn RJ, Amato AA, Sahenk Z, Kissel JT, Mendell JR (1995) Inclusion body myositis: explanation for poor response to immunosuppressive therapy. Neurology 45:1302–1304PubMedCrossRefGoogle Scholar
  99. 99.
    Cherin P, Pelletier S, Teixeira A, Laforet P, Simon A, Herson S, Eymard B (2002) Intravenous immunoglobulin for dysphagia of inclusion body myositis. Neurology 58:326PubMedCrossRefGoogle Scholar
  100. 100.
    Dobloug C, Walle-Hansen R, Gran JT, Molberg Ø (2012) Long-term follow-up of sporadic inclusion body myositis treated with intravenous immunoglobulin: a retrospective study of 16 patients. Clin Exp Rheumatol 30:838–842PubMedGoogle Scholar
  101. 101.
    Muscle Study Group (2001) Randomized pilot trial of betaINF1a (Avonex) in patients with inclusion body myositis. Neurology 57:1566–1570CrossRefGoogle Scholar
  102. 102.
    Muscle Study Group (2004) Randomized pilot trial of high-dose betaINF-1a in patients with inclusion body myositis. Neurology 63:718–720CrossRefGoogle Scholar
  103. 103.
    Lindberg C, Trysberg E, Tarkowski A, Oldfors A (2003) Anti-T-lymphocyte globulin treatment in inclusion body myositis: a randomized pilot study. Neurology 61:260–262PubMedCrossRefGoogle Scholar
  104. 104.
    Barohn RJ, Herbelin L, Kissel JT, King W, McVey AL, Saperstein DS, Mendell JR (2006) Pilot trial of etanercept in the treatment of inclusion-body myositis. Neurology 66:S123–S124PubMedCrossRefGoogle Scholar
  105. 105.
    Dalakas MC, Rakocevic G, Schmidt J, et al (2009) Effect of Alemtuzumab (CAMPATH 1-H) in patients with inclusion-body myositis. Brain 132:1536–1544PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Kosmidis ML, Alexopoulos H, Tzioufas AG, Dalakas MC (2013) The effect of anakinra, an IL1 receptor antagonist, in patients with sporadic inclusion body myositis (sIBM): a small pilot study. J Neurol Sci 334:123–125PubMedCrossRefGoogle Scholar
  107. 107.
    Sancricca C, Mora M, Ricci E, Tonali PA, Mantegazza R, Mirabella M (2011) Pilot trial of simvastatin in the treatment of sporadic inclusion-body myositis. Neurol Sci 32:841–847PubMedCrossRefGoogle Scholar
  108. 108.
    Hargitai J, Lewis H, Boros I, et al (2003) Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem Biophys Res Commun 307:689–695PubMedCrossRefGoogle Scholar
  109. 109.
    Bíró K, Jednákovits A, Kukorelli T, Hegedüs E, Korányi L (1997) Bimoclomol (BRLP-42) ameliorates peripheral neuropathy in streptozotocin-induced diabetic rats. Brain Res Bull 44:259–263PubMedCrossRefGoogle Scholar
  110. 110.
    Benatar M, Wuu J, Andersen PM, Atassi N, David W, Cudkowicz M, Schoenfeld D (2018) Randomized, double-blind, placebo-controlled trial of arimoclomol in rapidly progressive SOD1 ALS. Neurology 90:e565–e574PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Kirkegaard T, Gray J, Priestman DA, et al (2016) Heat shock protein-based therapy as a potential candidate for treating the sphingolipidoses. Sci Transl Med 8:355ra118–355ra118PubMedCrossRefGoogle Scholar
  112. 112.
    Amato AA, Sivakumar K, Goyal N, et al (2014) Treatment of sporadic inclusion body myositis with bimagrumab. Neurology 83:2239–2246PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Lee S-J (2004) Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 20:61–86PubMedCrossRefGoogle Scholar
  114. 114.
    Mendell JR, Sahenk Z, Al-Zaidy S, et al (2017) Follistatin gene therapy for sporadic inclusion body myositis improves functional outcomes. Mol Ther 25:870–879PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Greenberg SA (2017) Unfounded claims of improved functional outcomes attributed to follistatin gene therapy in inclusion body myositis. Mol Ther 25:2235–2237PubMedCrossRefGoogle Scholar
  116. 116.
    Rutkove SB, Parker RA, Nardin RA, Connolly CE, Felice KJ, Raynor EM (2002) A pilot randomized trial of oxandrolone in inclusion body myositis. Neurology 58:1081–1087PubMedCrossRefGoogle Scholar
  117. 117.
    Lilleker JB, Bukhari M, Chinoy H (2018) Rapamycin for inclusion body myositis: targeting non-inflammatory mechanisms. Rheumatology. doi:  https://doi.org/10.1093/rheumatology/key043
  118. 118.
    Habers GEA, Takken T (2011) Safety and efficacy of exercise training in patients with an idiopathic inflammatory myopathy—a systematic review. Rheumatology (Oxford) 50:2113–2124CrossRefGoogle Scholar
  119. 119.
    Arnardottir S, Alexanderson H, Lundberg IE, Borg K (2003) Sporadic inclusion body myositis: pilot study on the effects of a home exercise program on muscle function, histopathology and inflammatory reaction. J Rehabil Med 35:31–35PubMedCrossRefGoogle Scholar
  120. 120.
    Johnson LG, Collier KE, Edwards DJ, Philippe DL, Eastwood PR, Walters SE, Thickbroom GW, Mastaglia FL (2009) Improvement in aerobic capacity after an exercise program in sporadic inclusion body myositis. J Clin Neuromuscul Dis 10:178–184PubMedCrossRefGoogle Scholar
  121. 121.
    Spector SA, Lemmer JT, Koffman BM, Fleisher TA, Feuerstein IM, Hurley BF, Dalakas MC (1997) Safety and efficacy of strength training in patients with sporadic inclusion body myositis. Muscle Nerve 20:1242–1248PubMedCrossRefGoogle Scholar
  122. 122.
    Kwon I, Lee Y, Cosio-Lima LM, Cho J-Y, Yeom D-C (2015) Effects of long-term resistance exercise training on autophagy in rat skeletal muscle of chloroquine-induced sporadic inclusion body myositis. J Exerc Nutr Biochem 19:225–234CrossRefGoogle Scholar
  123. 123.
    Oh TH, Brumfield KA, Hoskin TL, Kasperbauer JL, Basford JR (2008) Dysphagia in inclusion body myositis. Am J Phys Med Rehabil 87:883–889PubMedCrossRefGoogle Scholar
  124. 124.
    Schrey A, Airas L, Jokela M, Pulkkinen J (2017) Botulinum toxin alleviates dysphagia of patients with inclusion body myositis. J Neurol Sci 380:142–147PubMedCrossRefGoogle Scholar
  125. 125.
    Claire Langdon P, Mulcahy K, Shepherd KL, Low VH, Mastaglia FL (2012) Pharyngeal dysphagia in inflammatory muscle diseases resulting from impaired suprahyoid musculature. Dysphagia 27:408–417PubMedCrossRefGoogle Scholar
  126. 126.
    Karissa J. Munoz, Ali H. Mannaa, Jenna Kastenschmidt, Marie Wencel, Namita Goyal, S. Armando Villalta, Tahseen Mozaffar (2018) Circulatory Kv1.3+ cells in patients with sIBM. Neurology 90. http://n.neurology.org/content/90/15_Supplement/P3.437
  127. 127.
    Cox FM, Titulaer MJ, Sont JK, Wintzen AR, Verschuuren JJGM, Badrising UA (2011) A 12-year follow-up in sporadic inclusion body myositis: an end stage with major disabilities. Brain 134:3167–3175PubMedCrossRefGoogle Scholar
  128. 128.
    Benveniste O, Guiguet M, Freebody J, et al (2011) Long-term observational study of sporadic inclusion body myositis. Brain 134:3176–3184PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  • Elie Naddaf
    • 1
  • Richard J. Barohn
    • 2
  • Mazen M. Dimachkie
    • 2
  1. 1.Neuromuscular Medicine Division, Department of NeurologyMayo ClinicRochesterUSA
  2. 2.Neuromuscular Medicine Division, Department of NeurologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations