Advertisement

Phosphodiesterase Inhibitors Revert Axonal Dystrophy in Friedreich’s Ataxia Mouse Model

  • Belén Mollá
  • Diana C. Muñoz-Lasso
  • Pablo Calap
  • Angel Fernandez-Vilata
  • María de la Iglesia-Vaya
  • Federico V. Pallardó
  • Maria Dolores Moltó
  • Francesc Palau
  • Pilar Gonzalez-CaboEmail author
Original Article

Abstract

Friedreich’s ataxia (FRDA) is a neurodegenerative disorder caused by an unstable GAA repeat expansion within intron 1 of the FXN gene and characterized by peripheral neuropathy. A major feature of FRDA is frataxin deficiency with the loss of large sensory neurons of the dorsal root ganglia (DRG), namely proprioceptive neurons, undergoing dying-back neurodegeneration with progression to posterior columns of the spinal cord and cerebellar ataxia. We used isolated DRGs from a YG8R FRDA mouse model and C57BL/6J control mice for a proteomic study and a primary culture of sensory neurons from DRG to test novel pharmacological strategies. We found a decreased expression of electron transport chain (ETC) proteins, the oxidative phosphorylation (OXPHOS) system and antioxidant enzymes, confirming a clear impairment in mitochondrial function and an oxidative stress-prone phenotype. The proteomic profile also showed a decreased expression in Ca2+ signaling related proteins and G protein-coupled receptors (GPCRs). These receptors modulate intracellular cAMP/cGMP and Ca2+ levels. Treatment of frataxin-deficient sensory neurons with phosphodiesterase (PDE) inhibitors was able to restore improper cytosolic Ca2+ levels and revert the axonal dystrophy found in DRG neurons of YG8R mice. In conclusion, the present study shows the effectiveness of PDE inhibitors against axonal degeneration of sensory neurons in YG8R mice. Our findings indicate that PDE inhibitors may become a future FRDA pharmacological treatment.

Key Words

FRDA axonal degeneration G protein-coupled receptor (GPCR) Ca2+ signaling PDE inhibitors 

Notes

Acknowledgments:

This work was supported by grants from the Spanish Ministry of Economy and Competitiveness (Grant No. PI11/00678; SAF2015-66625-R) within the framework of the National R + D + I Plan and cofunded by the Instituto de Salud Carlos III (ISCIII)-Subdirección General de Evaluación y Fomento de la Investigación and FEDER funds, Fundación Ramón Areces (CIVP18A3899), and the Generalitat Valenciana (PROMETEOII/2014/067, PROMETEOII/2014/029, ACIF/2014/090, ACOMP/2014/058). CIBERER is an initiative developed by the Instituto de Salud Carlos III in cooperative and translational research on rare diseases. We would like to thank the staff of the CIBERER Biobank (Valencia, Spain) for their help in generating the lymphoblastoid cell lines (LCLs).

Authors’ Contributions

BM conducted and designed experiments, analyzed the results, and wrote the manuscript. DM and PC performed experiments. MI and AF customized mito-morphology macro of ImageJ for morphometric mitochondrial analysis. FVP and MDM interpreted the data and wrote the manuscript. FP and PG designed the study, supervised the experiments, analyzed the data, and wrote the manuscript. All authors read and approved the final manuscript.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2018_706_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1224 kb)

References

  1. 1.
    Morral JA, Davis AN, Qian J, Gelman BB, Koeppen AH. Pathology and pathogenesis of sensory neuropathy in Friedreich’s ataxia. Acta neuropathologica. 2010;120(1):97–108.  https://doi.org/10.1007/s00401-010-0675-0.Google Scholar
  2. 2.
    Koeppen AH, Mazurkiewicz JE. Friedreich ataxia: neuropathology revised. J Neuropathol Exp Neurol. 2013;72(2):78–90.  https://doi.org/10.1097/NEN.0b013e31827e5762.Google Scholar
  3. 3.
    Koeppen AH. Friedreich’s ataxia: pathology, pathogenesis, and molecular genetics. J Neurol Sci. 2011;303(1–2):1–12.  https://doi.org/10.1016/j.jns.2011.01.010.Google Scholar
  4. 4.
    Campuzano V, Montermini L, Molto MD, Pianese L, Cossee M, Cavalcanti F et al. Friedreich’s ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science (New York NY). 1996;271(5254):1423–7.Google Scholar
  5. 5.
    Cossee M, Campuzano V, Koutnikova H, Fischbeck K, Mandel JL, Koenig M et al. Frataxin fracas. Nat Genet. 1997;15(4):337–8.Google Scholar
  6. 6.
    Vaubel RA, Isaya G. Iron-sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich ataxia. Molecular and Cellular Neurosciences. 2012.  https://doi.org/10.1016/j.mcn.2012.08.003.
  7. 7.
    Chiang S, Kovacevic Z, Sahni S, Lane DJ, Merlot AM, Kalinowski DS et al. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich’s ataxia. Clinical Science. 2016;130(11):853–70.  https://doi.org/10.1042/CS20160072.Google Scholar
  8. 8.
    Ristow M, Pfister MF, Yee AJ, Schubert M, Michael L, Zhang CY et al. Frataxin activates mitochondrial energy conversion and oxidative phosphorylation. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(22):12239–43.Google Scholar
  9. 9.
    Calabrese V, Lodi R, Tonon C, D'Agata V, Sapienza M, Scapagnini G et al. Oxidative stress, mitochondrial dysfunction and cellular stress response in Friedreich’s ataxia. J Neurol Sci. 2005;233(1–2):145–62.  https://doi.org/10.1016/j.jns.2005.03.012.Google Scholar
  10. 10.
    Lodi R, Cooper JM, Bradley JL, Manners D, Styles P, Taylor DJ et al. Deficit of in vivo mitochondrial ATP production in patients with Friedreich ataxia. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(20):11492–5.Google Scholar
  11. 11.
    Emond M, Lepage G, Vanasse M, Pandolfo M. Increased levels of plasma malondialdehyde in Friedreich ataxia. Neurology. 2000;55(11):1752–3.Google Scholar
  12. 12.
    Schulz JB, Dehmer T, Schols L, Mende H, Hardt C, Vorgerd M et al. Oxidative stress in patients with Friedreich ataxia. Neurology. 2000;55(11):1719–21.Google Scholar
  13. 13.
    Bradley JL, Homayoun S, Hart PE, Schapira AH, Cooper JM. Role of oxidative damage in Friedreich’s ataxia. Neurochem Res. 2004;29(3):561–7.Google Scholar
  14. 14.
    Bolinches-Amoros A, Molla B, Pla-Martin D, Palau F, Gonzalez-Cabo P. Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism. Frontiers in cellular neuroscience. 2014;8:124.  https://doi.org/10.3389/fncel.2014.00124.Google Scholar
  15. 15.
    Lamarche JB, Cote M, Lemieux B. The cardiomyopathy of Friedreich’s ataxia morphological observations in 3 cases. Can J Neurol Sci. 1980;7(4):389–96.Google Scholar
  16. 16.
    Rotig A, de Lonlay P, Chretien D, Foury F, Koenig M, Sidi D et al. Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia. Nat Genet. 1997;17(2):215–7.Google Scholar
  17. 17.
    Lobmayr L, Brooks DG, Wilson RB. Increased IRP1 activity in Friedreich ataxia. Gene. 2005;354:157–61.  https://doi.org/10.1016/j.gene.2005.04.040.Google Scholar
  18. 18.
    Salehi MH, Kamalidehghan B, Houshmand M, Yong Meng G, Sadeghizadeh M, Aryani O et al. Gene expression profiling of mitochondrial oxidative phosphorylation (OXPHOS) complex I in Friedreich ataxia (FRDA) patients. PLoS ONE. 2014;9(4):e94069.  https://doi.org/10.1371/journal.pone.0094069.Google Scholar
  19. 19.
    Gonzalez-Cabo P, Vazquez-Manrique RP, Garcia-Gimeno MA, Sanz P, Palau F. Frataxin interacts functionally with mitochondrial electron transport chain proteins. Hum Mol Genet. 2005;14(15):2091–8.Google Scholar
  20. 20.
    Isaya G. Mitochondrial iron-sulfur cluster dysfunction in neurodegenerative disease. Frontiers in Pharmacology. 2014;5:29.  https://doi.org/10.3389/fphar.2014.00029.Google Scholar
  21. 21.
    Gonzalez-Cabo P, Llorens JV, Palau F, Molto MD. Friedreich ataxia: an update on animal models, frataxin function and therapies. Adv Exp Med Biol. 2009;652:247–61.  https://doi.org/10.1007/978-90-481-2813-6_17.Google Scholar
  22. 22.
    Puccio H, Anheim M, Tranchant C. Pathophysiogical and therapeutic progress in Friedreich ataxia. Revue neurologique. 2014;170(5):355–65.  https://doi.org/10.1016/j.neurol.2014.03.008.Google Scholar
  23. 23.
    Aranca TV, Jones TM, Shaw JD, Staffetti JS, Ashizawa T, Kuo SH et al. Emerging therapies in Friedreich’s ataxia. Neurodegenerative Disease Management. 2016;6(1):49–65.  https://doi.org/10.2217/nmt.15.73.Google Scholar
  24. 24.
    Burk K. Friedreich ataxia: current status and future prospects. Cerebellum & Ataxias. 2017;4:4.  https://doi.org/10.1186/s40673-017-0062-x.Google Scholar
  25. 25.
    Strawser C, Schadt K, Hauser L, McCormick A, Wells M, Larkindale J et al. Pharmacological therapeutics in Friedreich ataxia: the present state. Expert Review of Neurotherapeutics. 2017;17(9):895–907.  https://doi.org/10.1080/14737175.2017.1356721.Google Scholar
  26. 26.
    Al-Mahdawi S, Pinto RM, Varshney D, Lawrence L, Lowrie MB, Hughes S et al. GAA repeat expansion mutation mouse models of Friedreich ataxia exhibit oxidative stress leading to progressive neuronal and cardiac pathology. Genomics. 2006;88(5):580–90.Google Scholar
  27. 27.
    Molla B, Munoz-Lasso DC, Riveiro F, Bolinches-Amoros A, Pallardo FV, Fernandez-Vilata A et al. Reversible axonal dystrophy by calcium modulation in frataxin-deficient sensory neurons of YG8R mice. Frontiers in Molecular Neuroscience. 2017;10:264.  https://doi.org/10.3389/fnmol.2017.00264.Google Scholar
  28. 28.
    Hofer AM. Interactions between calcium and cAMP signaling. Curr Med Chem. 2012;19(34):5768–73.Google Scholar
  29. 29.
    Di Benedetto G, Scalzotto E, Mongillo M, Pozzan T. Mitochondrial Ca(2)(+) uptake induces cyclic AMP generation in the matrix and modulates organelle ATP levels. Cell Metab. 2013;17(6):965–75.  https://doi.org/10.1016/j.cmet.2013.05.003.Google Scholar
  30. 30.
    Averaimo S, Nicol X. Intermingled cAMP, cGMP and calcium spatiotemporal dynamics in developing neuronal circuits. Frontiers in Cellular Neuroscience. 2014;8:376.  https://doi.org/10.3389/fncel.2014.00376.Google Scholar
  31. 31.
    Gomez-Villafuertes R, del Puerto A, Diaz-Hernandez M, Bustillo D, Diaz-Hernandez JI, Huerta PG et al. Ca2+/calmodulin-dependent kinase II signalling cascade mediates P2X7 receptor-dependent inhibition of neuritogenesis in neuroblastoma cells. The FEBS Journal. 2009;276(18):5307–25.  https://doi.org/10.1111/j.1742-4658.2009.07228.x.Google Scholar
  32. 32.
    del Puerto A, Diaz-Hernandez JI, Tapia M, Gomez-Villafuertes R, Benitez MJ, Zhang J et al. Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation. J Cell Sci. 2012;125(Pt 1):176–88.  https://doi.org/10.1242/jcs.091736.Google Scholar
  33. 33.
    Nicol X, Hong KP, Spitzer NC. Spatial and temporal second messenger codes for growth cone turning. Proceedings of the National Academy of Sciences of the United States of America. 2011;108(33):13776–81.  https://doi.org/10.1073/pnas.1100247108.Google Scholar
  34. 34.
    Huang Y, Thathiah A. Regulation of neuronal communication by G protein-coupled receptors. FEBS letters. 2015;589(14):1607–19.  https://doi.org/10.1016/j.febslet.2015.05.007.Google Scholar
  35. 35.
    Fukuchi M, Tabuchi A, Kuwana Y, Watanabe S, Inoue M, Takasaki I et al. Neuromodulatory effect of Galphas- or Galphaq-coupled G-protein-coupled receptor on NMDA receptor selectively activates the NMDA receptor/Ca2+/calcineurin/cAMP response element-binding protein-regulated transcriptional coactivator 1 pathway to effectively induce brain-derived neurotrophic factor expression in neurons. The Journal of Neuroscience: the official journal of the Society for Neuroscience. 2015;35(14):5606–24.  https://doi.org/10.1523/JNEUROSCI.3650-14.2015.Google Scholar
  36. 36.
    Cai D, Qiu J, Cao Z, McAtee M, Bregman BS, Filbin MT. Neuronal cyclic AMP controls the developmental loss in ability of axons to regenerate. J Neurosci. 2001;21(13):4731–9.Google Scholar
  37. 37.
    Zhang R, Wang Y, Zhang L, Zhang Z, Tsang W, Lu M et al. Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke. 2002;33(11):2675–80.Google Scholar
  38. 38.
    Zhang L, Zhang RL, Wang Y, Zhang C, Zhang ZG, Meng H et al. Functional recovery in aged and young rats after embolic stroke: treatment with a phosphodiesterase type 5 inhibitor. Stroke. 2005;36(4):847–52.  https://doi.org/10.1161/01.STR.0000158923.19956.73.Google Scholar
  39. 39.
    Hanoune J, Defer N. Regulation and role of adenylyl cyclase isoforms. Annual Review of Pharmacology and Toxicology. 2001;41:145–74.  https://doi.org/10.1146/annurev.pharmtox.41.1.145.Google Scholar
  40. 40.
    Cui Q, So KF. Involvement of cAMP in neuronal survival and axonal regeneration. Anatomical Science International. 2004;79(4):209–12.  https://doi.org/10.1111/j.1447-073x.2004.00089.x.Google Scholar
  41. 41.
    Anjomani Virmouni S, Ezzatizadeh V, Sandi C, Sandi M, Al-Mahdawi S, Chutake Y et al. A novel GAA-repeat-expansion-based mouse model of Friedreich’s ataxia. Dis Model Mech. 2015;8(3):225–35.  https://doi.org/10.1242/dmm.018952.Google Scholar
  42. 42.
    Molla B, Riveiro F, Bolinches-Amoros A, Munoz-Lasso DC, Palau F, Gonzalez-Cabo P. Two different pathogenic mechanisms, dying-back axonal neuropathy and pancreatic senescence, are present in the YG8R mouse model of Friedreich’s ataxia. Dis Model Mech. 2016;9(6):647–57.  https://doi.org/10.1242/dmm.024273.Google Scholar
  43. 43.
    Soeda H, Tatsumi H, Katayama Y. Neurotransmitter release from growth cones of rat dorsal root ganglion neurons in culture. Neuroscience. 1997;77(4):1187–99.Google Scholar
  44. 44.
    Nikulina E, Tidwell JL, Dai HN, Bregman BS, Filbin MT. The phosphodiesterase inhibitor rolipram delivered after a spinal cord lesion promotes axonal regeneration and functional recovery. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(23):8786–90.  https://doi.org/10.1073/pnas.0402595101.
  45. 45.
    Jia L, Wang L, Chopp M, Zhang Y, Szalad A, Zhang ZG. MicroRNA 146a locally mediates distal axonal growth of dorsal root ganglia neurons under high glucose and sildenafil conditions. Neuroscience. 2016;329:43–53.  https://doi.org/10.1016/j.neuroscience.2016.05.005.Google Scholar
  46. 46.
    Abeti R, Parkinson MH, Hargreaves IP, Angelova PR, Sandi C, Pook MA et al. 'Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia'. Cell Death & Disease. 2016;7:e2237.  https://doi.org/10.1038/cddis.2016.111.Google Scholar
  47. 47.
    Shan Y, Schoenfeld RA, Hayashi G, Napoli E, Akiyama T, Iodi Carstens M et al. Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich’s ataxia YG8R mouse model. Antioxidants & Redox Signaling. 2013;19(13):1481–93.  https://doi.org/10.1089/ars.2012.4537.Google Scholar
  48. 48.
    Boswell-Smith V, Spina D, Page CP. Phosphodiesterase inhibitors. British Journal of Pharmacology. 2006;147 Suppl 1:S252–7.  https://doi.org/10.1038/sj.bjp.0706495.Google Scholar
  49. 49.
    Sharma RK, Wang JH, Wu Z. Mechanisms of inhibition of calmodulin-stimulated cyclic nucleotide phosphodiesterase by dihydropyridine calcium antagonists. J Neurochem. 1997;69(2):845–50.Google Scholar
  50. 50.
    Yiu EM, Tai G, Peverill RE, Lee KJ, Croft KD, Mori TA et al. An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels. J Neurol. 2015;262(5):1344–53.  https://doi.org/10.1007/s00415-015-7719-2.Google Scholar
  51. 51.
    Selak MA, Lyver E, Micklow E, Deutsch EC, Onder O, Selamoglu N et al. Blood cells from Friedreich ataxia patients harbor frataxin deficiency without a loss of mitochondrial function. Mitochondrion. 2011;11(2):342–50.  https://doi.org/10.1016/j.mito.2010.12.003.Google Scholar
  52. 52.
    Sutak R, Xu X, Whitnall M, Kashem MA, Vyoral D, Richardson DR. Proteomic analysis of hearts from frataxin knockout mice: marked rearrangement of energy metabolism, a response to cellular stress and altered expression of proteins involved in cell structure, motility and metabolism. Proteomics. 2008;8(8):1731–41.Google Scholar
  53. 53.
    Telot L, Rousseau E, Lesuisse E, Garcia C, Morlet B, Leger T et al. Quantitative proteomics in Friedreich’s ataxia B-lymphocytes: a valuable approach to decipher the biochemical events responsible for pathogenesis. Biochimica et biophysica acta Molecular Basis of Disease. 2018;1864(4 Pt A):997–1009.  https://doi.org/10.1016/j.bbadis.2018.01.010.Google Scholar
  54. 54.
    Swarup V, Srivastava AK, Padma MV, Rajeswari MR. Quantitative profiling and identification of differentially expressed plasma proteins in Friedreich’s ataxia. J Neurosci Res. 2013;91(11):1483–91.  https://doi.org/10.1002/jnr.23262.Google Scholar
  55. 55.
    de Rooij J, Zwartkruis FJ, Verheijen MH, Cool RH, Nijman SM, Wittinghofer A et al. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396(6710):474–7.  https://doi.org/10.1038/24884.Google Scholar
  56. 56.
    Munoz-Llancao P, Henriquez DR, Wilson C, Bodaleo F, Boddeke EW, Lezoualc'h F et al. Exchange protein directly activated by cAMP (EPAC) regulates neuronal polarization through Rap1B. The Journal of Neuroscience: the official journal of the Society for Neuroscience. 2015;35(32):11315–29.  https://doi.org/10.1523/JNEUROSCI.3645-14.2015.Google Scholar
  57. 57.
    Martin B, Lopez de Maturana R, Brenneman R, Walent T, Mattson MP, Maudsley S. Class II G protein-coupled receptors and their ligands in neuronal function and protection. Neuromolecular Med. 2005;7(1–2):3–36.Google Scholar
  58. 58.
    Espada S, Ortega F, Molina-Jijon E, Rojo AI, Perez-Sen R, Pedraza-Chaverri J et al. The purinergic P2Y(13) receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. Free Radical Biology & Medicine. 2010;49(3):416–26.  https://doi.org/10.1016/j.freeradbiomed.2010.04.031.Google Scholar
  59. 59.
    Bromberg KD, Iyengar R, He JC. Regulation of neurite outgrowth by G(i/o) signaling pathways. Frontiers in Bioscience: a journal and virtual library. 2008;13:4544–57.Google Scholar
  60. 60.
    Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nature Reviews Drug Discovery. 2014;13(4):290–314.  https://doi.org/10.1038/nrd4228.Google Scholar
  61. 61.
    Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Experimental Neurology. 2008;209(2):321–32.  https://doi.org/10.1016/j.expneurol.2007.06.020.Google Scholar
  62. 62.
    Gong B, Vitolo OV, Trinchese F, Liu S, Shelanski M, Arancio O. Persistent improvement in synaptic and cognitive functions in an Alzheimer mouse model after rolipram treatment. J Clin Invest. 2004;114(11):1624–34.  https://doi.org/10.1172/JCI22831.Google Scholar
  63. 63.
    Wang L, Chopp M, Szalad A, Liu Z, Bolz M, Alvarez FM et al. Phosphodiesterase-5 is a therapeutic target for peripheral neuropathy in diabetic mice. Neuroscience. 2011;193:399–410.  https://doi.org/10.1016/j.neuroscience.2011.07.039.Google Scholar
  64. 64.
    Jasoliya MJ, McMackin MZ, Henderson CK, Perlman SL, Cortopassi GA. Frataxin deficiency impairs mitochondrial biogenesis in cells, mice and humans. Human Molecular Genetics. 2017;26(14):2627–33.  https://doi.org/10.1093/hmg/ddx141.Google Scholar
  65. 65.
    Lin H, Magrane J, Rattelle A, Stepanova A, Galkin A, Clark EM et al. Early cerebellar deficits in mitochondrial biogenesis and respiratory chain complexes in the KIKO mouse model of Friedreich ataxia. Disease Models & Mechanisms. 2017;10(11):1343–52.  https://doi.org/10.1242/dmm.030502.Google Scholar
  66. 66.
    Palandri A, Martin E, Russi M, Rera M, Tricoire H, Monnier V. Identification of cardioprotective drugs by medium-scale in vivo pharmacological screening on a Drosophila cardiac model of Friedreich’s ataxia. Disease Models & Mechanisms. 2018;11(7).  https://doi.org/10.1242/dmm.033811.
  67. 67.
    Igoillo-Esteve M, Gurgul-Convey E, Hu A, Romagueira Bichara Dos Santos L, Abdulkarim B, Chintawar S et al. Unveiling a common mechanism of apoptosis in beta-cells and neurons in Friedreich’s ataxia. Human Molecular Genetics. 2015;24(8):2274–86.  https://doi.org/10.1093/hmg/ddu745.
  68. 68.
    Lincoln TM, Cornwell TL. Intracellular cyclic GMP receptor proteins. FASEB Journal: official publication of the Federation of American Societies for Experimental Biology. 1993;7(2):328–38.Google Scholar
  69. 69.
    Cornwell TL, Pryzwansky KB, Wyatt TA, Lincoln TM. Regulation of sarcoplasmic reticulum protein phosphorylation by localized cyclic GMP-dependent protein kinase in vascular smooth muscle cells. Molecular Pharmacology. 1991;40(6):923–31.Google Scholar
  70. 70.
    Xin W, Li N, Cheng Q, Petkov GV. BK channel-mediated relaxation of urinary bladder smooth muscle: a novel paradigm for phosphodiesterase type 4 regulation of bladder function. The Journal of Pharmacology and Experimental Therapeutics. 2014;349(1):56–65.  https://doi.org/10.1124/jpet.113.210708.Google Scholar
  71. 71.
    Wang Z, Liu D, Varin A, Nicolas V, Courilleau D, Mateo P et al. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death. Cell Death & Disease. 2016;7:e2198.  https://doi.org/10.1038/cddis.2016.106.Google Scholar
  72. 72.
    Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metabolism. 2009;9(3):265–76.  https://doi.org/10.1016/j.cmet.2009.01.012.Google Scholar
  73. 73.
    Acin-Perez R, Russwurm M, Gunnewig K, Gertz M, Zoidl G, Ramos L et al. A phosphodiesterase 2A isoform localized to mitochondria regulates respiration. J Biol Chem. 2011;286(35):30423–32.  https://doi.org/10.1074/jbc.M111.266379.Google Scholar
  74. 74.
    Di Benedetto G, Pendin D, Greotti E, Pizzo P, Pozzan T. Ca2+ and cAMP cross-talk in mitochondria. The Journal of Physiology. 2014;592(2):305–12.  https://doi.org/10.1113/jphysiol.2013.259135.Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2019

Authors and Affiliations

  • Belén Mollá
    • 1
    • 2
  • Diana C. Muñoz-Lasso
    • 3
    • 4
  • Pablo Calap
    • 1
    • 3
    • 4
    • 5
  • Angel Fernandez-Vilata
    • 6
  • María de la Iglesia-Vaya
    • 6
    • 7
    • 8
  • Federico V. Pallardó
    • 1
    • 3
    • 4
    • 9
  • Maria Dolores Moltó
    • 5
    • 8
    • 9
  • Francesc Palau
    • 1
    • 10
    • 11
  • Pilar Gonzalez-Cabo
    • 1
    • 3
    • 4
    • 9
    Email author
  1. 1.CIBER de Enfermedades Raras (CIBERER)ValenciaSpain
  2. 2.Instituto de Biomedicina de Valencia (IBV), CSICValenciaSpain
  3. 3.Department of Physiology, Faculty of Medicine and DentistryUniversity of ValenciaValenciaSpain
  4. 4.Associated Unit for Rare Diseases INCLIVA-CIPFValenciaSpain
  5. 5.Department of GeneticsUniversity of Valencia, Campus of BurjassotValenciaSpain
  6. 6.Brain Connectivity Laboratory, Joint Unit FISABIO & Prince Felipe Research Centre (CIPF)ValenciaSpain
  7. 7.Regional Ministry of Health in ValenciaHospital Sagunto (CEIB-CSUSP)ValenciaSpain
  8. 8.CIBER de Salud Mental (CIBERSAM)ValenciaSpain
  9. 9.Biomedical Research Institute INCLIVAValenciaSpain
  10. 10.Institut de Recerca Sant Joan de Déu and Department of Genetic & Molecular Medicine and IPERHospital Sant Joan de DéuBarcelonaSpain
  11. 11.Department of PediatricsUniversity of Barcelona School of MedicineBarcelonaSpain

Personalised recommendations