, Volume 16, Issue 1, pp 59–66 | Cite as

Stereoelectroencephalography Versus Subdural Electrodes for Localization of the Epileptogenic Zone: What Is the Evidence?

  • Joel S. Katz
  • Taylor J. AbelEmail author


Accurate and safe localization of epileptic foci is the crux of surgical therapy for focal epilepsy. As an initial evaluation, patients with drug-resistant epilepsy often undergo evaluation by noninvasive methods to identify the epileptic focus (i.e., the epileptogenic zone (EZ)). When there is incongruence of noninvasive neuroimaging, electroencephalographic, and clinical data, direct intracranial recordings of the brain are often necessary to delineate the EZ and determine the best course of treatment. Stereoelectroencephalography (SEEG) and subdural electrodes (SDEs) are the 2 most common methods for recording directly from the cortex to delineate the EZ. For the past several decades, SEEG and SDEs have been used almost exclusively in specific geographic regions (i.e., France and Italy for stereo-EEG and elsewhere for SDEs) for virtually the same indications. In the last decade, however, stereo-EEG has started to spread from select centers in Europe to many locations worldwide. Nevertheless, it is still not the preferred method for invasive localization of the EZ at many centers that continue to employ SDEs exclusively. Despite the increased dissemination of the SEEG method throughout the globe, important questions remain unanswered. Which method (SEEG or SDEs) is superior for identification of the EZ and does it depend on the etiology of epilepsy? Which technique is safer and does this hold for all patient populations? Should these 2 methods have equivalent indications or be used selectively for different focal epilepsies? In this review, we seek to address these questions using current invasive monitoring literature. Available meta-analyses of observational data suggest that SEEG is safer than SDEs, but it is less clear from available data which method is more accurate at delineating the EZ.

Key Words

Epilepsy seizures neuroimaging neurosurgery focal cortical dysplasia tumor stereotaxy 


Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2018_703_MOESM1_ESM.pdf (498 kb)
ESM 1 (PDF 498 kb)


  1. 1.
    Liu JT, Liu B, Zhang H. Surgical versus medical treatment of drug-resistant epilepsy: A systematic review and meta-analysis. Epilepsy & Behavior: E&B, 82, 179–188 (2018).CrossRefGoogle Scholar
  2. 2.
    Abou-Al-Shaar H, Brock AA, Kundu B, Englot DJ, Rolston JD. Increased nationwide use of stereoencephalography for intracranial epilepsy electroencephalography recordings. Journal of Clinical Neuroscience: official journal of the Neurosurgical Society of Australasia, 53, 132–134 (2018).CrossRefGoogle Scholar
  3. 3.
    Dwivedi R, Ramanujam B, Chandra PS et al. Surgery for Drug-Resistant Epilepsy in Children. The New England Journal of Medicine, 377(17), 1639–1647 (2017).CrossRefGoogle Scholar
  4. 4.
    Lüders HO, Najm I, Nair D, Widdess-Walsh P, Bingman W. The epileptogenic zone: general principles. Epileptic Disorders, 8(2), 1–9 (2006).Google Scholar
  5. 5.
    Kahane P, Landré E, Minotti L, Francione S, Ryvlin P. The Bancaud and Talairach view on the epileptogenic zone: a working hypothesis. Epileptic Disorders, 8(2), 16–26 (2006).Google Scholar
  6. 6.
    Jayakar P, Gotman J, Harvey AS et al. Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques. Epilepsia, 57(11), 1735–1747 (2016).CrossRefGoogle Scholar
  7. 7.
    Cardinale F, Cossu M, Castana L et al. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery, 72(3), 353–366 (2012).CrossRefGoogle Scholar
  8. 8.
    Wyllie E, Lüders H, Morris III H et al. Subdural electrodes in the evaluation for epilepsy surgery in children and adults. Neuropediatrics, 19(02), 80–86 (1988).CrossRefGoogle Scholar
  9. 9.
    Minotti L, Montavont A, Scholly J, Tyvaert L, Taussig D. Indications and limits of stereoelectroencephalography (SEEG). Neurophysiologie Clinique = Clinical Neurophysiology, 48(1), 15–24 (2018).CrossRefGoogle Scholar
  10. 10.
    Zumsteg D, Wieser HG. Presurgical evaluation: current role of invasive EEG. Epilepsia, 41 Suppl 3, S55–60 (2000).CrossRefGoogle Scholar
  11. 11.
    Englot DJ. A modern epilepsy surgery treatment algorithm: Incorporating traditional and emerging technologies. Epilepsy & Behavior: E&B, 80, 68–74 (2018).CrossRefGoogle Scholar
  12. 12.
    Kahane P, Arzimanoglou A, Benabid A, Chauvel P. Epilepsy surgery in France. In: Textbook of epilepsy surgery. (Informa Healthcare, London, 2008) 46–51.CrossRefGoogle Scholar
  13. 13.
    Avanzini G, Tassi L. Epilepsy surgery in Italy. In: Textbook of Epilepsy Surgery. (CRC Press, 2008) 94–98.Google Scholar
  14. 14.
    Feindel W. Epilepsy surgery in Canada. Textbook of epilepsy surgery, 103–115 (2008).CrossRefGoogle Scholar
  15. 15.
    Englot DJ. A modern epilepsy surgery treatment algorithm: Incorporating traditional and emerging technologies. Epilepsy & Behavior, 80, 68–74 (2018).CrossRefGoogle Scholar
  16. 16.
    Abou-Al-Shaar H, Brock AA, Kundu B, Englot DJ, Rolston JD. Increased nationwide use of stereoencephalography for intracranial epilepsy electroencephalography recordings. Journal of Clinical Neuroscience, (2018).Google Scholar
  17. 17.
    Chabardes S, Abel TJ, Cardinale F, Kahane P. Commentary: Understanding Stereoelectroencephalography: What’s Next? Neurosurgery, 82(1), E15-E16 (2017).CrossRefGoogle Scholar
  18. 18.
    Diehl B, Lüders H. Temporal lobe epilepsy: when are invasive recordings needed? Epilepsia, 41, S61-S74 (2000).CrossRefGoogle Scholar
  19. 19.
    Cossu M, Lo Russo G, Francione S et al. Epilepsy surgery in children: results and predictors of outcome on seizures. Epilepsia, 49(1), 65–72 (2008).CrossRefGoogle Scholar
  20. 20.
    Salazar F, Bingaman W. Placement of subdural grids. Textbook of Epilepsy Surgery. London, Informa Healthcare, Taylor & Francis distributor, 931–937 (2008).CrossRefGoogle Scholar
  21. 21.
    Hoffmann D, Lo Russo G, Cossu M. Stereoelectroencephalography. Textbook of Epilepsy Surgery. London: Informa healthcare, 945–959 (2008).CrossRefGoogle Scholar
  22. 22.
    Gonzalez-Martinez JA. The stereo-electroencephalography: the epileptogenic zone. Journal of Clinical Neurophysiology, 33(6), 522–529 (2016).CrossRefGoogle Scholar
  23. 23.
    Minotti L, Montavont A, Scholly J, Tyvaert L, Taussig D. Indications and limits of stereoelectroencephalography (SEEG). Neurophysiologie Clinique, (2018).Google Scholar
  24. 24.
    Abel TJ, Osorio RV, Amorim-Leite R et al. Frameless Robot-Assisted Stereoelectroencephalography in Children: Technical Note and Comparison with Talairach Frame Technique. Journal of Neurosurgery: Pediatrics, In Press (2018).Google Scholar
  25. 25.
    Cardinale F, Pero G, Quilici L et al. Cerebral angiography for multimodal surgical planning in epilepsy surgery: description of a new three-dimensional technique and literature review. World Neurosurgery, 84(2), 358–367 (2015).CrossRefGoogle Scholar
  26. 26.
    Guenot M, Isnard J, Ryvlin P et al. Neurophysiological monitoring for epilepsy surgery: the Talairach SEEG method. Stereotactic and Functional Neurosurgery, 77(1–4), 29–32 (2001).CrossRefGoogle Scholar
  27. 27.
    Abel TJ, Varela Osorio R, Amorim-Leite R et al. Frameless robot-assisted stereoelectroencephalography in children: technical aspects and comparison with Talairach frame technique. Journal of Neurosurgery: Pediatrics, 1–10 (2018).Google Scholar
  28. 28.
    Joswig H, Benson CM, Parrent AG, MacDougall KW, Steven DA. Operative Nuances of Stereotactic Leksell Frame-Based Depth Electrode Implantation. Operative Neurosurgery, (2017).Google Scholar
  29. 29.
    Joswig H, Parrent AG, MacDougall KW, Steven DA. Prohibited Arc Angles During Leksell Frame-Based Stereotaxy. World Neurosurgery, 112, 123–125 (2018).CrossRefGoogle Scholar
  30. 30.
    Ollivier I, Behr C, Cebula H et al. Efficacy and safety in frameless robot-assisted stereo-electroencephalography (SEEG) for drug-resistant epilepsy. Neurochirurgie, 63(4), 286–290 (2017).CrossRefGoogle Scholar
  31. 31.
    González-Martínez J, Bulacio J, Thompson S et al. Technique, results, and complications related to robot-assisted stereoelectroencephalography. Neurosurgery, 78(2), 169–180 (2015).CrossRefGoogle Scholar
  32. 32.
    Abhinav K, Prakash S, Sandeman DR. Use of robot-guided stereotactic placement of intracerebral electrodes for investigation of focal epilepsy: initial experience in the UK. British Journal of Neurosurgery, 27(5), 704–705 (2013).CrossRefGoogle Scholar
  33. 33.
    Nagahama Y, Schmitt AJ, Nakagawa D et al. Intracranial EEG for seizure focus localization: evolving techniques, outcomes, complications, and utility of combining surface and depth electrodes. Journal of Neurosurgery, 1–13 (2018).Google Scholar
  34. 34.
    Skoch J, Adelson PD, Bhatia S et al. Subdural grid and depth electrode monitoring in pediatric patients. Epilepsia, 58, 56–65 (2017).CrossRefGoogle Scholar
  35. 35.
    Pindrik J, Hoang N, Tubbs RS, Rocque BJ, Rozzelle CJ. Trans-falcine and contralateral sub-frontal electrode placement in pediatric epilepsy surgery. Child’s Nervous System, 33(8), 1379–1388 (2017).CrossRefGoogle Scholar
  36. 36.
    Abel TJ, Rhone AE, Nourski KV et al. Mapping the temporal pole with a specialized electrode array: technique and preliminary results. Physiological Measurement, 35(3), 323 (2014).CrossRefGoogle Scholar
  37. 37.
    Abel TJ, Woodroffe RW, Nourski KV et al. Role of the temporal pole in temporal lobe epilepsy seizure networks: an intracranial electrode investigation. Journal of Neurosurgery, 1–9 (2017).Google Scholar
  38. 38.
    Cohen-Gadol AA, Spencer DD. Use of an anteromedial subdural strip electrode in the evaluation of medial temporal lobe epilepsy. Journal of Neurosurgery, 99(5), 921–923 (2003).CrossRefGoogle Scholar
  39. 39.
    Abuelem T, Friedman DE, Agadi S, Wilfong AA, Yoshor D. Interhemispheric subdural electrodes: technique, utility, and safety. Operative Neurosurgery, 73(2), ons253-ons260 (2013).CrossRefGoogle Scholar
  40. 40.
    Di Vito L, Mauguière F, Catenoix H et al. Epileptic networks in patients with bitemporal epilepsy: the role of SEEG for the selection of good surgical candidates. Epilepsy Research, 128, 73–82 (2016).CrossRefGoogle Scholar
  41. 41.
    Didato G, Chiesa V, Villani F et al. Bitemporal epilepsy: A specific anatomo-electro-clinical phenotype in the temporal lobe epilepsy spectrum. Seizure, 31, 112–119 (2015).CrossRefGoogle Scholar
  42. 42.
    Aubert S, Bonini F, Curot J et al. The role of sub-hippocampal versus hippocampal regions in bitemporal lobe epilepsies. Clinical Neurophysiology, 127(9), 2992–2999 (2016).CrossRefGoogle Scholar
  43. 43.
    Chipaux M, Dorfmüller G, Fohlen M et al. Refractory spasms of focal onset—A potentially curable disease that should lead to rapid surgical evaluation. Seizure, 51, 163–170 (2017).CrossRefGoogle Scholar
  44. 44.
    Taussig D, Dorfmüller G, Fohlen M et al. Invasive explorations in children younger than 3 years. Seizure, 21(8), 631–638 (2012).CrossRefGoogle Scholar
  45. 45.
    Mullin JP, Shriver M, Alomar S et al. Is SEEG safe? A systematic review and meta-analysis of stereo-electroencephalography-related complications. Epilepsia, 57(3), 386–401 (2016).CrossRefGoogle Scholar
  46. 46.
    Arya R, Mangano FT, Horn PS, Holland KD, Rose DF, Glauser TA. Adverse events related to extraoperative invasive EEG monitoring with subdural grid electrodes: a systematic review and meta-analysis. Epilepsia, 54(5), 828–839 (2013).CrossRefGoogle Scholar
  47. 47.
    Ho AL, Muftuoglu Y, Pendharkar AV et al. Robot-guided pediatric stereoelectroencephalography: single-institution experience. Journal of Neurosurgery: Pediatrics, 1–8 (2018).Google Scholar
  48. 48.
    Goldstein HE, Youngerman BE, Shao B et al. Safety and efficacy of stereoelectroencephalography in pediatric focal epilepsy: a single-center experience. Journal of Neurosurgery: Pediatrics, 1–9 (2018).Google Scholar
  49. 49.
    Fountas KN, Smith JR. Subdural electrode-associated complications: a 20-year experience. Stereotactic and Functional Neurosurgery, 85(6), 264–272 (2007).CrossRefGoogle Scholar
  50. 50.
    Hamer H, Morris H, Mascha E et al. Complications of invasive video-EEG monitoring with subdural grid electrodes. Neurology, 58(1), 97–103 (2002).CrossRefGoogle Scholar
  51. 51.
    Johnston Jr JM, Mangano FT, Ojemann JG, Park TS, Trevathan E, Smyth MD. Complications of invasive subdural electrode monitoring at St. Louis Children’s Hospital, 1994–2005. Journal of Neurosurgery: Pediatrics, 105(5), 343–347 (2006).Google Scholar
  52. 52.
    Mullin JP, Sexton D, Al-Omar S, Bingaman W, Gonzalez-Martinez J. Outcomes of subdural grid electrode monitoring in the stereoelectroencephalography era. World Neurosurgery, 89, 255–258 (2016).CrossRefGoogle Scholar
  53. 53.
    Adelson D, Black PM, Madsen JR et al. Use of subdural grids and strip electrodes to identify a seizure focus in children. Pediatric Neurosurgery, 22(4), 174–180 (1995).CrossRefGoogle Scholar
  54. 54.
    Albert GW, Dahdaleh NS, Reddy C et al. Postoperative radiographic findings in patients undergoing intracranial electrode monitoring for medically refractory epilepsy. Journal of Neurosurgery, 112(2), 449–454 (2010).CrossRefGoogle Scholar
  55. 55.
    Mocco J, Komotar RJ, Ladouceur AK, Zacharia BE, Goodman RR, McKhann GM. Radiographic characteristics fail to predict clinical course after subdural electrode placement. Neurosurgery, 58(1), 120–125 (2006).CrossRefGoogle Scholar
  56. 56.
    Mirandola L, Mai RF, Francione S et al. Stereo-EEG: Diagnostic and therapeutic tool for periventricular nodular heterotopia epilepsies. Epilepsia, 58(11), 1962–1971 (2017).CrossRefGoogle Scholar
  57. 57.
    Sevy A, Gavaret M, Trebuchon A et al. Beyond the lesion: the epileptogenic networks around cavernous angiomas. Epilepsy Research, 108(4), 701–708 (2014).CrossRefGoogle Scholar
  58. 58.
    Aubert S, Wendling F, Regis J et al. Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours. Brain: a journal of neurology, 132(Pt 11), 3072–3086 (2009).CrossRefGoogle Scholar
  59. 59.
    Abel TJ, Losito E, Ibrahim GM, Asano E, Rutka JT. Multimodal localization and surgery for epileptic spasms of focal origin: a review. Neurosurgical Focus, 45(3), E4 (2018).CrossRefGoogle Scholar
  60. 60.
    Van Gompel JJ, Worrell GA, Bell ML et al. Intracranial electroencephalography with subdural grid electrodes: techniques, complications, and outcomes. Neurosurgery, 63(3), 498–506 (2008).CrossRefGoogle Scholar
  61. 61.
    Bauman JA, Feoli E, Romanelli P, Doyle WK, Devinsky O, Weiner HL. Multistage epilepsy surgery: safety, efficacy, and utility of a novel approach in pediatric extratemporal epilepsy. Neurosurgery, 56(2), 318–334 (2005).CrossRefGoogle Scholar
  62. 62.
    Bekelis K, Radwan TA, Desai A et al. Subdural interhemispheric grid electrodes for intracranial epilepsy monitoring: feasibility, safety, and utility. Journal of Neurosurgery, 117(6), 1182–1188 (2012).CrossRefGoogle Scholar
  63. 63.
    Gras-Combe G, Minotti L, Hoffmann D, Krainik A, Kahane P, Chabardes S. Surgery for nontumoral insular epilepsy explored by stereoelectroencephalography. Neurosurgery, 79(4), 578–588 (2016).CrossRefGoogle Scholar
  64. 64.
    Vale F, Pollock G, Dionisio J, Benbadis S, Tatum W. Outcome and complications of chronically implanted subdural electrodes for the treatment of medically resistant epilepsy. Clinical Neurology and Neurosurgery, 115(7), 985–990 (2013).CrossRefGoogle Scholar
  65. 65.
    Yang P-F, Zhang H-J, Pei J-S et al. Intracranial electroencephalography with subdural and/or depth electrodes in children with epilepsy: techniques, complications, and outcomes. Epilepsy Research, 108(9), 1662–1670 (2014).CrossRefGoogle Scholar
  66. 66.
    Serletis D, Bulacio J, Bingaman W, Najm I, González-Martínez J. The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. Journal of Neurosurgery, 121(5), 1239–1246 (2014).CrossRefGoogle Scholar
  67. 67.
    Cossu M, Cardinale F, Colombo N et al. Stereoelectroencephalography in the presurgical evaluation of children with drug-resistant focal epilepsy. Journal of Neurosurgery: Pediatrics, 103(4), 333–343 (2005).Google Scholar
  68. 68.
    Gonzalez-Martinez J, Lachhwani D. Stereoelectroencephalography in children with cortical dysplasia: technique and results. Child’s Nervous System, 30(11), 1853–1857 (2014).CrossRefGoogle Scholar
  69. 69.
    Iida K, Otsubo H. Stereoelectroencephalography: Indication and Efficacy. Neurologia Medico-Chirurgica, 57(8), 375–385 (2017).CrossRefGoogle Scholar
  70. 70.
    Gonzalez-Martinez J, Bulacio J, Thompson S et al. Technique, Results, and Complications Related to Robot-Assisted Stereoelectroencephalography. Neurosurgery, 78(2), 169–180 (2016).CrossRefGoogle Scholar
  71. 71.
    Kovac S, Vakharia VN, Scott C, Diehl B. Invasive epilepsy surgery evaluation. Seizure, 44, 125–136 (2017).CrossRefGoogle Scholar
  72. 72.
    De Benedictis A, Trezza A, Carai A et al. Robot-assisted procedures in pediatric neurosurgery. Neurosurgical Focus, 42(5), E7 (2017).CrossRefGoogle Scholar
  73. 73.
    Miller BA, Salehi A, Limbrick DD, Jr., Smyth MD. Applications of a robotic stereotactic arm for pediatric epilepsy and neurooncology surgery. Journal of Neurosurgery. Pediatrics, 20(4), 364–370 (2017).CrossRefGoogle Scholar
  74. 74.
    Chabardès S, Kahane P, Minotti L et al. The temporopolar cortex plays a pivotal role in temporal lobe seizures. Brain: a journal of neurology, 128(8), 1818–1831 (2005).CrossRefGoogle Scholar
  75. 75.
    Tassi L, Colombo N, Cossu M et al. Electroclinical, MRI and neuropathological study of 10 patients with nodular heterotopia, with surgical outcomes. Brain: a journal of neurology, 128(2), 321–337 (2004).CrossRefGoogle Scholar
  76. 76.
    Aghakhani Y, Kinay D, Gotman J et al. The role of periventricular nodular heterotopia in epileptogenesis. Brain: a journal of neurology, 128(3), 641–651 (2005).CrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2019

Authors and Affiliations

  1. 1.Department of Neurological SurgeryUniversity of PittsburghPittsburghUSA
  2. 2.Department of Neurological Surgery, School of MedicineUniversity of PittsburghPittsburghUSA

Personalised recommendations