Mesenchymal Stem Cell-Macrophage Choreography Supporting Spinal Cord Repair

Review

Abstract

Spinal cord injury results in destructive events that lead to tissue loss and functional impairments. A hallmark of spinal cord injury is the robust and persistent presence of inflammatory macrophages. Mesenchymal stem cells (MSCs) are known to benefit repair of the damaged spinal cord often associated with improved functional recovery. Transplanted MSCs immediately encounter the abundance of inflammatory macrophages in the injury site. It is known that MSCs interact closely and reciprocally with macrophages during tissue healing. Here, we will review the roles of (transplanted) MSCs and macrophages in spinal cord injury and repair. Molecular interactions between MSCs and macrophages and the deficiencies in our knowledge about the underlying mechanisms will be reviewed. We will discuss possible ways to benefit from the MSC-macrophage choreography for developing repair strategies for the spinal cord.

Keywords

Stem Cells Bone Marrow Immune Cells Healing Recovery Paralysis SCI 

Notes

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Funding Information

This work was supported by grants from the National Institutes of Health (NS101298), Craig H. Neilsen Foundation (460461), and The Department of Veterans Affairs (I01RX001807).

Supplementary material

13311_2018_629_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1224 kb)
13311_2018_629_MOESM2_ESM.pdf (1.2 mb)
ESM 2 (PDF 1224 kb)

References

  1. 1.
    Donnelly DJ, Popovich PG. Inflammation and its role in neuroprotection, axonal regeneration and functional recovery after spinal cord injury. Experimental neurology 2008;209(2):378–88.PubMedGoogle Scholar
  2. 2.
    Shechter R, Schwartz M. CNS sterile injury: just another wound healing? Trends Mol Med 2013;19(3):135–43.PubMedGoogle Scholar
  3. 3.
    Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 1995;5(4):407–13.PubMedGoogle Scholar
  4. 4.
    Fleming JC, Norenberg MD, Ramsay DA, Dekaban GA, Marcillo AE, Saenz AD, et al. The cellular inflammatory response in human spinal cords after injury. Brain 2006;129(Pt 12):3249–69.PubMedGoogle Scholar
  5. 5.
    Gensel JC, Zhang B. Macrophage activation and its role in repair and pathology after spinal cord injury. Brain research 2015;1619:1–11.PubMedGoogle Scholar
  6. 6.
    Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009;29(43):13435–44.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Longbrake EE, Lai W, Ankeny DP, Popovich PG. Characterization and modeling of monocytederived macrophages after spinal cord injury. Journal of neurochemistry 2007;102(4):1083–94.PubMedGoogle Scholar
  8. 8.
    Porcheray F, Viaud S, Rimaniol AC, Leone C, Samah B, Dereuddre-Bosquet N, et al. Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol. 2005;142(3):481-9.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Nandoe Tewarie RD, Hurtado A, Ritfeld GJ, Rahiem ST, Wendell DF, Barroso MM, et al. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord. Journal of neurotrauma 2009;26(12):2313–22.PubMedGoogle Scholar
  10. 10.
    Ritfeld GJ, Nandoe Tewarie RD, Vajn K, Rahiem ST, Hurtado A, Wendell DF, et al. Bone marrow stromal cell-mediated tissue sparing enhances functional repair after spinal cord contusion in adult rats. Cell transplantation 2012;21(7):1561–75.PubMedGoogle Scholar
  11. 11.
    Nakajima H, Uchida K, Guerrero AR, Watanabe S, Sugita D, Takeura N, et al. Transplantation of mesenchymal stem cells promotes an alternative pathway of macrophage activation and functional recovery after spinal cord injury. Journal of neurotrauma 2012;29(8):1614–25.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Crisostomo PR, Wang Y Fau - Markel TA, Markel Ta Fau - Wang M, Wang M Fau - Lahm T, Lahm T Fau - Meldrum DR, Meldrum DR. Human mesenchymal stem cells stimulated by TNF-alpha, LPS, or hypoxia produce growth factors by an NF kappa B—but not JNK-dependent mechanism. Am J Physiol Cell Physiol. 2008;294(0363–6143 (Print)):C675-C82.Google Scholar
  13. 13.
    Johnson TV, DeKorver NW, Levasseur VA, Osborne A, Tassoni A, Lorber B, et al. Identification of retinal ganglion cell neuroprotection conferred by platelet-derived growth factor through analysis of the mesenchymal stem cell secretome. Brain 2014;137(Pt 2):503–19.PubMedGoogle Scholar
  14. 14.
    Bernardo ME, Pagliara D, Locatelli F. Mesenchymal stromal cell therapy: a revolution in Regenerative Medicine? Bone marrow transplantation 2012;47(2):164–71.PubMedGoogle Scholar
  15. 15.
    Liu Y, Dulchavsky Ds Fau - Gao X, Gao X Fau - Kwon D, Kwon D Fau - Chopp M, Chopp M Fau -Dulchavsky S, Dulchavsky S Fau - Gautam SC, et al. Wound repair by bone marrow stromal cells through growth factor production. Journal of Surgical Research. 2006;136(0022–4804 (Print)):336–41.Google Scholar
  16. 16.
    Nakano N, Nakai Y, Seo TB, Yamada Y, Ohno T, Yamanaka A, et al. Characterization of conditioned medium of cultured bone marrow stromal cells. Neuroscience letters 2010;483(1):57–61.PubMedGoogle Scholar
  17. 17.
    Ball SG, Shuttleworth CA, Kielty CM. Mesenchymal stem cells and neovascularization: role of platelet-derived growth factor receptors. J Cell Mol Med 2007;11(5):1012–30.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Caplan AI. Why are MSCs therapeutic? New data: new insight. The Journal of pathology 2009;217(2):318–24.PubMedGoogle Scholar
  19. 19.
    Song HB, Park SY, Ko JH, Park JW, Yoon CH, Kim DH, et al. Mesenchymal Stromal Cells Inhibit Inflammatory Lymphangiogenesis in the Cornea by Suppressing Macrophage in a TSG-6-Dependent Manner. Mol Ther 2018;26(1):162–72.PubMedGoogle Scholar
  20. 20.
    Yang CC, Shih YH, Ko MH, Hsu SY, Cheng H, Fu YS. Transplantation of human umbilical mesenchymal stem cells from Wharton’s jelly after complete transection of the rat spinal cord. PLoS One 2008;3(10):e3336.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhu J, Liu Q, Jiang Y, Wu L, Xu G, Liu X. Enhanced angiogenesis promoted by human umbilical mesenchymal stem cell transplantation in stroked mouse is Notch1 signaling associated. Neuroscience 2015;290:288–99.PubMedGoogle Scholar
  22. 22.
    Zhou Z, Chen Y, Zhang H, Min S, Yu B, He B, et al. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury. Cytotherapy 2013;15(4):434–48.PubMedGoogle Scholar
  23. 23.
    Bernardo ME, Fibbe WE. Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 2013;13(4):392–402.PubMedGoogle Scholar
  24. 24.
    Ma S, Xie N, Li W, Yuan B, Shi Y, Wang Y. Immunobiology of mesenchymal stem cells. Cell Death Differ 2014;21(2):216–25.PubMedGoogle Scholar
  25. 25.
    Asami T, Ishii M, Fujii H, Namkoong H, Tasaka S, Matsushita K, et al. Modulation of murine macrophage TLR7/8-mediated cytokine expression by mesenchymal stem cell-conditioned medium. Mediators Inflamm 2013;2013:264260.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Zheng G, Ge M, Qiu G, Shu Q, Xu J. Mesenchymal Stromal Cells Affect Disease Outcomes via Macrophage Polarization. Stem Cells Int 2015;2015:989473.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Freytes DO, Kang JW, Marcos-Campos I, Vunjak-Novakovic G. Macrophages modulate the viability and growth of human mesenchymal stem cells. Journal of cellular biochemistry 2013;114(1):220–9.PubMedGoogle Scholar
  28. 28.
    He X, Wang H, Jin T, Xu Y, Mei L, Yang J. TLR4 Activation Promotes Bone Marrow MSC Proliferation and Osteogenic Differentiation via Wnt3a and Wnt5a Signaling. PLoS One 2016;11(3):e0149876.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Raicevic G, Rouas R, Najar M, Stordeur P, Boufker HI, Bron D, et al. Inflammation modifies the pattern and the function of Toll-like receptors expressed by human mesenchymal stromal cells. Human immunology 2010;71(3):235–44.PubMedGoogle Scholar
  30. 30.
    Tomchuck SL, Zwezdaryk KJ, Coffelt SB, Waterman RS, Danka ES, Scandurro AB. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem cells 2008;26(1):99–107.PubMedGoogle Scholar
  31. 31.
    Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an Immunosuppressive MSC2 phenotype. PLoS One 2010;5(4):e10088.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Zhang X, Mosser DM. Macrophage activation by endogenous danger signals. The Journal of pathology 2008;214(2):161–78.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Experimental neurology 2014;258:5–16.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. Journal of Comparative Neurology 1997;377(3):443–64.PubMedGoogle Scholar
  35. 35.
    Haggerty AE, Maldonado-Lasuncion I, Oudega M. Biomaterials for revascularization and immunomodulation after spinal cord injury. Biomedical Materials. 2018.Google Scholar
  36. 36.
    Kwon MJ, Shin HY, Cui Y, Kim H, Le Thi AH, Choi JY, et al. CCL2 mediates neuron-macrophage interactions to drive proregenerative macrophage activation following preconditioning injury. Journal of Neuroscience 2015;35(48):15934–47.PubMedGoogle Scholar
  37. 37.
    McTigue DM, Tani M, Krivacic K, Chernosky A, Kelner GS, Maciejewski D, et al. Selective chemokine mRNA accumulation in the rat spinal cord after contusion injury. J Neurosci Res 1998;53(3):368–76.PubMedGoogle Scholar
  38. 38.
    Ma M, Wei T, Boring L, Charo IF, Ransohoff RM, Jakeman LB. Monocyte recruitment and myelin removal are delayed following spinal cord injury in mice with CCR2 chemokine receptor deletion. J Neurosci Res. 2002;68(6):691–702.PubMedGoogle Scholar
  39. 39.
    Hausmann ON. Post-traumatic inflammation following spinal cord injury. Spinal Cord 2003;41(7):369–78.PubMedGoogle Scholar
  40. 40.
    Medzhitov R. Origin and physiological roles of inflammation. Nature 2008;454(7203):428–35.PubMedGoogle Scholar
  41. 41.
    Blight AR. Macrophages and inflammatory damage in spinal cord injury. Journal of neurotrauma 1992;9 Suppl 1:S83–91.PubMedGoogle Scholar
  42. 42.
    David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011;12(7):388–99.PubMedGoogle Scholar
  43. 43.
    Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 2002;61(7):623–33.PubMedGoogle Scholar
  44. 44.
    Herman P, Stein AB, Gibbs K, Korsunsky I, Gregersen P, Bloom O. Persons with Chronic Spinal Cord Injury Have Decreased NK Cell and Increased TLR/Inflammatory Gene Expression. Journal of neurotrauma. 2018(ja).Google Scholar
  45. 45.
    Kwon BK, Stammers AM, Belanger LM, Bernardo A, Chan D, Bishop CM, et al. Cerebrospinal fluid inflammatory cytokines and biomarkers of injury severity in acute human spinal cord injury. Journal of neurotrauma 2010;27(4):669–82.PubMedGoogle Scholar
  46. 46.
    Tsai M-C, Wei C-P, Lee D-Y, Tseng Y-T, Tsai M-D, Shih Y-L, et al. Inflammatory mediators of cerebrospinal fluid from patients with spinal cord injury. Surgical neurology 2008;70:S19-S24.Google Scholar
  47. 47.
    Shin T, Ahn M, Moon C, Kim S, Sim KB. Alternatively activated macrophages in spinal cord injury and remission: another mechanism for repair? Mol Neurobiol 2013;47(3):1011–9.PubMedGoogle Scholar
  48. 48.
    Rust R, Kaiser J. Insights into the Dual Role of Inflammation after Spinal Cord Injury. J Neurosci 2017;37(18):4658–60.PubMedGoogle Scholar
  49. 49.
    Vogel DY, Glim JE, Stavenuiter AW, Breur M, Heijnen P, Amor S, et al. Human macrophage polarization in vitro: maturation and activation methods compared. Immunobiology 2014;219(9):695–703.PubMedGoogle Scholar
  50. 50.
    Davis MJ, Tsang TM, Qiu Y, Dayrit JK, Freij JB, Huffnagle GB, et al. Macrophage M1/M2 polarization dynamically adapts to changes in cytokine microenvironments in Cryptococcus neoformans infection. mBio. 2013;4(3):e00264–13.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014;41(1):14–20.PubMedPubMedCentralGoogle Scholar
  52. 52.
    Gordon S, Martinez-Pomares L. Physiological roles of macrophages. Pflugers Arch 2017;469(3–4):365–74.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000prime reports. 2014;6.Google Scholar
  54. 54.
    Kroner A, Greenhalgh AD, Zarruk JG, Passos Dos Santos R, Gaestel M, David S. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron 2014;83(5):1098–116.Google Scholar
  55. 55.
    Martinez FO, Gordon S, Locati M, Mantovani A. Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression. The Journal of Immunology 2006;177(10):7303–11.PubMedGoogle Scholar
  56. 56.
    Nucera S, Biziato D, De Palma M. The interplay between macrophages and angiogenesis in development, tissue injury and regeneration. Int J Dev Biol 2011;55(4–5):495–503.PubMedGoogle Scholar
  57. 57.
    Spiller KL, Koh TJ. Macrophage-based therapeutic strategies in regenerative medicine. Adv Drug Deliv Rev. 2017.Google Scholar
  58. 58.
    Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med 2007;204(5):1057–69.PubMedPubMedCentralGoogle Scholar
  59. 59.
    Lucas T, Waisman A, Ranjan R, Roes J, Krieg T, Muller W, et al. Differential roles of macrophages in diverse phases of skin repair. J Immunol 2010;184(7):3964–77.PubMedGoogle Scholar
  60. 60.
    Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci 2013;16(9):1211–8.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Mokarram N, Merchant A, Mukhatyar V, Patel G, Bellamkonda RV. Effect of modulating macrophage phenotype on peripheral nerve repair. Biomaterials 2012;33(34):8793–801.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Spiller KL, Nassiri S, Witherel CE, Anfang RR, Ng J, Nakazawa KR, et al. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 2015;37:194–207.PubMedGoogle Scholar
  63. 63.
    Lutton C, Young YW, Williams R, Meedeniya AC, Mackay-Sim A, Goss B. Combined VEGF and PDGF treatment reduces secondary degeneration after spinal cord injury. Journal of neurotrauma 2012;29(5):957–70.PubMedGoogle Scholar
  64. 64.
    Owen JL, Mohamadzadeh M. Macrophages and chemokines as mediators of angiogenesis. Front Physiol 2013;4:159.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol 1994;55(3):410–22.PubMedGoogle Scholar
  66. 66.
    Kodelja V, Muller C, Tenorio S, Schebesch C, Orfanos CE, Goerdt S. Differences in angiogenic potential of classically vs alternatively activated macrophages. Immunobiology 1997;197(5):478–93.PubMedGoogle Scholar
  67. 67.
    Hagg T, Oudega M. Degenerative and spontaneous regenerative processes after spinal cord injury. Journal of neurotrauma 2006;23(3–4):264–80.PubMedGoogle Scholar
  68. 68.
    Crowe MJ, Bresnahan JC, Shuman SL, Masters JN, Beattie MS. Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys. Nature medicine 1997;3(1):73–6.PubMedGoogle Scholar
  69. 69.
    Xie N, Li Z, Adesanya TM, Guo W, Liu Y, Fu M, et al. Transplantation of placenta-derived mesenchymal stem cells enhances angiogenesis after ischemic limb injury in mice. J Cell Mol Med 2016;20(1):29–37.PubMedGoogle Scholar
  70. 70.
    Herrmann M, Verrier S, Alini M. Strategies to Stimulate Mobilization and Homing of Endogenous Stem and Progenitor Cells for Bone Tissue Repair. Front Bioeng Biotechnol 2015;3:79.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Forraz N, Wright KE, Jurga M, McGuckin CP. Experimental therapies for repair of the central nervous system: stem cells and tissue engineering. Journal of tissue engineering and regenerative medicine 2013;7(7):523–36.PubMedGoogle Scholar
  72. 72.
    Kwon BK, Soril LJ, Bacon M, Beattie MS, Blesch A, Bresnahan JC, et al. Demonstrating efficacy in preclinical studies of cellular therapies for spinal cord injury - how much is enough? Experimental neurology 2013;248:30–44.PubMedGoogle Scholar
  73. 73.
    Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W. Cell transplantation therapy for spinal cord injury. Nat Neurosci 2017;20(5):637–47.PubMedGoogle Scholar
  74. 74.
    Drago D, Cossetti C, Iraci N, Gaude E, Musco G, Bachi A, et al. The stem cell secretome and its role in brain repair. Biochimie 2013;95(12):2271–85.PubMedPubMedCentralGoogle Scholar
  75. 75.
    Zhang QZ, Su WR, Shi SH, Wilder-Smith P, Xiang AP, Wong A, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing. Stem cells 2010;28(10):1856–68.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Gray A, Schloss RS, Yarmush M. Donor variability among anti-inflammatory pre-activated mesenchymal stromal cells. Technology 2016;4(03):201–15.PubMedCentralGoogle Scholar
  77. 77.
    Lindsay SL, Johnstone SA, Mountford JC, Sheikh S, Allan DB, Clark L, et al. Human mesenchymal stem cells isolated from olfactory biopsies but not bone enhance CNS myelination in vitro. Glia 2013;61(3):368–82.PubMedGoogle Scholar
  78. 78.
    Li C-y, Wu X-y, Tong J-b, Yang X-x, Zhao J-l, Zheng Q-f, et al. Comparative analysis of human mesenchymal stem cells from bone marrow and adipose tissue under xeno-free conditions for cell therapy. Stem cell research & therapy 2015;6(1):55.Google Scholar
  79. 79.
    Zachar L, Bačenková D, Rosocha J. Activation, homing, and role of the mesenchymal stem cells in the inflammatory environment. Journal of inflammation research. 2016;9:231.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Qu J, Zhang H. Roles of mesenchymal stem cells in spinal cord injury. Stem cells international 2017;2017.Google Scholar
  81. 81.
    De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells 2016;8(3):73–87.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Herrmann JL, Wang Y, Abarbanell AM, Weil BR, Tan J, Meldrum DR. Preconditioning mesenchymal stem cells with transforming growth factor-alpha improves mesenchymal stem cellmediated cardioprotection. Shock 2010;33(1):24–30.PubMedGoogle Scholar
  83. 83.
    Mahmood A, Lu D Fau - Chopp M, Chopp M. Intravenous administration of marrow stromal cells (MSCs) increases the expression of growth factors in rat brain after traumatic brain injury. Journal of Neurotrauma. 2004(0897–7151 (Print)).Google Scholar
  84. 84.
    Hofstetter C, Schwarz E, Hess D, Widenfalk J, El Manira A, Prockop DJ, et al. Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proceedings of the National Academy of Sciences 2002;99(4):2199–204.Google Scholar
  85. 85.
    Lewis ME, Neff NT, Contreras PC, Stong DB, Oppenheim RW, Grebow PE, et al. Insulin-like Growth Factor-I: Potential for Treatment of Motor Neuronal Disorders. Experimental Neurology 1993;124(1):73–88.PubMedGoogle Scholar
  86. 86.
    Mahmood A, Lu D, Wang L, Chopp M. Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury. Journal of neurotrauma 2002;19(12):1609–17.PubMedGoogle Scholar
  87. 87.
    Johnathon DA, Henrik JJ, Calvin SG, Mattias V, Missy TP, Charles SB, et al. Comprehensive Proteomic Analysis of Mesenchymal Stem Cell Exosomes Reveals Modulation of Angiogenesis via Nuclear Factor-KappaB Signaling. Stem cells 2016;34(3):601–13.Google Scholar
  88. 88.
    Torres-Espín A, Hernández J, Navarro X. Gene expression changes in the injured spinal cord following transplantation of mesenchymal stem cells or olfactory ensheathing cells. PLoS One 2013;8(10):e76141.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Kim J, Hematti P. Mesenchymal stem cell-educated macrophages: A novel type of alternatively activated macrophages. Experimental hematology 2009;37(12):1445–53.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Melief SM, Geutskens SB, Fibbe WE, Roelofs H. Multipotent stromal cells skew monocytes towards an anti-inflammatory interleukin-10-producing phenotype by production of interleukin-6. Haematologica 2013;98(6):888–95.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Park KH, Mun CH, Kang MI, Lee SW, Lee SK, Park YB. Treatment of Collagen-Induced Arthritis Using Immune Modulatory Properties of Human Mesenchymal Stem Cells. Cell transplantation 2016;25(6):1057–72.PubMedGoogle Scholar
  92. 92.
    Cho D-I, Kim M, Jeong H-y, Jeong H, Jeong M, Yoon S, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Experimental & Molecular Medicine. 2014;46(1).Google Scholar
  93. 93.
    Maggini J, Mirkin G, Bognanni I, Holmberg J, Piazzon IM, Nepomnaschy I, et al. Mouse bone marrow-derived mesenchymal stromal cells turn activated macrophages into a regulatory-like profile. PLoS One 2010;5(2):e9252.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Anton K, Banerjee D, Glod J. Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS One 2012;7(4):e35036.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Chung E, Son Y. Crosstalk between mesenchymal stem cells and macrophages in tissue repair. Tissue Engineering and Regenerative Medicine 2014;11(6):431–8.Google Scholar
  96. 96.
    Eggenhofer E, Hoogduijn MJ. Mesenchymal stem cell-educated macrophages. Transplantation Research 2012;1(1):1–5.Google Scholar
  97. 97.
    Qi Y, Jiang D, Sindrilaru A, Stegemann A, Schatz S, Treiber N, et al. TSG-6 released from intradermally injected mesenchymal stem cells accelerates wound healing and reduces tissue fibrosis in murine full-thickness skin wounds. The Journal of investigative dermatology 2014;134(2):526–37.PubMedGoogle Scholar
  98. 98.
    Xie Z, Hao H, Tong C, Cheng Y, Liu J, Pang Y, et al. Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem cells. 2016;34(3).Google Scholar
  99. 99.
    Krampera M, Cosmi L, Angeli R, Pasini A, Liotta F, Andreini A, et al. Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem cells 2006;24(2):386–98.PubMedGoogle Scholar
  100. 100.
    Hasan A, Deeb G, Rahal R, Atwi K, Mondello S, Marei HE, et al. Mesenchymal stem cells in the treatment of traumatic brain injury. Frontiers in neurology 2017;8:28.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Anbari F, Khalili MA, Bahrami AR, Khoradmehr A, Sadeghian F, Fesahat F, et al. Intravenous transplantation of bone marrow mesenchymal stem cells promotes neural regeneration after traumatic brain injury. Neural regeneration research 2014;9(9):919.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Jiang L, Jones S, Jia X. Stem cell transplantation for peripheral nerve regeneration: Current options and opportunities. International journal of molecular sciences. 2017;18(1):94.PubMedCentralGoogle Scholar
  103. 103.
    Hu J, Zhu Q-T, Liu X-L, Xu Y-b, Zhu J-K. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells. Experimental neurology 2007;204(2):658–66.Google Scholar
  104. 104.
    Anton K, Banerjee D, Glod J. Macrophage-Associated Mesenchymal Stem Cells Assume an Activated, Migratory, Pro-Inflammatory Phenotype with Increased IL-6 and CXCL10 Secretion. PLoS ONE. 2012;7(4).Google Scholar
  105. 105.
    Chang J, Koh AJ, Roca H, McCauley LK. Juxtacrine interaction of macrophages and bone marrow stromal cells induce interleukin-6 signals and promote cell migration. Bone research. 2015;3:15014.Google Scholar
  106. 106.
    Bogdan C, Vodovotz Y, Nathan C. Macrophage deactivation by interleukin 10. Journal of Experimental Medicine 1991;174(6):1549–55.PubMedGoogle Scholar
  107. 107.
    Bartosh TJ, Ylöstalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences 2010;107(31):13724–9.Google Scholar
  108. 108.
    Ylostalo JH, Bartosh TJ, Coble K, Prockop DJ. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype. Stem cells 2012;30(10):2283–96.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Alexander JK, Popovich PG. Neuroinflammation in spinal cord injury: therapeutic targets for neuroprotection and regeneration. 2009;175:125–37.Google Scholar
  110. 110.
    Gensel JC, Nakamura S, Guan Z, van Rooijen N, Ankeny DP, Popovich PG. Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci 2009;29(12):3956–68.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Guo L, Rolfe AJ, Wang X, Tai W, Cheng Z, Cao K, et al. Rescuing macrophage normal function in spinal cord injury with embryonic stem cell conditioned media. Molecular brain 2016;9(1):48.PubMedPubMedCentralGoogle Scholar
  112. 112.
    Chen CC, Wang L, Plikus MV, Jiang TX, Murray PJ, Ramos R, et al. Organ-level quorum sensing directs regeneration in hair stem cell populations. Cell 2015;161(2):277–90.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Delarosa O, Dalemans W, Lombardo E. Toll-like receptors as modulators of mesenchymal stem cells. Front Immunol 2012;3:182.PubMedPubMedCentralGoogle Scholar
  114. 114.
    DePaul MA, Palmer M, Lang BT, Cutrone R, Tran AP, Madalena KM, et al. Intravenous multipotent adult progenitor cell treatment decreases inflammation leading to functional recovery following spinal cord injury. Scientific reports 2015;5:16795.PubMedPubMedCentralGoogle Scholar
  115. 115.
    Plotnikov EY, Pulkova NV, Pevzner IB, Zorova LD, Silachev DN, Morosanova MA, et al. Inflammatory pre-conditioning of mesenchymal multipotent stromal cells improves their immunomodulatory potency in acute pyelonephritis in rats. Cytotherapy 2013;15(6):679–89.PubMedGoogle Scholar
  116. 116.
    Dooley D, Lemmens E, Vangansewinkel T, Le Blon D, Hoornaert C, Ponsaerts P, et al. Cell-Based Delivery of Interleukin-13 Directs Alternative Activation of Macrophages Resulting in Improved Functional Outcome after Spinal Cord Injury. Stem Cell Reports 2016;7(6):1099–115.PubMedPubMedCentralGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  1. 1.The Miami Project to Cure ParalysisUniversity of Miami Miller School of MedicineMiamiUSA
  2. 2.Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for NeuroscienceInstitute of the Royal Netherlands Academy of Arts and Sciences (KNAW)AmsterdamThe Netherlands
  3. 3.Center for Neurogenomics and Cognitive Research, Neuroscience Campus AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
  4. 4.Department of Neurological SurgeryUniversity of Miami Miller School of MedicineMiamiUSA
  5. 5.Bruce W. Carter Department of Veterans Affairs Medical CenterMiamiUSA
  6. 6.Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina

Personalised recommendations