Advertisement

Neurotherapeutics

, Volume 15, Issue 4, pp 928–942 | Cite as

Pompe Disease: From Basic Science to Therapy

  • Lara Kohler
  • Rosa Puertollano
  • Nina Raben
Review

Abstract

Pompe disease is a rare and deadly muscle disorder. As a clinical entity, the disease has been known for over 75 years. While an optimist might be excited about the advances made during this time, a pessimist would note that we have yet to find a cure. However, both sides would agree that many findings in basic science—such as the Nobel prize-winning discoveries of glycogen metabolism, the lysosome, and autophagy—have become the foundation of our understanding of Pompe disease. The disease is a glycogen storage disorder, a lysosomal disorder, and an autophagic myopathy. In this review, we will discuss how these past discoveries have guided Pompe research and impacted recent therapeutic developments.

Key Words

Glycogen storage lysosome autophagy myopathy enzyme replacement therapy newborn screening 

Notes

Acknowledgments

We apologize to all colleagues whose publications were not cited because of space limitations.

This research was supported in part by the Intramural Research Program of the National Heart, Lung, and Blood Institute, National Institutes of Health. Dr. Kohler is supported in part by a CRADA between NIH and Genzyme Corporation and by the Acid Maltase Deficiency Association.

Compliance with Ethical Standards

Required Author Forms

Disclosure forms provided by the authors are available with the version of this article.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

13311_2018_655_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1196 kb)
13311_2018_655_MOESM2_ESM.pdf (1.2 mb)
ESM 2 (PDF 1196 kb)

References

  1. 1.
    Pompe JC. Over idiopatische hypertrophie van het hart. Ned Tijdschr Geneeskd 1932;76:304.Google Scholar
  2. 2.
    Bischoff G. Zum klinischen Bild der Glykogen-Speicherungs-Krankheit (Glykogenose). Zeitschrift fur Kinderheikunde 1932;52:722.Google Scholar
  3. 3.
    Putschar and Walter. Uber angeborene Glykogenspeicher-Krankheit des Herzens. “Thesaurismosis glycogenica” (v. Gierke). Beitr Pathol Anat Allg Pathol. 1932;90:222.Google Scholar
  4. 4.
    Cori GT. [Enzymes and glycogen structure in glycogenosis]. Osterreichische Zeitschrift fur Kinderheilkunde und Kinderfursorge 1954;10(1–2):38–42.Google Scholar
  5. 5.
    De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J 1955;60(4):604–617.Google Scholar
  6. 6.
    Hers HG. Alpha-glucosidase deficiency in generalize glycogen storage disease (Pompe's disease). Biochem J 1963;86:11.Google Scholar
  7. 7.
    Wisselaar HA, Kroos MA, Hermans MM, van Beeumen J, Reuser AJ. Structural and functional changes of lysosomal acid alpha-glucosidase during intracellular transport and maturation. J Biol Chem 1993;268(3):2223–2231.Google Scholar
  8. 8.
    Hoefsloot LH, Hoogeveen-Westerveld M, Kroos MA, van Beeumen J, Reuser AJ, Oostra BA. Primary structure and processing of lysosomal alpha-glucosidase; homology with the intestinal sucrase-isomaltase complex. EMBO J 1988;7(6):1697–1704.Google Scholar
  9. 9.
    Hermans MM, Wisselaar HA, Kroos MA, Oostra BA, Reuser AJ. Human lysosomal alpha-glucosidase: functional characterization of the glycosylation sites. Biochem J 1993;289(Pt 3):681–686.Google Scholar
  10. 10.
    Moreland RJ, Jin X, Zhang XK, et al. Lysosomal acid alpha-glucosidase consists of four different peptides processed from a single chain precursor. J Bio lChem 2005;280(8):6780–6791.Google Scholar
  11. 11.
    Kroos M, Hoogeveen-Westerveld M, van der Ploeg A, Reuser AJ. The genotype-phenotype correlation in Pompe disease. Am J Med Genet C: Semin Med Genet 2012;160(1):59–68.  https://doi.org/10.1002/ajmg.c.31318.Google Scholar
  12. 12.
    de Filippi P, Ravaglia S, Bembi B, et al. The angiotensin-converting enzyme insertion/deletion polymorphism modifies the clinical outcome in patients with Pompe disease. Genet Med 2010;12(4):206–211.  https://doi.org/10.1097/GIM.0b013e3181d2900e.Google Scholar
  13. 13.
    Hoefsloot LH, Hoogeveen-Westerveld M, Reuser AJ, Oostra BA. Characterization of the human lysosomal alpha-glucosidase gene. Biochem J 1990;272(2):493–497.Google Scholar
  14. 14.
    Martiniuk F, Mehler M, Tzall S, Meredith G, Hirschhorn R. Sequence of the cDNA and 5′-flanking region for human acid alpha-glucosidase, detection of an intron in the 5′ untranslated leader sequence, definition of 18-bp polymorphisms, and differences with previous cDNA and amino acid sequences. DNA Cell Biol 1990;9(2):85–94.Google Scholar
  15. 15.
    Kuo WL, Hirschhorn R, Huie ML, Hirschhorn K. Localization and ordering of acid alpha-glucosidase (GAA) and thymidine kinase (TK1) by fluorescence in situ hybridization. Hum Genet 1996;97(3):404–406.Google Scholar
  16. 16.
    Huie ML, Chen AS, Tsujino S, et al. Aberrant splicing in adult onset glycogen storage disease type II (GSDII): molecular identification of an IVS1 (-13T-->G) mutation in a majority of patients and a novel IVS10 (+1GT-->CT) mutation. Hum Mol Genet 1994;3(12):2231–2236.Google Scholar
  17. 17.
    Boerkoel CF, Exelbert R, Nicastri C, et al. Leaky splicing mutation in the acid maltase gene is associated with delayed onset of glycogenosis type II. Am J Hum Genet 1995;56(4):887–897.Google Scholar
  18. 18.
    Raben N, Nichols RC, Martiniuk F, Plotz PH. A model of mRNA splicing in adult lysosomal storage disease (glycogenosis type II). Hum Mol Genet 1996;5(7):995–1000.Google Scholar
  19. 19.
    Musumeci O, Thieme A, Claeys KG, et al. Homozygosity for the common GAA gene splice site mutation c.-32-13T>G in Pompe disease is associated with the classical adult phenotypical spectrum. Neuromuscul Disord 2015;25(9):719–724.  https://doi.org/10.1016/j.nmd.2015.07.002.Google Scholar
  20. 20.
    Hermans MM, De Graaff E, Kroos MA, et al. The effect of a single base pair deletion (delta T525) and a C1634T missense mutation (pro545leu) on the expression of lysosomal alpha-glucosidase in patients with glycogen storage disease type II. Hum Mol Genet 1994;3(12):2213–2218.Google Scholar
  21. 21.
    Hirschhorn R, Huie ML. Frequency of mutations for glycogen storage disease type II in different populations: the delta525T and deltaexon 18 mutations are not generally “common” in white populations. J Med Genet 1999;36(1):85–86.Google Scholar
  22. 22.
    Dagnino F, Stroppiano M, Regis S, Bonuccelli G, Filocamo M. Evidence for a founder effect in Sicilian patients with glycogen storage disease type II. Hum Hered 2000;50(6):331–333.Google Scholar
  23. 23.
    Herzog A, Hartung R, Reuser AJ, et al. A cross-sectional single-centre study on the spectrum of Pompe disease, German patients: molecular analysis of the GAA gene, manifestation and genotype-phenotype correlations. Orphanet J Rare Dis 2012;7:35.  https://doi.org/10.1186/1750-1172-7-35.Google Scholar
  24. 24.
    Shieh JJ, Lin CY. Frequent mutation in Chinese patients with infantile type of GSD II in Taiwan: evidence for a founder effect. Hum Mutat 1998;11(4):306–312.Google Scholar
  25. 25.
    Becker JA, Vlach J, Raben N, et al. The African origin of the common mutation in African American patients with glycogen-storage disease type II. Am J Hum Genet 1998;62(4):991–994.Google Scholar
  26. 26.
    Kumamoto S, Katafuchi T, Nakamura K, et al. High frequency of acid alpha-glucosidase pseudodeficiency complicates newborn screening for glycogen storage disease type II in the Japanese population. Mol Genet Metab 2009;97(3):190–195.  https://doi.org/10.1016/j.ymgme.2009.03.004.Google Scholar
  27. 27.
    Labrousse P, Chien YH, Pomponio RJ, et al. Genetic heterozygosity and pseudodeficiency in the Pompe disease newborn screening pilot program. Mol Genet Metab 2010;99(4):379–383.  https://doi.org/10.1016/j.ymgme.2009.12.014.Google Scholar
  28. 28.
    Chien YH, Lee NC, Chen CA, et al. Long-term prognosis of patients with infantile-onset Pompe disease diagnosed by newborn screening and treated since birth. J Pediatr. 2015;166(4):985–991 e1–2. : https://doi.org/10.1016/j.jpeds.2014.10.068.Google Scholar
  29. 29.
    van den Hout HM, Hop W, van Diggelen OP, et al. The natural course of infantile Pompe's disease: 20 original cases compared with 133 cases from the literature. Pediatrics 2003;112(2):332–340.Google Scholar
  30. 30.
    Kishnani PS, Hwu WL, Mandel H, Nicolino M, Yong F, Corzo D. A retrospective, multinational, multicenter study on the natural history of infantile-onset Pompe disease. J Pediatr 2006;148(5):671–676.Google Scholar
  31. 31.
    Slonim AE, Bulone L, Ritz S, Goldberg T, Chen A, Martiniuk F. Identification of two subtypes of infantile acid maltase deficiency. J Pediatr 2000;137(2):283–285.Google Scholar
  32. 32.
    Chan J, Desai AK, Kazi ZB, et al. The emerging phenotype of late-onset Pompe disease: A systematic literature review. Mol Genet Metab 2017;120(3):163–172.  https://doi.org/10.1016/j.ymgme.2016.12.004.Google Scholar
  33. 33.
    Winkel LP, Hagemans ML, Van Doorn PA, et al. The natural course of non-classic Pompe's disease; a review of 225 published cases. J Neurol 2005;252(8):875–884.Google Scholar
  34. 34.
    Kishnani PS, Steiner RD, Bali D, et al. Pompe disease diagnosis and management guideline. Genet Med 2006;8(5):267–288.Google Scholar
  35. 35.
    Johnson EM, Roberts M, Mozaffar T, Young P, Quartel A, Berger KI. Pulmonary function tests (maximum inspiratory pressure, maximum expiratory pressure, vital capacity, forced vital capacity) predict ventilator use in late-onset Pompe disease. Neuromuscul Disord 2016;26(2):136–145.  https://doi.org/10.1016/j.nmd.2015.11.009.Google Scholar
  36. 36.
    Vissing J, Lukacs Z, Straub V. Diagnosis of Pompe disease: muscle biopsy vs blood-based assays. JAMA Neurol 2013:1–5.  https://doi.org/10.1001/2013.jamaneurol.486.
  37. 37.
    Tsuburaya RS, Monma K, Oya Y, et al. Acid phosphatase-positive globular inclusions is a good diagnostic marker for two patients with adult-onset Pompe disease lacking disease specific pathology. Neuromuscul Disord 2012;22(5):389–393.  https://doi.org/10.1016/j.nmd.2011.11.003.Google Scholar
  38. 38.
    Feeney EJ, Austin S, Chien YH, et al. The value of muscle biopsies in Pompe disease: identifying lipofuscin inclusions in juvenile- and adult-onset patients. Acta Neuropathologica Communications 2014;2(1):2–17.  https://doi.org/10.1186/2051-5960-2-2.Google Scholar
  39. 39.
    Van der Ploeg AT, Reuser AJ. Pompe’s disease. Lancet 2008;372(9646):1342–1353.Google Scholar
  40. 40.
    Burton BK, Kronn DF, Hwu WL, Kishnani PS, Pompe Disease Newborn Screening Working G. The Initial Evaluation of Patients After Positive Newborn Screening: Recommended Algorithms Leading to a Confirmed Diagnosis of Pompe Disease. Pediatrics 2017;140(Suppl 1):S14-S23.  https://doi.org/10.1542/peds.2016-0280D.Google Scholar
  41. 41.
    Griffin JL. Infantile acid maltase deficiency. I. Muscle fiber destruction after lysosomal rupture4. Virchows Arch Cell Pathol Mol Pathol 1984;45(1):23–36.Google Scholar
  42. 42.
    Thurberg BL, Lynch MC, Vaccaro C, et al. Characterization of pre- and post-treatment pathology after enzyme replacement therapy for pompe disease. Lab Investig 2006;86(12):1208–1220.Google Scholar
  43. 43.
    Lieberman AP, Puertollano R, Raben N, Slaugenhaupt S, Walkley SU, Ballabio A. Autophagy in lysosomal storage disorders. Autophagy 2012;8(5):719–730.  https://doi.org/10.4161/auto.19469.Google Scholar
  44. 44.
    Klionsky DJ. Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol. 2007;8(11):931–937.Google Scholar
  45. 45.
    Li WW, Li J, Bao JK. Microautophagy: lesser-known self-eating. Cell Mol Life Sci 2012;69(7):1125–1136.  https://doi.org/10.1007/s00018-011-0865-5.Google Scholar
  46. 46.
    Kaushik S, Bandyopadhyay U, Sridhar S, et al. Chaperone-mediated autophagy at a glance. J Cell Sci 2011;124(Pt 4):495–499.  https://doi.org/10.1242/jcs.073874.Google Scholar
  47. 47.
    Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010;22(2):124–131.  https://doi.org/10.1016/j.ceb.2009.11.014.Google Scholar
  48. 48.
    Klionsky DJ, Abdelmohsen K, Abe A, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 2016;12(1):1–222.  https://doi.org/10.1080/15548627.2015.1100356.Google Scholar
  49. 49.
    Kabeya Y, Mizushima N, Ueno T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000;19(21):5720–5728.Google Scholar
  50. 50.
    Engel AG. Acid maltase deficiency in adults: studies in four cases of a syndrome which may mimic muscular dystrophy or other myopathies. Brain 1970;93(3):599–616.Google Scholar
  51. 51.
    Fukuda T, Ahearn M, Roberts A, et al. Autophagy and mistargeting of therapeutic enzyme in skeletal muscle in pompe disease. Mol Ther 2006;14(6):831–839.Google Scholar
  52. 52.
    Raben N, Baum R, Schreiner C, et al. When more is less: excess and deficiency of autophagy coexist in skeletal muscle in Pompe disease. Autophagy 2009;5(1):111–113.Google Scholar
  53. 53.
    Raben N, Takikita S, Pittis MG, et al. Deconstructing Pompe disease by analyzing single muscle fibers. Autophagy 2007;3(6):546–552.Google Scholar
  54. 54.
    Nishino I. Autophagic vacuolar myopathies. Curr Neurol Neurosci Rep 2003;3(1):64–9.Google Scholar
  55. 55.
    Spampanato C, Feeney E, Li L, et al. Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease. EMBO Mol Med 2013;5:691–706.  https://doi.org/10.1002/emmm.201202176.Google Scholar
  56. 56.
    Nascimbeni AC, Fanin M, Tasca E, Angelini C, Sandri M. Impaired autophagy affects acid alpha-glucosidase processing and enzyme replacement therapy efficacy in late-onset glycogen storage disease type II. Neuropathol Appl Neurobiol 2015.  https://doi.org/10.1111/nan.12214.
  57. 57.
    Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011;12(1):9–14.  https://doi.org/10.1038/nrm3028.Google Scholar
  58. 58.
    Schoser BG, Muller-Hocker J, Horvath R, et al. Adult-onset glycogen storage disease type 2: clinico-pathological phenotype revisited. Neuropathol Appl Neurobiol 2007;33(5):544–559.Google Scholar
  59. 59.
    Lim JA, Li L, Kakhlon O, Myerowitz R, Raben N. Defects in calcium homeostasis and mitochondria can be reversed in Pompe disease. Autophagy 2015;11(2):385–402.  https://doi.org/10.1080/15548627.2015.1009779.Google Scholar
  60. 60.
    Ishigaki K, Mitsuhashi S, Kuwatsuru R, et al. High-density areas on muscle CT in childhood-onset Pompe disease are caused by excess calcium accumulation. Acta Neuropathol 2010;120(4):537–543.  https://doi.org/10.1007/s00401-010-0732-8.Google Scholar
  61. 61.
    Drost MR, Hesselink RP, Oomens CW, van der Vusse GJ. Effects of non-contractile inclusions on mechanical performance of skeletal muscle. J Biomech 2005;38(5):1035–1043.Google Scholar
  62. 62.
    Lim JA, Li L, Raben N. Pompe disease: from pathophysiology to therapy and back again. Front Aging Neurosci 2014;6:177.  https://doi.org/10.3389/fnagi.2014.00177.Google Scholar
  63. 63.
    Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol 2014.  https://doi.org/10.1016/j.tcb.2014.03.003.
  64. 64.
    Yoon MS. mTOR as a key regulator in maintaining skeletal muscle mass. Front Physiol 2017;8:788.  https://doi.org/10.3389/fphys.2017.00788.Google Scholar
  65. 65.
    Lim JA, Li L, Shirihai OS, Trudeau KM, Puertollano R, Raben N. Modulation of mTOR signaling as a strategy for the treatment of Pompe disease. EMBO Mol Med. 2017.  https://doi.org/10.15252/emmm.201606547.
  66. 66.
    Fratantoni JC, Hall CW, Neufeld EF. Hurler and Hunter syndromes: mutual correction of the defect in cultured fibroblasts. Science 1968;162(3853):570–572.Google Scholar
  67. 67.
    Neufeld EF. From serendipity to therapy. Annu Rev Biochem 2011;80:1–15.  https://doi.org/10.1146/annurev.biochem.031209.093756.Google Scholar
  68. 68.
    Dahms NM, Lobel P, Kornfeld S. Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem. 1989;264(21):12115–12118.Google Scholar
  69. 69.
    Van den Hout H, Reuser AJ, Vulto AG, Loonen MC, Cromme-Dijkhuis A, Van der Ploeg AT. Recombinant human alpha-glucosidase from rabbit milk in Pompe patients. Lancet 2000;356(9227):397–398.Google Scholar
  70. 70.
    Van den Hout JM, Kamphoven JH, Winkel LP, et al. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics 2004;113(5):e448-e57.Google Scholar
  71. 71.
    Amalfitano A, Bengur AR, Morse RP, et al. Recombinant human acid alpha-glucosidase enzyme therapy for infantile glycogen storage disease type II: results of a phase I/II clinical trial. Genet Med 2001;3(2):132–138.Google Scholar
  72. 72.
    Kishnani PS, Corzo D, Nicolino M, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe disease. Neurology 2007;68(2):99–109.Google Scholar
  73. 73.
    Kishnani PS, Corzo D, Leslie ND, et al. Early treatment with alglucosidase alpha prolongs long-term survival of infants with Pompe disease. Pediatr Res 2009;66(3):329–335.Google Scholar
  74. 74.
    Nicolino M, Byrne B, Wraith JE, et al. Clinical outcomes after long-term treatment with alglucosidase alfa in infants and children with advanced Pompe disease. Genet Med 2009;11(3):210–219.Google Scholar
  75. 75.
    Chakrapani A, Vellodi A, Robinson P, Jones S, Wraith JE. Treatment of infantile Pompe disease with alglucosidase alpha: the UK experience. J Inherit Metab Dis 2010;33(6):747–750.  https://doi.org/10.1007/s10545-010-9206-3.Google Scholar
  76. 76.
    Hahn A, Praetorius S, Karabul N, et al. Outcome of patients with classical infantile pompe disease receiving enzyme replacement therapy in Germany. JIMD Reports 2015.  https://doi.org/10.1007/8904_2014_392.
  77. 77.
    van Gelder CM, van Capelle CI, Ebbink BJ, et al. Facial-muscle weakness, speech disorders and dysphagia are common in patients with classic infantile Pompe disease treated with enzyme therapy. J Inherit Metab Dis 2012;35(3):505–511.  https://doi.org/10.1007/s10545-011-9404-7.Google Scholar
  78. 78.
    Prater SN, Banugaria SG, DeArmey SM, et al. The emerging phenotype of long-term survivors with infantile Pompe disease. Genet Med 2012;14(9):800–810.  https://doi.org/10.1038/gim.2012.44.Google Scholar
  79. 79.
    van Gelder CM, Poelman E, Plug I, et al. Effects of a higher dose of alglucosidase alfa on ventilator-free survival and motor outcome in classic infantile Pompe disease: an open-label single-center study. J Inherit Metab Dis 2016;39(3):383–390.  https://doi.org/10.1007/s10545-015-9912-y.Google Scholar
  80. 80.
    Ebbink BJ, Poelman E, Aarsen FK, et al. Classic infantile Pompe patients approaching adulthood: a cohort study on consequences for the brain. Dev Med Child Neurol 2018;60(6):579–586.  https://doi.org/10.1111/dmcn.13740.Google Scholar
  81. 81.
    Banugaria SG, Prater SN, Ng YK, et al. The impact of antibodies on clinical outcomes in diseases treated with therapeutic protein: lessons learned from infantile Pompe disease. Genet Med 2011;13(8):729–736.  https://doi.org/10.1097/GIM.0b013e3182174703.Google Scholar
  82. 82.
    van Gelder CM, Hoogeveen-Westerveld M, Kroos MA, Plug I, van der Ploeg AT, Reuser AJ. Enzyme therapy and immune response in relation to CRIM status: the Dutch experience in classic infantile Pompe disease. J Inherit Metab Dis 2015;38(2):305–314.  https://doi.org/10.1007/s10545-014-9707-6.Google Scholar
  83. 83.
    Kishnani PS, Goldenberg PC, DeArmey SL, et al. Cross-reactive immunologic material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab 2010;99(1):26–33.Google Scholar
  84. 84.
    Messinger YH, Mendelsohn NJ, Rhead W, et al. Successful immune tolerance induction to enzyme replacement therapy in CRIM-negative infantile Pompe disease. Genet Med 2012;14(1):135–142.  https://doi.org/10.1038/gim.2011.4.Google Scholar
  85. 85.
    Banugaria SG, Prater SN, Patel TT, et al. Algorithm for the early diagnosis and treatment of patients with cross reactive immunologic material-negative classic infantile pompe disease: a step towards improving the efficacy of ERT. PLoS One 2013;8(6):e67052.  https://doi.org/10.1371/journal.pone.0067052.Google Scholar
  86. 86.
    Banugaria SG, Prater SN, McGann JK, et al. Bortezomib in the rapid reduction of high sustained antibody titers in disorders treated with therapeutic protein: lessons learned from Pompe disease. Genet Med 2013;15(2):123–131.  https://doi.org/10.1038/gim.2012.110.Google Scholar
  87. 87.
    de Vries JM, van der Beek NA, Kroos MA, et al. High antibody titer in an adult with Pompe disease affects treatment with alglucosidase alfa. Mol Genet Metab 2010;101(4):338–345.  https://doi.org/10.1016/j.ymgme.2010.08.009.Google Scholar
  88. 88.
    Patel TT, Banugaria SG, Case LE, Wenninger S, Schoser B, Kishnani PS. The impact of antibodies in late-onset Pompe disease: a case series and literature review. Mol Genet Metab 2012;106(3):301–319.  https://doi.org/10.1016/j.ymgme.2012.04.027.Google Scholar
  89. 89.
    Kronn DF, Day-Salvatore D, Hwu WL, et al. Management of confirmed newborn-screened patients with Pompe disease across the disease spectrum. Pediatrics 2017;140(Suppl 1):S24-S45.  https://doi.org/10.1542/peds.2016-0280E.Google Scholar
  90. 90.
    Van der Ploeg AT, Clemens PR, Corzo D, et al. A randomized study of alglucosidase alfa in late-onset Pompe's disease. N Engl J Med 2010;362(15):1396–1406.Google Scholar
  91. 91.
    Wokke JH, Escolar DM, Pestronk A, et al. Clinical features of late-onset Pompe disease: a prospective cohort study. Muscle Nerve 2008;38(4):1236–1245.  https://doi.org/10.1002/mus.21025.Google Scholar
  92. 92.
    van der Ploeg AT, Barohn R, Carlson L, et al. Open-label extension study following the Late-Onset Treatment Study (LOTS) of alglucosidase alfa. Mol Genet Metab 2012;107(3):456–461.  https://doi.org/10.1016/j.ymgme.2012.09.015.Google Scholar
  93. 93.
    Strothotte S, Strigl-Pill N, Grunert B, et al. Enzyme replacement therapy with alglucosidase alfa in 44 patients with late-onset glycogen storage disease type 2: 12-month results of an observational clinical trial. J Neurol 2010;257(1):91–97.  https://doi.org/10.1007/s00415-009-5275-3.Google Scholar
  94. 94.
    van Capelle CI, van der Beek NA, Hagemans ML, et al. Effect of enzyme therapy in juvenile patients with Pompe disease: a three-year open-label study. Neuromuscul Disord 2010;20(12):775–782.  https://doi.org/10.1016/j.nmd.2010.07.277.Google Scholar
  95. 95.
    Bembi B, Pisa FE, Confalonieri M, et al. Long-term observational, non-randomized study of enzyme replacement therapy in late-onset glycogenosis type II. J Inherit Metab Dis 2010;33(6):727–735.  https://doi.org/10.1007/s10545-010-9201-8.Google Scholar
  96. 96.
    Angelini C, Semplicini C, Ravaglia S, et al. Observational clinical study in juvenile-adult glycogenosis type 2 patients undergoing enzyme replacement therapy for up to 4 years. J Neurol 2012;259(5):952–958.  https://doi.org/10.1007/s00415-011-6293-5.Google Scholar
  97. 97.
    Toscano A, Schoser B. Enzyme replacement therapy in late-onset Pompe disease: a systematic literature review. J Neurol 2013;260(4):951–959.  https://doi.org/10.1007/s00415-012-6636-x.Google Scholar
  98. 98.
    Schoser B, Stewart A, Kanters S, et al. Survival and long-term outcomes in late-onset Pompe disease following alglucosidase alfa treatment: a systematic review and meta-analysis. J Neurol 2017;264(4):621–630.  https://doi.org/10.1007/s00415-016-8219-8.Google Scholar
  99. 99.
    Anderson LJ, Henley W, Wyatt KM, et al. Effectiveness of enzyme replacement therapy in adults with late-onset Pompe disease: results from the NCS-LSD cohort study. J Inherit Metab Dis 2014;37(6):945–52.  https://doi.org/10.1007/s10545-014-9728-1.Google Scholar
  100. 100.
    Gungor D, de Vries JM, Brusse E, et al. Enzyme replacement therapy and fatigue in adults with Pompe disease. Mol Genet Metab 2013;109(2):174–178.  https://doi.org/10.1016/j.ymgme.2013.03.016.Google Scholar
  101. 101.
    Gungor D, Kruijshaar ME, Plug I, et al. Impact of enzyme replacement therapy on survival in adults with Pompe disease: results from a prospective international observational study. Orphanet J Rare Dis. 2013;8:49.  https://doi.org/10.1186/1750-1172-8-49.Google Scholar
  102. 102.
    Wenk J, Hille A, von Figura K. Quantitation of Mr 46000 and Mr 300000 mannose 6-phosphate receptors in human cells and tissues. Biochem Int 1991;23(4):723–731.Google Scholar
  103. 103.
    Zhu Y, Jiang JL, Gumlaw NK, et al. Glycoengineered acid alpha-glucosidase with improved efficacy at correcting the metabolic aberrations and motor function deficits in a mouse model of Pompe disease. Mol Ther 2009;17(6):954–963.Google Scholar
  104. 104.
    Ghosh P, Dahms NM, Kornfeld S. Mannose 6-phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol. 2003;4(3):202–212.Google Scholar
  105. 105.
    LeBowitz JH, Grubb JH, Maga JA, Schmiel DH, Vogler C, Sly WS. Glycosylation-independent targeting enhances enzyme delivery to lysosomes and decreases storage in mucopolysaccharidosis type VII mice. Proc Natl Acad Sci U S A 2004;101(9):3083–3088.  https://doi.org/10.1073/pnas.0308728100.Google Scholar
  106. 106.
    Maga JA, Zhou J, Kambampati R, et al. Glycosylation-independent lysosomal targeting of acid alpha-glucosidase enhances muscle glycogen clearance in Pompe mice. J Biol Chem 2013;288:1428–1438.  https://doi.org/10.1074/jbc.M112.438663.Google Scholar
  107. 107.
    Basile I, Da Silva A, El Cheikh K, et al. Efficient therapy for refractory Pompe disease by mannose 6-phosphate analogue grafting on acid alpha-glucosidase. J Control Release 2018;269:15–23.  https://doi.org/10.1016/j.jconrel.2017.10.043.Google Scholar
  108. 108.
    Kang JY, Shin KK, Kim HH, et al. Lysosomal targeting enhancement by conjugation of glycopeptides containing mannose-6-phosphate glycans derived from glyco-engineered yeast. Sci Rep 2018;8(1):8730.  https://doi.org/10.1038/s41598-018-26913-4.Google Scholar
  109. 109.
    Koeberl DD, Luo X, Sun B, et al. Enhanced efficacy of enzyme replacement therapy in Pompe disease through mannose-6-phosphate receptor expression in skeletal muscle. Mol Genet Metab 2011;103(2):107–112.  https://doi.org/10.1016/j.ymgme.2011.02.006.Google Scholar
  110. 110.
    Koeberl DD, Li S, Dai J, Thurberg BL, Bali D, Kishnani PS. beta2 Agonists enhance the efficacy of simultaneous enzyme replacement therapy in murine Pompe disease. Mol Genet Metab 2012;105(2):221–227.  https://doi.org/10.1016/j.ymgme.2011.11.005.Google Scholar
  111. 111.
    Koeberl DD, Austin S, Case LE, et al. Adjunctive albuterol enhances the response to enzyme replacement therapy in late-onset Pompe disease. FASEB J 2014;28(5):2171–2176.  https://doi.org/10.1096/fj.13-241893.Google Scholar
  112. 112.
    Parenti G, Moracci M, Fecarotta S, Andria G. Pharmacological chaperone therapy for lysosomal storage diseases. Future Med Chem 2014;6(9):1031–1045.  https://doi.org/10.4155/fmc.14.40.Google Scholar
  113. 113.
    Parenti G, Fecarotta S, la Marca G, et al. A chaperone enhances blood alpha-glucosidase activity in Pompe disease patients treated with enzyme replacement therapy. Mol Ther 2014;22(11):2004–2012.  https://doi.org/10.1038/mt.2014.138.Google Scholar
  114. 114.
    Douillard-Guilloux G, Raben N, Takikita S, Batista L, Caillaud C, Richard E. Modulation of glycogen synthesis by RNA interference: towards a new therapeutic approach for glycogenosis type II. Hum Mol Genet 2008;17(24):3876–3886.Google Scholar
  115. 115.
    Douillard-Guilloux G, Raben N, Takikita S, et al. Restoration of muscle functionality by genetic suppression of glycogen synthesis in a murine model of Pompe disease. Hum Mol Genet 2010;19(4):684–696.  https://doi.org/10.1093/hmg/ddp535.Google Scholar
  116. 116.
    Raben N, Schreiner C, Baum R, et al. Suppression of autophagy permits successful enzyme replacement therapy in a lysosomal storage disorder-murine Pompe disease. Autophagy 2010;6(8):1078–1089.Google Scholar
  117. 117.
    Andrews NW. Regulated secretion of conventional lysosomes. Trends Cell Biol 2000;10(8):316–321.Google Scholar
  118. 118.
    Settembre C, Ballabio A. Lysosomal adaptation: how the lysosome responds to external cues. Cold Spring Harb Perspect Biol 2014.  https://doi.org/10.1101/cshperspect.a016907.
  119. 119.
    Sardiello M, Palmieri M, di Ronza A, et al. A gene network regulating lysosomal biogenesis and function. Science 2009;325(5939):473–477.  https://doi.org/10.1126/science.1174447.Google Scholar
  120. 120.
    Medina DL, Fraldi A, Bouche V, et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev Cell 2011;21(3):421–430.  https://doi.org/10.1016/j.devcel.2011.07.016.Google Scholar
  121. 121.
    Martina JA, Diab HI, Li L, et al. the nutrient-responsive transcription factor TFE3 Promotes autophagy, lysosomal biogenesis, and clearance of cellular debris. Sci Signal. 2014;7(309):ra9.  https://doi.org/10.1126/scisignal.2004754.Google Scholar
  122. 122.
    Gatto F, Rossi B, Tarallo A, et al. AAV-mediated transcription factor EB (TFEB) gene delivery ameliorates muscle pathology and function in the murine model of Pompe Disease. Sci Rep 2017;7(1):15089.  https://doi.org/10.1038/s41598-017-15352-2.Google Scholar
  123. 123.
    Zaretsky JZ, Candotti F, Boerkoel C, et al. Retroviral transfer of acid alpha-glucosidase cDNA to enzyme-deficient myoblasts results in phenotypic spread of the genotypic correction by both secretion and fusion. Hum Gene Ther 1997;8(13):1555–1563.Google Scholar
  124. 124.
    Pauly DF, Johns DC, Matelis LA, Lawrence JH, Byrne BJ, Kessler PD. Complete correction of acid alpha-glucosidase deficiency in Pompe disease fibroblasts in vitro, and lysosomally targeted expression in neonatal rat cardiac and skeletal muscle. Gene Ther 1998;5(4):473–480.Google Scholar
  125. 125.
    Amalfitano A, McVie-Wylie AJ, Hu H, et al. Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-alpha-glucosidase. Proc Natl Acad Sci U S A 1999;96(16):8861–8866.Google Scholar
  126. 126.
    Fraites TJ, Jr, Schleissing MR, Shanely RA, et al. Correction of the enzymatic and functional deficits in a model of Pompe disease using adeno-associated virus vectors. Mol Ther 2002;5(5 Pt 1):571–578.Google Scholar
  127. 127.
    Richard E, Douillard-Guilloux G, Batista L, Caillaud C. Correction of glycogenosis type 2 by muscle-specific lentiviral vector. In Vitro Cell Dev Biol Anim 2008;44(10):397–406.  https://doi.org/10.1007/s11626-008-9138-5.Google Scholar
  128. 128.
    Sato Y, Kobayashi H, Higuchi T, et al. Disease modeling and lentiviral gene transfer in patient-specific induced pluripotent stem cells from late-onset Pompe disease patient. Mol Ther Methods Clin Dev 2015;2:15023.  https://doi.org/10.1038/mtm.2015.23.Google Scholar
  129. 129.
    Kyosen SO, Iizuka S, Kobayashi H, et al. Neonatal gene transfer using lentiviral vector for murine Pompe disease: long-term expression and glycogen reduction. Gene Ther 2010;17(4):521–530.  https://doi.org/10.1038/gt.2009.160.Google Scholar
  130. 130.
    Athanasopoulos T, Munye MM, Yanez-Munoz RJ. Nonintegrating gene therapy vectors. Hematol Oncol Clin North Am 2017;31(5):753–770.  https://doi.org/10.1016/j.hoc.2017.06.007.Google Scholar
  131. 131.
    Sun B, Zhang H, Franco LM, et al. Correction of glycogen storage disease type II by an adeno-associated virus vector containing a muscle-specific promoter. Mol Ther 2005;11(6):889–898.Google Scholar
  132. 132.
    DeRuisseau LR, Fuller DD, Qiu K, et al. Neural deficits contribute to respiratory insufficiency in Pompe disease. Proc Natl Acad Sci U S A 2009;106(23):9419–9424.  https://doi.org/10.1073/pnas.0902534106.Google Scholar
  133. 133.
    Fuller DD, ElMallah MK, Smith BK, et al. The respiratory neuromuscular system in Pompe disease. Respir Physiol Neurobiol 2013;189(2):241–249.  https://doi.org/10.1016/j.resp.2013.06.007.Google Scholar
  134. 134.
    Todd AG, McElroy JA, Grange RW, et al. Correcting neuromuscular deficits with gene therapy in Pompe disease. Ann Neurol 2015.  https://doi.org/10.1002/ana.24433.
  135. 135.
    Qiu K, Falk DJ, Reier PJ, Byrne BJ, Fuller DD. Spinal delivery of AAV vector restores enzyme activity and increases ventilation in Pompe mice. Mol Ther 2012;20(1):21–27.  https://doi.org/10.1038/mt.2011.214.Google Scholar
  136. 136.
    Hordeaux J, Dubreil L, Robveille C, et al. Long-term neurologic and cardiac correction by intrathecal gene therapy in Pompe disease. Acta Neuropathologica Communications 2017;5(1):66.  https://doi.org/10.1186/s40478-017-0464-2.Google Scholar
  137. 137.
    Lee NC, Hwu WL, Muramatsu SI, et al. A neuron-specific gene therapy relieves motor deficits in pompe disease mice. Mol Neurobiol 2017.  https://doi.org/10.1007/s12035-017-0763-4.
  138. 138.
    Corti M, Elder M, Falk D, et al. B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study. Mol Ther Methods Clin Dev 2014;1.  https://doi.org/10.1038/mtm.2014.33.
  139. 139.
    Byrne BJ, Falk DJ, Pacak CA, et al. Pompe disease gene therapy. Hum Mol Genet 2011;20(R1):R61–R68.  https://doi.org/10.1093/hmg/ddr174.Google Scholar
  140. 140.
    Doerfler PA, Nayak S, Corti M, Morel L, Herzog RW, Byrne BJ. Targeted approaches to induce immune tolerance for Pompe disease therapy. Mol Ther Methods Clin Dev 2016;3:15053.  https://doi.org/10.1038/mtm.2015.53.Google Scholar
  141. 141.
    Bond JE, Kishnani PS, Koeberl DD. Immunomodulatory, liver depot gene therapy for Pompe disease. Cell Immunol 2017.  https://doi.org/10.1016/j.cellimm.2017.12.011.
  142. 142.
    Mah C, Pacak CA, Cresawn KO, et al. Physiological correction of Pompe disease by systemic delivery of adeno-associated virus serotype 1 vectors. Mol Ther 2007;15(3):501–507.Google Scholar
  143. 143.
    Mah CS, Falk DJ, Germain SA, et al. Gel-mediated delivery of AAV1 vectors corrects ventilatory function in Pompe mice with established disease. Mol Ther 2010;18(3):502–510.  https://doi.org/10.1038/mt.2009.305.Google Scholar
  144. 144.
    Elmallah MK, Falk DJ, Nayak S, et al. Sustained correction of motoneuron histopathology following intramuscular delivery of AAV in pompe mice. Mol Ther 2014;22(4):702–712.  https://doi.org/10.1038/mt.2013.282.Google Scholar
  145. 145.
    Smith BK, Collins SW, Conlon TJ, et al. Phase I/II trial of adeno-associated virus-mediated alpha-glucosidase gene therapy to the diaphragm for chronic respiratory failure in Pompe disease: initial safety and ventilatory outcomes. Hum Gene Ther 2013;24(6):630–640.  https://doi.org/10.1089/hum.2012.250.Google Scholar
  146. 146.
    Byrne PI, Collins S, Mah CC, et al. Phase I/II trial of diaphragm delivery of recombinant adeno-associated virus acid alpha-glucosidase (rAAaV1-CMV-GAA) gene vector in patients with Pompe disease. Hum Gene Ther Clin Dev 2014;25(3):134–163.  https://doi.org/10.1089/humc.2014.2514.Google Scholar
  147. 147.
    Smith BK, Martin AD, Lawson LA, et al. Inspiratory muscle conditioning exercise and diaphragm gene therapy in Pompe disease: Clinical evidence of respiratory plasticity. Exp Neurol 2017;287(Pt 2):216–224.  https://doi.org/10.1016/j.expneurol.2016.07.013.Google Scholar
  148. 148.
    Corti M, Liberati C, Smith BK, et al. Safety of intradiaphragmatic delivery of adeno-associated virus-mediated alpha-glucosidase (rAAV1-CMV-hGAA) gene therapy in children affected by pompe disease. Hum Gene Ther Clin Dev 2017;28(4):208–218.  https://doi.org/10.1089/humc.2017.146.Google Scholar
  149. 149.
    Falk DJ, Mah CS, Soustek MS, et al. Intrapleural administration of AAV9 improves neural and cardiorespiratory function in Pompe disease. Mol Ther 2013;21(9):1661–1667.  https://doi.org/10.1038/mt.2013.96.Google Scholar
  150. 150.
    Falk DJ, Soustek MS, Todd AG, et al. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice. Mol Ther Methods Clin Dev 2015;2:15007.  https://doi.org/10.1038/mtm.2015.7.Google Scholar
  151. 151.
    Corti M, Cleaver B, Clement N, et al. Evaluation of readministration of a recombinant adeno-associated virus vector expressing acid alpha-glucosidase in pompe disease: preclinical to clinical planning. Hum Gene Ther Clin Dev 2015;26(3):185–193.  https://doi.org/10.1089/humc.2015.068.Google Scholar
  152. 152.
    Sun B, Kulis MD, Young SP, et al. Immunomodulatory gene therapy prevents antibody formation and lethal hypersensitivity reactions in murine pompe disease. Mol Ther 2010;18(2):353–360.  https://doi.org/10.1038/mt.2009.195.Google Scholar
  153. 153.
    Han SO, Ronzitti G, Arnson B, et al. Low-dose liver-targeted gene therapy for pompe disease enhances therapeutic efficacy of ERT via immune tolerance induction. Mol Ther Methods Clin Dev 2017;4:126–136.  https://doi.org/10.1016/j.omtm.2016.12.010.Google Scholar
  154. 154.
    Puzzo F, Colella P, Biferi MG, et al. Rescue of Pompe disease in mice by AAV-mediated liver delivery of secretable acid alpha-glucosidase. Sci Transl Med. 2017;9(418).  https://doi.org/10.1126/scitranslmed.aam6375.
  155. 155.
    Fu H, Dirosario J, Killedar S, Zaraspe K, McCarty DM. Correction of neurological disease of mucopolysaccharidosis IIIB in adult mice by rAAV9 trans-blood-brain barrier gene delivery. Mol Ther 2011;19(6):1025–1033.  https://doi.org/10.1038/mt.2011.34.Google Scholar
  156. 156.
    Wang H, La Russa M, Qi LS. CRISPR/Cas9 in Genome Editing and Beyond. Annu Rev Biochem 2016;85:227–264.  https://doi.org/10.1146/annurev-biochem-060815-014607.Google Scholar
  157. 157.
    Long C, Amoasii L, Mireault AA, et al. Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 2016;351(6271):400–403.  https://doi.org/10.1126/science.aad5725.Google Scholar
  158. 158.
    Nelson CE, Hakim CH, Ousterout DG, et al. In vivo genome editing improves muscle function in a mouse model of Duchenne muscular dystrophy. Science 2016;351(6271):403–407.  https://doi.org/10.1126/science.aad5143.Google Scholar
  159. 159.
    Xu L, Park KH, Zhao L, et al. CRISPR-mediated genome editing restores dystrophin expression and function in mdx mice. Mol Ther 2016;24(3):564–569.  https://doi.org/10.1038/mt.2015.192.Google Scholar
  160. 160.
    Bengtsson NE, Hall JK, Odom GL, et al. Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 2017;8:14454.  https://doi.org/10.1038/ncomms14454.Google Scholar
  161. 161.
    Kemaladewi DU, Maino E, Hyatt E, et al. Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat Med 2017;23(8):984–989.  https://doi.org/10.1038/nm.4367.CrossRefGoogle Scholar
  162. 162.
    Suzuki K, Tsunekawa Y, Hernandez-Benitez R, et al. In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature 2016;540(7631):144–149.  https://doi.org/10.1038/nature20565.Google Scholar
  163. 163.
    Chien YH, Chiang SC, Zhang XK, et al. Early detection of Pompe disease by newborn screening is feasible: results from the Taiwan screening program. Pediatrics 2008;122(1):e39-e45.Google Scholar
  164. 164.
    Chien YH, Lee NC, Thurberg BL, et al. Pompe disease in infants: improving the prognosis by newborn screening and early treatment. Pediatrics 2009;124(6):e1116-e1125.Google Scholar
  165. 165.
    Chien YH, Hwu WL, Lee NC. Pompe disease: early diagnosis and early treatment make a difference. Pediatr Neonatol 2013.  https://doi.org/10.1016/j.pedneo.2013.03.009.
  166. 166.
    Yang CF, Liu HC, Hsu TR, et al. A large-scale nationwide newborn screening program for Pompe disease in Taiwan: towards effective diagnosis and treatment. Am J Med Genet A 2014;164A(1):54–61.  https://doi.org/10.1002/ajmg.a.36197.Google Scholar
  167. 167.
    Martiniuk F, Chen A, Mack A, et al. Carrier frequency for glycogen storage disease type II in New York and estimates of affected individuals born with the disease. Am J Med Genet 1998;79(1):69–72.Google Scholar
  168. 168.
    Ausems MG, Verbiest J, Hermans MP, et al. Frequency of glycogen storage disease type II in The Netherlands: implications for diagnosis and genetic counselling. Eur J Hum Genet 1999;7(6):713–716.Google Scholar
  169. 169.
    Yang CC, Chien YH, Lee NC, et al. Rapid progressive course of later-onset Pompe disease in Chinese patients. Mol Genet Metab 2011;104(3):284–288.  https://doi.org/10.1016/j.ymgme.2011.06.010.Google Scholar
  170. 170.
    Chien YH, Lee NC, Huang HJ, Thurberg BL, Tsai FJ, Hwu WL. Later-onset Pompe disease: early detection and early treatment initiation enabled by newborn screening. J Pediatr 2011;158(6):1023–1027 e1.  https://doi.org/10.1016/j.jpeds.2010.11.053.Google Scholar
  171. 171.
    Kishnani PS, Amartino HM, Lindberg C, et al. Timing of diagnosis of patients with Pompe disease: data from the Pompe registry. Am J Med Genet A 2013;161A(10):2431–2443.  https://doi.org/10.1002/ajmg.a.36110.CrossRefGoogle Scholar
  172. 172.
    Rairikar MV, Case LE, Bailey LA, et al. Insight into the phenotype of infants with Pompe disease identified by newborn screening with the common c.-32-13T>G “late-onset” GAA variant. Mol Genet Metab 2017;122(3):99–107.  https://doi.org/10.1016/j.ymgme.2017.09.008.Google Scholar
  173. 173.
    Chamoles NA, Niizawa G, Blanco M, Gaggioli D, Casentini C. Glycogen storage disease type II: enzymatic screening in dried blood spots on filter paper. Clin Chim Acta 2004;347(1–2):97–102.Google Scholar
  174. 174.
    Bodamer OA, Scott CR, Giugliani R, Pompe Disease Newborn Screening Working G. Newborn screening for pompe disease Pediatrics 2017;140(Suppl 1):S4-S13.  https://doi.org/10.1542/peds.2016-0280C.Google Scholar

Copyright information

© This is a U.S. government work and its text is not subject to copyright protection in the United States; however, its text may be subject to foreign copyright protection 2018

Authors and Affiliations

  1. 1.Cell Biology and Physiology Center, National Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaUSA

Personalised recommendations