, Volume 15, Issue 3, pp 604–617 | Cite as

Robotic Rehabilitation and Spinal Cord Injury: a Narrative Review

  • Marwa Mekki
  • Andrew D. Delgado
  • Adam Fry
  • David Putrino
  • Vincent HuangEmail author


Mobility after spinal cord injury (SCI) is among the top goals of recovery and improvement in quality of life. Those with tetraplegia rank hand function as the most important area of recovery in their lives, and those with paraplegia, walking. Without hand function, emphasis in rehabilitation is placed on accessing one’s environment through technology. However, there is still much reliance on caretakers for many activities of daily living. For those with paraplegia, if incomplete, orthoses exist to augment walking function, but they require a significant amount of baseline strength and significant energy expenditure to use. Options for those with motor complete paraplegia have traditionally been limited to the wheelchair. While wheelchairs provide a modified level of independence, wheelchair users continue to face difficulties in access and mobility. In the past decade, research in SCI rehabilitation has expanded to include external motorized or robotic devices that initiate or augment movement. These robotic devices are used with 2 goals: to enhance recovery through repetitive, functional movement and increased neural plasticity and to act as a mobility aid beyond orthoses and wheelchairs. In addition, lower extremity exoskeletons have been shown to provide benefits to the secondary medical conditions after SCI such as pain, spasticity, decreased bone density, and neurogenic bowel. In this review, we discuss advances in robot-guided rehabilitation after SCI for the upper and lower extremities, as well as potential adjuncts to robotics.

Key Words

Robotics spinal cord injury exoskeleton neurorehabilitation paraplegia tetraplegia. 

Supplementary material

13311_2018_642_MOESM1_ESM.pdf (1.1 mb)
ESM 1 (PDF 1123 kb)


  1. 1.
    National Spinal Cord Injury Statistical Center, Facts and Figures at a Glance. In: Birmingham UoAa, editor. Birmingham, AL2018.Google Scholar
  2. 2.
    Lo C, Tran Y, Anderson K, Craig A, Middleton J. Functional Priorities in Persons with Spinal Cord Injury: Using Discrete Choice Experiments To Determine Preferences. Journal of neurotrauma. 2016;33(21):1958-68PubMedCrossRefGoogle Scholar
  3. 3.
    Pehlivan AU, Sergi F, Erwin A, Yozbatiran N, Francisco GE, O'Malley MK. Design and validation of the RiceWrist-S exoskeleton for robotic rehabilitation after incomplete spinal cord injury. Robotica. 2014;32(8):1415-31.CrossRefGoogle Scholar
  4. 4.
    Vanmulken D, Spooren A, Bongers H, Seelen H. Robot-assisted task-oriented upper extremity skill training in cervical spinal cord injury: a feasibility study. Spinal Cord. 2015;53(7):547.PubMedCrossRefGoogle Scholar
  5. 5.
    Kadivar Z, Sullivan J, Eng D, Pehlivan A, O'malley M, Yozbatiran N, et al., editors. Robotic training and kinematic analysis of arm and hand after incomplete spinal cord injury: a case study. Rehabilitation Robotics (ICORR), 2011 IEEE International Conference on; 2011: IEEE.Google Scholar
  6. 6.
    Edgerton VR, Roy RR. Robotic training and spinal cord plasticity. Brain research bulletin. 2009;78(1):4-12.PubMedCrossRefGoogle Scholar
  7. 7.
    Riener R. Rehabilitation robotics. Foundations and Trends® in Robotics. 2013;3(1–2):1-137.Google Scholar
  8. 8.
    Klamroth-Marganska V, Blanco J, Campen K, Curt A, Dietz V, Ettlin T, et al. Three-dimensional, task-specific robot therapy of the arm after stroke: a multicentre, parallel-group randomised trial. The Lancet Neurology. 2014;13(2):159-66.PubMedCrossRefGoogle Scholar
  9. 9.
    Rudhe C, Albisser U, Starkey ML, Curt A, Bolliger M. Reliability of movement workspace measurements in a passive arm orthosis used in spinal cord injury rehabilitation. Journal of neuroengineering and rehabilitation. 2012;9:37.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zariffa J, Kapadia N, Kramer JL, Taylor P, Alizadeh-Meghrazi M, Zivanovic V, et al. Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury. IEEE transactions on neural systems and rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society. 2012;20(3):341-50.CrossRefGoogle Scholar
  11. 11.
    Cortes M, Elder J, Rykman A, Murray L, Avedissian M, Stampas A, et al. Improved motor performance in chronic spinal cord injury following upper-limb robotic training. NeuroRehabilitation. 2013;33(1):57-65.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Hu XL, Tong KY, Wei XJ, Rong W, Susanto EA, Ho SK. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J Electromyogr Kinesiol. 2013;23(5):1065-74.PubMedCrossRefGoogle Scholar
  13. 13.
    Susanto EA, Tong RK, Ockenfeld C, Ho NS. Efficacy of robot-assisted fingers training in chronic stroke survivors: a pilot randomized-controlled trial. Journal of neuroengineering and rehabilitation. 2015;12:42.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lu Z, Tong KY, Shin H, Stampas A, Zhou P. Robotic Hand-Assisted Training for Spinal Cord Injury Driven by Myoelectric Pattern Recognition: A Case Report. Am J Phys Med Rehabil. 2017;96(10 Suppl 1):S146-s9.PubMedCrossRefGoogle Scholar
  15. 15.
    Takahashi K, Domen K, Sakamoto T, Toshima M, Otaka Y, Seto M, et al. Efficacy of Upper Extremity Robotic Therapy in Subacute Poststroke Hemiplegia: An Exploratory Randomized Trial. Stroke. 2016;47(5):1385-8.PubMedCrossRefGoogle Scholar
  16. 16.
    Siedziewski L, Schaaf RC, Mount J. Use of robotics in spinal cord injury: a case report. The American journal of occupational therapy : official publication of the American Occupational Therapy Association. 2012;66(1):51-8.CrossRefGoogle Scholar
  17. 17.
    Mulcahey MJ, Hutchinson D, Kozin S. Assessment of upper limb in tetraplegia: considerations in evaluation and outcomes research. J Rehabil Res Dev. 2007;44(1):91-102.PubMedCrossRefGoogle Scholar
  18. 18.
    Ditunno PL, Patrick M, Stineman M, Ditunno JF. Who wants to walk? Preferences for recovery after SCI: a longitudinal and cross-sectional study. Spinal Cord. 2008;46(7):500-6.PubMedCrossRefGoogle Scholar
  19. 19.
    Arazpour M, Bani MA, Hutchins SW, Jones RK. The physiological cost index of walking with mechanical and powered gait orthosis in patients with spinal cord injury. Spinal Cord. 2013;51(5):356-9.PubMedCrossRefGoogle Scholar
  20. 20.
    Morawietz C, Moffat F. Effects of locomotor training after incomplete spinal cord injury: a systematic review. Arch Phys Med Rehabil. 2013;94(11):2297-308.PubMedCrossRefGoogle Scholar
  21. 21.
    See PA, de Leon RD. Robotic loading during treadmill training enhances locomotor recovery in rats spinally transected as neonates. J Neurophysiol. 2013;110(3):760-7.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    de Leon RD, See PA, Chow CH. Differential effects of low versus high amounts of weight supported treadmill training in spinally transected rats. Journal of neurotrauma. 2011;28(6):1021-33.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Macias M, Nowicka D, Czupryn A, Sulejczak D, Skup M, Skangiel-Kramska J, et al. Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers. BMC Neurosci. 2009;10:144.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Petruska JC, Ichiyama RM, Jindrich DL, Crown ED, Tansey KE, Roy RR, et al. Changes in motoneuron properties and synaptic inputs related to step training after spinal cord transection in rats. J Neurosci. 2007;27(16):4460-71.PubMedCrossRefGoogle Scholar
  25. 25.
    Ichiyama RM, Courtine G, Gerasimenko YP, Yang GJ, van den Brand R, Lavrov IA, et al. Step training reinforces specific spinal locomotor circuitry in adult spinal rats. J Neurosci. 2008;28(29):7370-5.PubMedCrossRefGoogle Scholar
  26. 26.
    Tillakaratne NJ, de Leon RD, Hoang TX, Roy RR, Edgerton VR, Tobin AJ. Use-dependent modulation of inhibitory capacity in the feline lumbar spinal cord. J Neurosci. 2002;22(8):3130-43.PubMedCrossRefGoogle Scholar
  27. 27.
    Esquenazi A, Talaty M, Packel A, Saulino M. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am J Phys Med Rehabil. 2012;91(11):911-21.PubMedCrossRefGoogle Scholar
  28. 28.
    Stampacchia G, Rustici A, Bigazzi S, Gerini A, Tombini T, Mazzoleni S. Walking with a powered robotic exoskeleton: Subjective experience, spasticity and pain in spinal cord injured persons. NeuroRehabilitation. 2016;39(2):277-83.PubMedCrossRefGoogle Scholar
  29. 29.
    Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalk exoskeleton suit for ambulation by people with complete spinal cord injury: a pilot study. The journal of spinal cord medicine. 2012;35(2):96-101.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Cruciger O, Schildhauer TA, Meindl RC, Tegenthoff M, Schwenkreis P, Citak M, et al. Impact of locomotion training with a neurologic controlled hybrid assistive limb (HAL) exoskeleton on neuropathic pain and health related quality of life (HRQoL) in chronic SCI: a case study (.). Disability and rehabilitation Assistive technology. 2016;11(6):529-34.PubMedGoogle Scholar
  31. 31.
    Kressler J, Thomas CK, Field-Fote EC, Sanchez J, Widerstrom-Noga E, Cilien DC, et al. Understanding therapeutic benefits of overground bionic ambulation: exploratory case series in persons with chronic, complete spinal cord injury. Arch Phys Med Rehabil. 2014;95(10):1878-87.e4.PubMedCrossRefGoogle Scholar
  32. 32.
    Asselin P, Knezevic S, Kornfeld S, Cirnigliaro C, Agranova-Breyter I, Bauman WA, et al. Heart rate and oxygen demand of powered exoskeleton-assisted walking in persons with paraplegia. J Rehabil Res Dev. 2015;52(2):147-58.PubMedCrossRefGoogle Scholar
  33. 33.
    Evans N, Hartigan C, Kandilakis C, Pharo E, Clesson I. Acute Cardiorespiratory and Metabolic Responses During Exoskeleton-Assisted Walking Overground Among Persons with Chronic Spinal Cord Injury. Topics in spinal cord injury rehabilitation. 2015;21(2):122-32.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Karelis AD, Carvalho LP, Castillo MJ, Gagnon DH, Aubertin-Leheudre M. Effect on body composition and bone mineral density of walking with a robotic exoskeleton in adults with chronic spinal cord injury. J Rehabil Med. 2017;49(1):84-7.PubMedCrossRefGoogle Scholar
  35. 35.
    Kozlowski AJ, Bryce TN, Dijkers MP. Time and Effort Required by Persons with Spinal Cord Injury to Learn to Use a Powered Exoskeleton for Assisted Walking. Topics in spinal cord injury rehabilitation. 2015;21(2):110-21.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kressler J, Wymer T, Domingo A. Respiratory, cardiovascular and metabolic responses during different modes of overground bionic ambulation in persons with motor-incomplete spinal cord injury: A case series. J Rehabil Med. 2018;50(2):173-80.PubMedCrossRefGoogle Scholar
  37. 37.
    Huang Q, Yu L, Gu R, Zhou Y, Hu C. Effects of robot training on bowel function in patients with spinal cord injury. J Phys Ther Sci. 2015;27(5):1377-8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Raab K, Krakow K, Tripp F, Jung M. Effects of training with the ReWalk exoskeleton on quality of life in incomplete spinal cord injury: a single case study. Spinal Cord Ser Cases. 2016;2:15025.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Bryce TN, Dijkers MP, Kozlowski AJ. Framework for Assessment of the Usability of Lower-Extremity Robotic Exoskeletal Orthoses. Am J Phys Med Rehabil. 2015;94(11):1000-14.PubMedCrossRefGoogle Scholar
  40. 40.
    Spungen AM AP, Fineberg DB, Kornfeld SD, Harel NY. Exoskeletal-assisted walking for persons with motor-complete paraplegia. NATO Science and Technology Organization; Milan, Italy2013.Google Scholar
  41. 41.
    Benson I, Hart K, Tussler D, van Middendorp JJ. Lower-limb exoskeletons for individuals with chronic spinal cord injury: findings from a feasibility study. Clin Rehabil. 2016;30(1):73-84.PubMedCrossRefGoogle Scholar
  42. 42.
    Asselin PK, Avedissian M, Knezevic S, Kornfeld S, Spungen AM. Training Persons with Spinal Cord Injury to Ambulate Using a Powered Exoskeleton. Journal of visualized experiments : JoVE. 2016(112).Google Scholar
  43. 43.
    Kolakowsky-Hayner SA CJ, Moran S, Shah A. Safety and feasibility of the EksoTM bionic exoskeleton to aid ambulation after spinal cord injury. J Spine. 2013;S4.Google Scholar
  44. 44.
    Bach Baunsgaard C, Vig Nissen U, Katrin Brust A, Frotzler A, Ribeill C, Kalke YB, et al. Gait training after spinal cord injury: safety, feasibility and gait function following 8 weeks of training with the exoskeletons from Ekso Bionics. Spinal Cord. 2018;56(2):106-16.PubMedCrossRefGoogle Scholar
  45. 45.
    Hartigan C, Kandilakis C, Dalley S, Clausen M, Wilson E, Morrison S, et al. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton. Topics in spinal cord injury rehabilitation. 2015;21(2):93-9.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Tefertiller C, Hays K, Jones J, Jayaraman A, Hartigan C, Bushnik T, et al. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury. Topics in spinal cord injury rehabilitation. 2018;24(1):78-85.PubMedCrossRefGoogle Scholar
  47. 47.
    Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, et al. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. Journal of neuroengineering and rehabilitation. 2015;12:54.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lemaire ED, Smith AJ, Herbert-Copley A, Sreenivasan V. Lower extremity robotic exoskeleton training: Case studies for complete spinal cord injury walking. NeuroRehabilitation. 2017;41(1):97-103.PubMedCrossRefGoogle Scholar
  49. 49.
    Neuhaus PD, Noorden JH, Craig TJ, Torres T, Kirschbaum J, Pratt JE. Design and evaluation of Mina: a robotic orthosis for paraplegics. IEEE Int Conf Rehabil Robot. 2011;2011:5975468.PubMedGoogle Scholar
  50. 50.
    Chang SR, Kobetic R, Audu ML, Quinn RD, Triolo RJ. Powered Lower-Limb Exoskeletons to Restore Gait for Individuals with Paraplegia - a Review. Case Orthop J. 2015;12(1):75-80.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Federici S, Meloni F, Bracalenti M, De Filippis ML. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation. 2015;37(3):321-40.PubMedCrossRefGoogle Scholar
  52. 52.
    Lajeunesse V, Vincent C, Routhier F, Careau E, Michaud F. Exoskeletons' design and usefulness evidence according to a systematic review of lower limb exoskeletons used for functional mobility by people with spinal cord injury. Disability and rehabilitation Assistive technology. 2016;11(7):535-47.PubMedGoogle Scholar
  53. 53.
    Louie DR, Eng JJ, Lam T. Gait speed using powered robotic exoskeletons after spinal cord injury: a systematic review and correlational study. Journal of neuroengineering and rehabilitation. 2015;12:82.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Fisahn C, Aach M, Jansen O, Moisi M, Mayadev A, Pagarigan KT, et al. The Effectiveness and Safety of Exoskeletons as Assistive and Rehabilitation Devices in the Treatment of Neurologic Gait Disorders in Patients with Spinal Cord Injury: A Systematic Review. Global spine journal. 2016;6(8):822-41.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Holanda LJ, Silva PMM, Amorim TC, Lacerda MO, Simao CR, Morya E. Robotic assisted gait as a tool for rehabilitation of individuals with spinal cord injury: a systematic review. Journal of neuroengineering and rehabilitation. 2017;14(1):126.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Esquenazi A, Talaty M, Jayaraman A. Powered Exoskeletons for Walking Assistance in Persons with Central Nervous System Injuries: A Narrative Review. PM R. 2017;9(1):46-62.PubMedCrossRefGoogle Scholar
  57. 57.
    Contreras-Vidal JL, N AB, Brantley J, Cruz-Garza JG, He Y, Manley Q, et al. Powered exoskeletons for bipedal locomotion after spinal cord injury. J Neural Eng. 2016;13(3):031001PubMedCrossRefGoogle Scholar
  58. 58.
    Dittuno PL, Ditunno JF, Jr. Walking index for spinal cord injury (WISCI II): scale revision. Spinal Cord. 2001;39(12):654-6.PubMedCrossRefGoogle Scholar
  59. 59.
    Catz A, Itzkovich M, Steinberg F, Philo O, Ring H, Ronen J, et al. The Catz-Itzkovich SCIM: a revised version of the Spinal Cord Independence Measure. Disabil Rehabil. 2001;23(6):263-8.PubMedCrossRefGoogle Scholar
  60. 60.
    Miller LE, Zimmermann AK, Herbert WG. Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis. Medical devices (Auckland, NZ). 2016;9:455-66.Google Scholar
  61. 61.
    Dijkers MP, Akers KG, Galen SS, Patzer DE, Vu PT. Letter to the editor regarding "Clinical effectiveness and safety of powered exoskeleton-assisted walking in patients with spinal cord injury: systematic review with meta-analysis". Medical devices (Auckland, NZ). 2016;9:419-21.Google Scholar
  62. 62.
    Lance J. “Symposium,” in Spasticity: Disordered Motor Control, Felman RG, Young RR, Koella WP (eds). Year Book Medical Publishers. 1980:485–95.Google Scholar
  63. 63.
    Maynard FM, Karunas RS, Waring WP, 3rd. Epidemiology of spasticity following traumatic spinal cord injury. Arch Phys Med Rehabil. 1990;71(8):566-9.PubMedGoogle Scholar
  64. 64.
    Skold C, Levi R, Seiger A. Spasticity after traumatic spinal cord injury: nature, severity, and location. Arch Phys Med Rehabil. 1999;80(12):1548-57.PubMedCrossRefGoogle Scholar
  65. 65.
    Adams MM, Hicks AL. Comparison of the effects of body-weight-supported treadmill training and tilt-table standing on spasticity in individuals with chronic spinal cord injury. The journal of spinal cord medicine. 2011;34(5):488-94.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206-7.PubMedCrossRefGoogle Scholar
  67. 67.
    Penn RD, Savoy SM, Corcos D, Latash M, Gottlieb G, Parke B, et al. Intrathecal baclofen for severe spinal spasticity. N Engl J Med. 1989;320(23):1517-21.PubMedCrossRefGoogle Scholar
  68. 68.
    Cardenas DD, Bryce TN, Shem K, Richards JS, Elhefni H. Gender and minority differences in the pain experience of people with spinal cord injury. Arch Phys Med Rehabil. 2004;85(11):1774-81.PubMedCrossRefGoogle Scholar
  69. 69.
    Dijkers M, Bryce T, Zanca J. Prevalence of chronic pain after traumatic spinal cord injury: a systematic review. J Rehabil Res Dev. 2009;46(1):13-29.PubMedCrossRefGoogle Scholar
  70. 70.
    Cardenas DD, Jensen MP. Treatments for chronic pain in persons with spinal cord injury: A survey study. The journal of spinal cord medicine. 2006;29(2):109-17.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Ravenscroft A, Ahmed YS, Burnside IG. Chronic pain after spinal cord injury: a survey of practice in UK spinal injury units. Spinal Cord. 1999;37(1):25-8.PubMedCrossRefGoogle Scholar
  72. 72.
    Bauman WA, Spungen AM. Coronary heart disease in individuals with spinal cord injury: assessment of risk factors. Spinal Cord. 2008;46(7):466-76.PubMedCrossRefGoogle Scholar
  73. 73.
    Hagen EM, Lie SA, Rekand T, Gilhus NE, Gronning M. Mortality after traumatic spinal cord injury: 50 years of follow-up. J Neurol Neurosurg Psychiatry. 2010;81(4):368-73.PubMedCrossRefGoogle Scholar
  74. 74.
    Myers J, Lee M, Kiratli J. Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil. 2007;86(2):142-52.PubMedCrossRefGoogle Scholar
  75. 75.
    American College of Sports Medicine Position Stand. The recommended quantity and quality of exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30(6):975-91.Google Scholar
  76. 76.
    Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exerc. 1982;14(5):377-81.PubMedCrossRefGoogle Scholar
  77. 77.
    Al-Rahamneh HQ, Eston RG. Prediction of peak oxygen consumption from the ratings of perceived exertion during a graded exercise test and ramp exercise test in able-bodied participants and paraplegic persons. Arch Phys Med Rehabil. 2011;92(2):277-83.PubMedCrossRefGoogle Scholar
  78. 78.
    Lynch AC, Antony A, Dobbs BR, Frizelle FA. Bowel dysfunction following spinal cord injury. Spinal Cord. 2001;39(4):193-203.PubMedCrossRefGoogle Scholar
  79. 79.
    Bauman WA, Spungen AM. Metabolic changes in persons after spinal cord injury. Phys Med Rehabil Clin N Am. 2000;11(1):109-40.PubMedCrossRefGoogle Scholar
  80. 80.
    Ashe MC, Craven C, Eng JJ, Krassioukov A, the SRT. Prevention and Treatment of Bone Loss after a Spinal Cord Injury: A Systematic Review. Topics in spinal cord injury rehabilitation. 2007;13(1):123-45.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Smith E, Carroll A. Bone mineral density in adults disabled through acquired neurological conditions: a review. Journal of clinical densitometry : the official journal of the International Society for Clinical Densitometry. 2011;14(2):85-94.CrossRefGoogle Scholar
  82. 82.
    Maimoun L, Fattal C, Micallef JP, Peruchon E, Rabischong P. Bone loss in spinal cord-injured patients: from physiopathology to therapy. Spinal Cord. 2006;44(4):203-10.PubMedCrossRefGoogle Scholar
  83. 83.
    He Y, Eguren D, Luu TP, Contreras-Vidal JL. Risk management and regulations for lower limb medical exoskeletons: a review. Medical devices (Auckland, NZ). 2017;10:89-107.Google Scholar
  84. 84.
    Cervinka T, Lynch CL, Giangregorio L, Adachi JD, Papaioannou A, Thabane L, et al. Agreement between fragility fracture risk assessment algorithms as applied to adults with chronic spinal cord injury. Spinal Cord. 2017;55(11):985-93.PubMedCrossRefGoogle Scholar
  85. 85.
    Gagnon DH, Escalona MJ, Vermette M, Carvalho LP, Karelis AD, Duclos C, et al. Locomotor training using an overground robotic exoskeleton in long-term manual wheelchair users with a chronic spinal cord injury living in the community: Lessons learned from a feasibility study in terms of recruitment, attendance, learnability, performance and safety. Journal of neuroengineering and rehabilitation. 2018;15(1):12.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Fineberg DB, Asselin P, Harel NY, Agranova-Breyter I, Kornfeld SD, Bauman WA, et al. Vertical ground reaction force-based analysis of powered exoskeleton-assisted walking in persons with motor-complete paraplegia. The journal of spinal cord medicine. 2013;36(4):313-21.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Yang A, Asselin P, Knezevic S, Kornfeld S, Spungen AM. Assessment of In-Hospital Walking Velocity and Level of Assistance in a Powered Exoskeleton in Persons with Spinal Cord Injury. Topics in spinal cord injury rehabilitation. 2015;21(2):100-9.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Perry J, Garrett M, Gronley JK, Mulroy SJ. Classification of walking handicap in the stroke population. Stroke. 1995;26(6):982-9.PubMedCrossRefGoogle Scholar
  89. 89.
    Lapointe R, Lajoie Y, Serresse O, Barbeau H. Functional community ambulation requirements in incomplete spinal cord injured subjects. Spinal Cord. 2001;39(6):327-35.PubMedCrossRefGoogle Scholar
  90. 90.
    Krakauer JW, & Carmichael, S. T. . Broken Movement: The Neurobiology of Motor Recovery After Stroke: MIT Press; 2017.Google Scholar
  91. 91.
    Purpura DP, McMurtry JG. Intracellular Activities and Evoked Potential Changes during Polarization of Motor Cortex. J Neurophysiol. 1965;28:166-85.PubMedCrossRefGoogle Scholar
  92. 92.
    Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557(Pt 1):175-90.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Murray LM, Edwards DJ, Ruffini G, Labar D, Stampas A, Pascual-Leone A, et al. Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury. Arch Phys Med Rehabil. 2015;96(4 Suppl):S114-21.PubMedCrossRefGoogle Scholar
  94. 94.
    Stagg CJ, Nitsche MA. Physiological basis of transcranial direct current stimulation. Neuroscientist. 2011;17(1):37-53.PubMedCrossRefGoogle Scholar
  95. 95.
    Cortes M, Medeiros AH, Gandhi A, Lee P, Krebs HI, Thickbroom G, et al. Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury. NeuroRehabilitation. 2017;41(1):51-9.PubMedCrossRefGoogle Scholar
  96. 96.
    Yozbatiran N, Keser Z, Davis M, Stampas A, O'Malley MK, Cooper-Hay C, et al. Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: A proof of concept sham-randomized clinical study. NeuroRehabilitation. 2016;39(3):401-11.PubMedCrossRefGoogle Scholar
  97. 97.
    Raithatha R, Carrico C, Powell ES, Westgate PM, Chelette Ii KC, Lee K, et al. Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study. NeuroRehabilitation. 2016;38(1):15-25.PubMedCrossRefGoogle Scholar
  98. 98.
    Kumru H, Murillo N, Benito-Penalva J, Tormos JM, Vidal J. Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat((R)) gait training. Neuroscience letters. 2016;620:143-7.PubMedCrossRefGoogle Scholar
  99. 99.
    Heroux ME, Loo CK, Taylor JL, Gandevia SC. Questionable science and reproducibility in electrical brain stimulation research. PLoS One. 2017;12(4):e0175635.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Simonetti D, Zollo L, Milighetti S, Miccinilli S, Bravi M, Ranieri F, et al. Literature Review on the Effects of tDCS Coupled with Robotic Therapy in Post Stroke Upper Limb Rehabilitation. Frontiers in human neuroscience. 2017;11:268.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ziemann U. TMS induced plasticity in human cortex. Rev Neurosci. 2004;15(4):253-66.PubMedCrossRefGoogle Scholar
  102. 102.
    Calabro RS, Naro A, Leo A, Bramanti P. Usefulness of robotic gait training plus neuromodulation in chronic spinal cord injury: a case report. The journal of spinal cord medicine. 2017;40(1):118-21.PubMedCrossRefGoogle Scholar
  103. 103.
    Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, et al. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014(11):CD010820.Google Scholar
  104. 104.
    Mazzoleni S, Duret C, Grosmaire AG, Battini E. Combining Upper Limb Robotic Rehabilitation with Other Therapeutic Approaches after Stroke: Current Status, Rationale, and Challenges. Biomed Res Int. 2017;2017:8905637.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372-5.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557-64.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Donati AR, Shokur S, Morya E, Campos DS, Moioli RC, Gitti CM, et al. Long-Term Training with a Brain-Machine Interface-Based Gait Protocol Induces Partial Neurological Recovery in Paraplegic Patients. Scientific reports. 2016;6:30383.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J. Induction of plasticity in the human motor cortex by paired associative stimulation. Brain. 2000;123 Pt 3:572-84.PubMedCrossRefGoogle Scholar
  109. 109.
    Cortes M, Thickbroom GW, Valls-Sole J, Pascual-Leone A, Edwards DJ. Spinal associative stimulation: a non-invasive stimulation paradigm to modulate spinal excitability. Clin Neurophysiol. 2011;122(11):2254-9.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Bunday KL, Perez MA. Motor recovery after spinal cord injury enhanced by strengthening corticospinal synaptic transmission. Curr Biol. 2012;22(24):2355-61.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Jackson A, Zimmermann JB. Neural interfaces for the brain and spinal cord--restoring motor function. Nature reviews Neurology. 2012;8(12):690-9.PubMedCrossRefGoogle Scholar
  112. 112.
    Lequerica AH, Kortte K. Therapeutic engagement: a proposed model of engagement in medical rehabilitation. Am J Phys Med Rehabil. 2010;89(5):415-22.PubMedCrossRefGoogle Scholar
  113. 113.
    Lynskey JV, Belanger A, Jung R. Activity-dependent plasticity in spinal cord injury. J Rehabil Res Dev. 2008;45(2):229-40.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Putrino D, Zanders H, Hamilton T, Rykman A, Lee P, Edwards DJ. Patient Engagement Is Related to Impairment Reduction During Digital Game-Based Therapy in Stroke. Games for health journal. 2017;6(5):295-302.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Putrino D. Telerehabilitation and emerging virtual reality approaches to stroke rehabilitation. Curr Opin Neurol. 2014;27(6):631-6.PubMedCrossRefGoogle Scholar
  116. 116.
    Koenig A, Omlin X, Bergmann J, Zimmerli L, Bolliger M, Muller F, et al. Controlling patient participation during robot-assisted gait training. Journal of neuroengineering and rehabilitation. 2011;8:14.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Novak D, Nagle A, Keller U, Riener R. Increasing motivation in robot-aided arm rehabilitation with competitive and cooperative gameplay. Journal of neuroengineering and rehabilitation. 2014;11:64.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Novak D, Nagle A, Riener R. Can two-player games increase motivation in rehabilitation robotics? Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction; Bielefeld, Germany. 2559658: ACM; 2014. p. 447-54.Google Scholar
  119. 119.
    Brutsch K, Schuler T, Koenig A, Zimmerli L, Koeneke SM, Lunenburger L, et al. Influence of virtual reality soccer game on walking performance in robotic assisted gait training for children. Journal of neuroengineering and rehabilitation. 2010;7:15.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Brutsch K, Koenig A, Zimmerli L, Merillat-Koeneke S, Riener R, Jancke L, et al. Virtual reality for enhancement of robot-assisted gait training in children with central gait disorders. J Rehabil Med. 2011;43(6):493-9.PubMedCrossRefGoogle Scholar
  121. 121.
    Schuler T, Brutsch K, Muller R, van Hedel HJ, Meyer-Heim A. Virtual realities as motivational tools for robotic assisted gait training in children: A surface electromyography study. NeuroRehabilitation. 2011;28(4):401-11.PubMedGoogle Scholar
  122. 122.
    Zimmerli L, Jacky M, Lunenburger L, Riener R, Bolliger M. Increasing patient engagement during virtual reality-based motor rehabilitation. Arch Phys Med Rehabil. 2013;94(9):1737-46.PubMedCrossRefGoogle Scholar
  123. 123.
    Bergmann J, Krewer C, Bauer P, Koenig A, Riener R, Muller F. Virtual reality to augment robot-assisted gait training in non-ambulatory patients with a subacute stroke: a pilot randomized controlled trial. Eur J Phys Rehabil Med. 2017Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  1. 1.Department of Rehabilitation MedicineIcahn School of Medicine at Mount SinaiNew YorkUSA

Personalised recommendations