Advertisement

Neurotherapeutics

, Volume 15, Issue 3, pp 807–818 | Cite as

Effects of Rifaximin on Central Responses to Social Stress—a Pilot Experiment

  • Huiying Wang
  • Christoph Braun
  • Paul Enck
Original Article

Abstract

Probiotics that promote the gut microbiota have been reported to reduce stress responses, and improve memory and mood. Whether and how antibiotics that eliminate or inhibit pathogenic and commensal gut bacteria also affect central nervous system functions in humans is so far unknown. In a double-blinded randomized study, 16 healthy volunteers (27.00 ± 1.60 years; 9 males) received either rifaximin (600 mg/day) (a poorly absorbable antibiotic) or placebo for 7 days. Before and after the drug intervention, brain activities during rest and during a social stressor inducing feelings of exclusion (Cyberball game) were measured using magnetoencephalography. Social exclusion significantly affected (p < 0.001) mood and increased exclusion perception. Magnetoencephalography showed brain regions with higher activations during exclusion as compared to inclusion, in different frequency bands. Seven days of rifaximin increased prefrontal and right cingulate alpha power during resting state. Low beta power showed an interaction of intervention (rifaximin, placebo) × condition (inclusion, exclusion) during the Cyberball game in the bilateral prefrontal and left anterior cingulate cortex. Only in the rifaximin group, a decrease (p = 0.004) in power was seen comparing exclusion to inclusion; the reduced beta-1 power was negatively correlated with a change in the subjective exclusion perception score. Social stress affecting brain functioning in a specific manner is modulated by rifaximin. Contrary to our hypothesis that antibiotics have advert effects on mood, the antibiotic exhibited stress-reducing effects similar to reported effects of probiotics (supported by NeuroGUT, a EU 7th Framework Programme ITN no. 607652; ClinicalTrials.gov identifier number NCT02793193).

Keywords

Gut–brain axis Antibiotic Stress Cyberball MEG 

Notes

Acknowledgments

The research leading to these results has received funding from the People Programme of the European Union’s Seventh Framework Programme under Research Executive Agency Grant agreement no. 607652 (NeuroGUT).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author Contributions

PE is responsible for the integrity of the work—the inception of the study and publication of the work. HW contributed to the design of the study, data collection and analysis, drafting of the manuscript, and critical revisions of the manuscript. CB and PE contributed to the design of the study, data analysis, and critical revisions of the manuscript. All authors approved the final version of the manuscript.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflicts of interest.

Supplementary material

13311_2018_627_MOESM1_ESM.pdf (999 kb)
ESM 1 (PDF 998 kb)

References

  1. 1.
    Hyland NP, Cryan JF. Microbe-host interactions: Influence of the gut microbiota on the enteric nervous system. Dev Biol. 2016;417(2):182–187.CrossRefPubMedGoogle Scholar
  2. 2.
    Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–712.CrossRefPubMedGoogle Scholar
  3. 3.
    Cryan JF, O’Mahony SM. The microbiome-gut-brain axis: from bowel to behavior. Neurogastroenterol Motil. 2011;23(3):187–192.CrossRefPubMedGoogle Scholar
  4. 4.
    Cryan JF, Dinan TG. More than a gut feeling: the microbiota regulates neurodevelopment and behavior. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology. 2015;40(1):241–2.CrossRefGoogle Scholar
  5. 5.
    Cox LM, Weiner HL. Microbiota Signaling Pathways that Influence Neurologic Disease. Neurotherapeutics: the journal of the American Society for Experimental NeuroTherapeutics. 2018;15(1):135–45.CrossRefGoogle Scholar
  6. 6.
    Proctor C, Thiennimitr P, Chattipakorn N, Chattipakorn SC. Diet, gut microbiota and cognition. Metab Brain Dis. 2017;32(1):1–17.CrossRefPubMedGoogle Scholar
  7. 7.
    Gareau MG. Microbiota-gut-brain axis and cognitive function. Adv Exp Med Biol. 2014;817:357–371.CrossRefPubMedGoogle Scholar
  8. 8.
    O’Mahony SM, Felice VD, Nally K, Savignac HM, Claesson MJ, Scully P, et al. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience. 2014;277:885–901.CrossRefPubMedGoogle Scholar
  9. 9.
    Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Molecular Psychiatry. 2014;19(2):146–148.CrossRefPubMedGoogle Scholar
  10. 10.
    Sudo N, Chida Y, Aiba Y, Sonoda J, Oyama N, Yu XN, et al. Postnatal microbial colonization programs the hypothalamic-pituitary-adrenal system for stress response in mice. J Physiol. 2004;558(Pt 1):263–275.Google Scholar
  11. 11.
    Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil. 2011;23(3):255–264, e119.CrossRefPubMedGoogle Scholar
  12. 12.
    Wang T, Hu X, Liang S, Li W, Wu X, Wang L, et al. Lactobacillus fermentum NS9 restores the antibiotic induced physiological and psychological abnormalities in rats. Benef Microbes. 2015;6(5):707–717.CrossRefPubMedGoogle Scholar
  13. 13.
    Ferrere G, Wrzosek L, Cailleux F, Turpin W, Puchois V, Spatz M, et al. Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice. J Hepatol. 2017;66(4):806–815.CrossRefPubMedGoogle Scholar
  14. 14.
    Wang H, Lee IS, Braun C, Enck P. Effect of probiotics on central nervous system functions in animals and humans—a systematic review. J Neurogastroenterol Motil. 2016.Google Scholar
  15. 15.
    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–1463.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kantak PA, Bobrow DN, Nyby JG. Obsessive-compulsive-like behaviors in house mice are attenuated by a probiotic (Lactobacillus rhamnosus GG). Behav Pharmacol. 2014;25(1):71–79.CrossRefPubMedGoogle Scholar
  17. 17.
    Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–16055.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT, et al. Probiotic Bifidobacterium longum NCC3001 Reduces Depression Scores and Alters Brain Activity: A Pilot Study in Patients With Irritable Bowel Syndrome. Gastroenterology. 2017;153(2):448–459 e8.CrossRefPubMedGoogle Scholar
  19. 19.
    DuPont HL. Biologic properties and clinical uses of rifaximin. Expert Opin Pharmacother. 2011;12(2):293–302.CrossRefPubMedGoogle Scholar
  20. 20.
    DuPont HL, Jiang ZD, Okhuysen PC, Ericsson CD, de la Cabada FJ, Ke S, et al. A randomized, double-blind, placebo-controlled trial of rifaximin to prevent travelers’ diarrhea. Ann Intern Med. 2005;142(10):805–812.CrossRefPubMedGoogle Scholar
  21. 21.
    Pimentel M, Morales W, Chua K, Barlow G, Weitsman S, Kim G, et al. Effects of rifaximin treatment and retreatment in nonconstipated IBS subjects. Dig Dis Sci. 2011;56(7):2067–2072.CrossRefPubMedGoogle Scholar
  22. 22.
    Pimentel M, Park S, Mirocha J, Kane SV, Kong Y. The effect of a nonabsorbed oral antibiotic (rifaximin) on the symptoms of the irritable bowel syndrome: a randomized trial. Ann Intern Med. 2006;145(8):557–563.CrossRefPubMedGoogle Scholar
  23. 23.
    Gatta L, Scarpignato C. Systematic review with meta-analysis: rifaximin is effective and safe for the treatment of small intestine bacterial overgrowth. Aliment Pharmacol Ther. 2017;45(5):604–616.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Scarpellini E, Gabrielli M, Lauritano CE, Lupascu A, Merra G, Cammarota G, et al. High dosage rifaximin for the treatment of small intestinal bacterial overgrowth. Aliment Pharmacol Ther. 2007;25(7):781–786.CrossRefPubMedGoogle Scholar
  25. 25.
    Desbonnet L, Garrett L, Clarke G, Kiely B, Cryan JF, Dinan TG. Effects of the Probiotic Bifidobacterium Infantis in the Maternal Separation Model of Depression. Neuroscience. 2010;170(4):1179–1188.CrossRefPubMedGoogle Scholar
  26. 26.
    Savignac HM, Kiely B, Dinan TG, Cryan JF. Bifidobacteria exert strain-specific effects on stress-related behavior and physiology in BALB/c mice. Neurogastroenterol Motil. 2014;26(11):1615–1627.CrossRefPubMedGoogle Scholar
  27. 27.
    Williams KD, Jarvis B. Cyberball: a program for use in research on interpersonal ostracism and acceptance. Behavior Research Methods. 2006;38(1):174–180.CrossRefPubMedGoogle Scholar
  28. 28.
    Allen AP, Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Biological and psychological markers of stress in humans: focus on the Trier Social Stress Test. Neurosci Biobehav Rev. 2014;38:94–124.CrossRefPubMedGoogle Scholar
  29. 29.
    McQuaid RJ, McInnis OA, Matheson K, Anisman H. Distress of ostracism: oxytocin receptor gene polymorphism confers sensitivity to social exclusion. Soc Cogn Affect Neurosci. 2015;10(8):1153–1159.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Beekman JB, Stock ML, Marcus T. Need to Belong, Not Rejection Sensitivity, Moderates Cortisol Response, Self-Reported Stress, and Negative Affect Following Social Exclusion. J Soc Psychol. 2016;156(2):131–138.CrossRefPubMedGoogle Scholar
  31. 31.
    Blackhart GC, Eckel LA, Tice DM. Salivary cortisol in response to acute social rejection and acceptance by peers. Biol Psychol. 2007;75(3):267–276.CrossRefPubMedGoogle Scholar
  32. 32.
    Stroud LR, Salovey P, Epel ES. Sex differences in stress responses: social rejection versus achievement stress. Biol Psychiatry. 2002;52(4):318–327.CrossRefPubMedGoogle Scholar
  33. 33.
    Kelly M, McDonald S, Rushby J. All alone with sweaty palms—physiological arousal and ostracism. International journal of psychophysiology : official journal of the International Organization of Psychophysiology. 2012;83(3):309–314.CrossRefGoogle Scholar
  34. 34.
    Paolini D, Alparone FR, Cardone D, van Beest I, Merla A. “The face of ostracism”: The impact of the social categorization on the thermal facial responses of the target and the observer. Acta Psychologica. 2016;163:65–73.CrossRefPubMedGoogle Scholar
  35. 35.
    Wang H, Braun C, Enck P. How the brain reacts to social stress (exclusion)—A scoping review. Neurosci Biobehav Rev. 2017;80:80–88.CrossRefPubMedGoogle Scholar
  36. 36.
    Bolling DZ, Pelphrey KA, Vander Wyk BC. Unlike adults, children and adolescents show predominantly increased neural activation to social exclusion by members of the opposite gender. Soc Neurosci. 2016;11(5):475–486.CrossRefPubMedGoogle Scholar
  37. 37.
    Eisenberger NI, Taylor SE, Gable SL, Hilmert CJ, Lieberman MD. Neural pathways link social support to attenuated neuroendocrine stress responses. Neuroimage. 2007;35(4):1601–1612.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Maurage P, Joassin F, Philippot P, Heeren A, Vermeulen N, Mahau P, et al. Disrupted regulation of social exclusion in alcohol-dependence: an fMRI study. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2012;37(9):2067–2075.CrossRefGoogle Scholar
  39. 39.
    Cristofori I, Harquel S, Isnard J, Mauguiere F, Sirigu A. Monetary reward suppresses anterior insula activity during social pain. Soc Cogn Affect Neurosci. 2015;10(12):1668–1676.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Kawamoto T, Nittono H, Ura M. Cognitive, Affective, and Motivational Changes during Ostracism: An ERP, EMG, and EEG Study Using a Computerized Cyberball Task. Neuroscience Journal. 2013;2013:304674.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    van Noordt SJ, White LO, Wu J, Mayes LC, Crowley MJ. Social exclusion modulates event-related frontal theta and tracks ostracism distress in children. Neuroimage. 2015;118:248–255.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Cohen D. Magnetoencephalography: detection of the brain's electrical activity with a superconducting magnetometer. Science (New York, NY). 1972;175(4022):664–666.CrossRefGoogle Scholar
  43. 43.
    Ware JE, Jr., Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30(6):473–483.CrossRefPubMedGoogle Scholar
  44. 44.
    Sebastian C, Viding E, Williams KD, Blakemore SJ. Social brain development and the affective consequences of ostracism in adolescence. Brain Cogn. 2010;72(1):134–145.CrossRefPubMedGoogle Scholar
  45. 45.
    Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci. 2011;2011:156869.CrossRefPubMedGoogle Scholar
  46. 46.
    Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc Natl Acad Sci U S A. 2001;98(2):694–699.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Bolling DZ, Pitskel NB, Deen B, Crowley MJ, Mayes LC, Pelphrey KA. Development of neural systems for processing social exclusion from childhood to adolescence. Dev Sci. 2011;14(6):1431–1444.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Romijn AR, Rucklidge JJ. Systematic review of evidence to support the theory of psychobiotics. Nutr Rev. 2015;73(10):675–693.CrossRefPubMedGoogle Scholar
  49. 49.
    Mazurak N, Broelz E, Storr M, Enck P. Probiotic Therapy of the Irritable Bowel Syndrome: Why Is the Evidence Still Poor and What Can Be Done About It? J Neurogastroenterol Motil. 2015;21(4):471–485.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Ford AC, Quigley EM, Lacy BE, Lembo AJ, Saito YA, Schiller LR, et al. Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am J Gastroenterol. 2014;109(10):1547–1561; quiz 6, 62.CrossRefPubMedGoogle Scholar
  51. 51.
    Ahluwalia V, Wade JB, Heuman DM, Hammeke TA, Sanyal AJ, Sterling RK, et al. Enhancement of functional connectivity, working memory and inhibitory control on multi-modal brain MR imaging with Rifaximin in Cirrhosis: implications for the gut-liver-brain axis. Metab Brain Dis. 2014;29(4):1017–1025.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Bajaj JS, Heuman DM, Sanyal AJ, Hylemon PB, Sterling RK, Stravitz RT, et al. Modulation of the metabiome by rifaximin in patients with cirrhosis and minimal hepatic encephalopathy. PLoS One. 2013;8(4):e60042.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Nunez PL, Wingeier BM, Silberstein RB. Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum Brain Mapp. 2001;13(3):125–164.CrossRefPubMedGoogle Scholar
  54. 54.
    Fachner J, Gold C, Erkkila J. Music therapy modulates fronto-temporal activity in rest-EEG in depressed clients. Brain Topogr. 2013;26(2):338–354.CrossRefPubMedGoogle Scholar
  55. 55.
    Tanaka M, Ishii A, Watanabe Y. Neural effects of mental fatigue caused by continuous attention load: a magnetoencephalography study. Brain Res. 2014;1561:60–66.CrossRefPubMedGoogle Scholar
  56. 56.
    Baumeister J, Barthel T, Geiss KR, Weiss M. Influence of phosphatidylserine on cognitive performance and cortical activity after induced stress. Nutr Neurosci. 2008;11(3):103–110.CrossRefPubMedGoogle Scholar
  57. 57.
    Diego MA, Field T, Sanders C, Hernandez-Reif M. Massage therapy of moderate and light pressure and vibrator effects on EEG and heart rate. Int J Neurosci. 2004;114(1):31–44.CrossRefPubMedGoogle Scholar
  58. 58.
    Field T, Ironson G, Scafidi F, Nawrocki T, Goncalves A, Burman I, et al. Massage therapy reduces anxiety and enhances EEG pattern of alertness and math computations. Int J Neurosci. 1996;86(3–4):197–205.CrossRefPubMedGoogle Scholar
  59. 59.
    Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterology. 2013;144(7):1394–1401, 401 e1–4.CrossRefPubMedGoogle Scholar
  60. 60.
    Arnsten AF, Rubia K. Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. J Am Acad Child Adolesc Psychiatry. 2012;51(4):356–367.CrossRefPubMedGoogle Scholar
  61. 61.
    Eack SM, Wojtalik JA, Barb SM, Newhill CE, Keshavan MS, Phillips ML. Fronto-Limbic Brain Dysfunction during the Regulation of Emotion in Schizophrenia. PLoS One. 2016;11(3):e0149297.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Maccaferri S, Vitali B, Klinder A, Kolida S, Ndagijimana M, Laghi L, et al. Rifaximin modulates the colonic microbiota of patients with Crohn’s disease: an in vitro approach using a continuous culture colonic model system. J Antimicrob Chemother. 2010;65(12):2556–2565.CrossRefPubMedGoogle Scholar
  63. 63.
    Ponziani FR, Scaldaferri F, Petito V, Paroni Sterbini F, Pecere S, Lopetuso LR, et al. The Role of Antibiotics in Gut Microbiota Modulation: The Eubiotic Effects of Rifaximin. Dig Dis. 2016;34(3):269–278.CrossRefPubMedGoogle Scholar
  64. 64.
    Xu D, Gao J, Gillilland M, 3rd, Wu X, Song I, Kao JY, et al. Rifaximin alters intestinal bacteria and prevents stress-induced gut inflammation and visceral hyperalgesia in rats. Gastroenterology. 2014;146(2):484–496 e4.CrossRefPubMedGoogle Scholar
  65. 65.
    Desbonnet L, Garrett L, Clarke G, Bienenstock J, Dinan TG. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J Psychiatr Res. 2008;43(2):164–174.CrossRefPubMedGoogle Scholar
  66. 66.
    Powell N, Walker MM, Talley NJ. The mucosal immune system: master regulator of bidirectional gut-brain communications. Nat Rev Gastroenterol Hepatol. 2017;14(3):143–159.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  1. 1.Department of Psychosomatic Medicine and PsychotherapyUniversity Hospital TübingenTübingenGermany
  2. 2.Magnetoencephalography CentreUniversity Hospital TübingenTübingenGermany
  3. 3.Graduate Training Center of NeuroscienceInternational Max Planck Research School for Cognitive and Systems NeuroscienceTübingenGermany
  4. 4.Centro Interdipartimentale Mente/Cervello, Center for Mind/Brain SciencesUniversity of TrentoRoveretoItaly

Personalised recommendations