Advertisement

Neurotherapeutics

, Volume 15, Issue 4, pp 840–848 | Cite as

Emerging Strategies in the Treatment of Duchenne Muscular Dystrophy

  • Perry B. Shieh
Review

Abstract

Duchenne muscular dystrophy (DMD) is a progressive X-linked degenerative muscle disease due to mutations in the DMD gene. Genetic confirmation has become standard in recent years. Improvements in the standard of care for DMD have led to improved survival. Novel treatments for DMD have focused on reducing the dystrophic mechanism of the muscle disease, modulating utrophin protein expression, and restoring dystrophin protein expression. Among the strategies to reduce the dystrophic mechanisms are 1) inhibiting inflammation, 2) promoting muscle growth and regeneration, 3) reducing fibrosis, and 4) facilitating mitochondrial function. The agents under investigation include a novel steroid, myostatin inhibitors, idebenone, an anti-CTGF antibody, a histone deacetylase inhibitor, and cardiosphere-derived cells. For utrophin modulation, AAV-mediated gene therapy with GALGT2 is currently being investigated to upregulate utrophin expression. Finally, the strategies for dystrophin protein restoration include 1) nonsense readthrough, 2) synthetic antisense oligonucleotides for exon skipping, and 3) AAV-mediated micro/minidystrophin gene delivery. With newer agents, we are witnessing the use of more advanced biotechnological methods. Although these potential breakthroughs provide significant promise, they may also raise new questions regarding treatment effect and safety.

Keywords

Duchenne muscular dystrophy Dystrophin Gene therapy 

Supplementary material

13311_2018_687_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1225 kb)

References

  1. 1.
    Mendell JR, Shilling C, Leslie ND, Flanigan KM, al-Dahhak R, Gastier-Foster J, et al. Evidence-based path to newborn screening for Duchenne muscular dystrophy. Ann Neurol. 2012;71(3):304–13.CrossRefGoogle Scholar
  2. 2.
    Moat SJ, Bradley DM, Salmon R, Clarke A, Hartley L. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). European journal of human genetics : EJHG. 2013;21(10):1049–53.CrossRefGoogle Scholar
  3. 3.
    Duchenne G-B-A. Paraplegie hypertrophique de l'enfance de cause cerebrale1861.Google Scholar
  4. 4.
    Birnkrant DJ, Bushby K, Bann CM, Alman BA, Apkon SD, Blackwell A, et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018;17(4):347–61.CrossRefGoogle Scholar
  5. 5.
    Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Brumbaugh D, et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018;17(3):251–67.CrossRefGoogle Scholar
  6. 6.
    Birnkrant DJ, Bushby K, Bann CM, Apkon SD, Blackwell A, Colvin MK, et al. Diagnosis and management of Duchenne muscular dystrophy, part 3: primary care, emergency management, psychosocial care, and transitions of care across the lifespan. Lancet Neurol. 2018;17(5):445–55.CrossRefGoogle Scholar
  7. 7.
    Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM. Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell. 1987;50(3):509–17.CrossRefGoogle Scholar
  8. 8.
    Hoffman EP, Brown RH, Jr., Kunkel LM. Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell. 1987;51(6):919–28.CrossRefGoogle Scholar
  9. 9.
    Haldane JBS. The rate of spontaneous mutation of a human gene. Journal of Genetics. 1935;31.Google Scholar
  10. 10.
    Lane RJ, Robinow M, Roses AD. The genetic status of mothers of isolated cases of Duchenne muscular dystrophy. Journal of medical genetics. 1983;20(1):1–11.CrossRefGoogle Scholar
  11. 11.
    Russo A, Barbujani G, Mostacciuolo ML, Herrmann FH, Spiegler AW, Galluzzi G, et al. Sporadic cases in Duchenne muscular dystrophy. A reappraisal through segregation analysis on 988 sibships. Human genetics. 1987;76(3):230–5.CrossRefGoogle Scholar
  12. 12.
    Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K, Kosma K, et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat. 2015;36(4):395–402.CrossRefGoogle Scholar
  13. 13.
    Monaco AP, Bertelson CJ, Liechti-Gallati S, Moser H, Kunkel LM. An explanation for the phenotypic differences between patients bearing partial deletions of the DMD locus. Genomics. 1988;2(1):90–5.CrossRefGoogle Scholar
  14. 14.
    Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJ, Den Dunnen JT. Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve. 2006;34(2):135–44.CrossRefGoogle Scholar
  15. 15.
    Monaco AP, Neve RL, Colletti-Feener C, Bertelson CJ, Kurnit DM, Kunkel LM. Isolation of candidate cDNAs for portions of the Duchenne muscular dystrophy gene. Nature. 1986;323(6089):646–50.CrossRefGoogle Scholar
  16. 16.
    Pillers DA, Bulman DE, Weleber RG, Sigesmund DA, Musarella MA, Powell BR, et al. Dystrophin expression in the human retina is required for normal function as defined by electroretinography. Nature genetics. 1993;4(1):82–6.CrossRefGoogle Scholar
  17. 17.
    Lidov HG, Selig S, Kunkel LM. Dp140: a novel 140 kDa CNS transcript from the dystrophin locus. Human molecular genetics. 1995;4(3):329–35.CrossRefGoogle Scholar
  18. 18.
    Byers TJ, Lidov HG, Kunkel LM. An alternative dystrophin transcript specific to peripheral nerve. Nature genetics. 1993;4(1):77–81.CrossRefGoogle Scholar
  19. 19.
    Tinsley JM, Blake DJ, Davies KE. Apo-dystrophin-3: a 2.2kb transcript from the DMD locus encoding the dystrophin glycoprotein binding site. Human molecular genetics. 1993;2(5):521–4.CrossRefGoogle Scholar
  20. 20.
    Vo AH, McNally EM. Modifier genes and their effect on Duchenne muscular dystrophy. Current opinion in neurology. 2015;28(5):528–34.CrossRefGoogle Scholar
  21. 21.
    Passamano L, Taglia A, Palladino A, Viggiano E, D'Ambrosio P, Scutifero M, et al. Improvement of survival in Duchenne Muscular Dystrophy: retrospective analysis of 835 patients. Acta myologica : myopathies and cardiomyopathies : official journal of the Mediterranean Society of Myology. 2012;31(2):121–5.Google Scholar
  22. 22.
    Griggs RC, Herr BE, Reha A, Elfring G, Atkinson L, Cwik V, et al. Corticosteroids in Duchenne muscular dystrophy: major variations in practice. Muscle Nerve. 2013;48(1):27–31.CrossRefGoogle Scholar
  23. 23.
    Griggs RC, Moxley RT, 3rd, Mendell JR, Fenichel GM, Brooke MH, Pestronk A, et al. Prednisone in Duchenne dystrophy. A randomized, controlled trial defining the time course and dose response. Clinical Investigation of Duchenne Dystrophy Group. Archives of neurology. 1991;48(4):383–8.CrossRefGoogle Scholar
  24. 24.
    Ricotti V, Ridout DA, Pane M, Main M, Mayhew A, Mercuri E, et al. The NorthStar Ambulatory Assessment in Duchenne muscular dystrophy: considerations for the design of clinical trials. Journal of neurology, neurosurgery, and psychiatry. 2016;87(2):149–55.Google Scholar
  25. 25.
    Henricson EK, Abresch RT, Cnaan A, Hu F, Duong T, Arrieta A, et al. The cooperative international neuromuscular research group Duchenne natural history study: glucocorticoid treatment preserves clinically meaningful functional milestones and reduces rate of disease progression as measured by manual muscle testing and other commonly used clinical trial outcome measures. Muscle Nerve. 2013;48(1):55–67.CrossRefGoogle Scholar
  26. 26.
    Lebel DE, Corston JA, McAdam LC, Biggar WD, Alman BA. Glucocorticoid treatment for the prevention of scoliosis in children with Duchenne muscular dystrophy: long-term follow-up. The Journal of bone and joint surgery American volume. 2013;95(12):1057–61.CrossRefGoogle Scholar
  27. 27.
    Bonifati MD, Ruzza G, Bonometto P, Berardinelli A, Gorni K, Orcesi S, et al. A multicenter, double-blind, randomized trial of deflazacort versus prednisone in Duchenne muscular dystrophy. Muscle Nerve. 2000;23(9):1344–7.CrossRefGoogle Scholar
  28. 28.
    Griggs RC, Miller JP, Greenberg CR, Fehlings DL, Pestronk A, Mendell JR, et al. Efficacy and safety of deflazacort vs prednisone and placebo for Duchenne muscular dystrophy. Neurology. 2016;87(20):2123–31.CrossRefGoogle Scholar
  29. 29.
    Shieh PB, McIntosh J, Jin F, Souza M, Elfring G, Narayanan S, et al. Deflazacort vs prednisone/prednisolone for maintaining motor function and delaying loss of ambulation: A post hoc analysis from the ACT DMD trial. Muscle Nerve. 2018.Google Scholar
  30. 30.
    Finding the Optimum Regimen for Duchenne Muscular Dystrophy (FOR-DMD). https://clinicaltrials.gov/ct2/show/NCT01603407.
  31. 31.
    Heier CR, Damsker JM, Yu Q, Dillingham BC, Huynh T, Van der Meulen JH, et al. VBP15, a novel anti-inflammatory and membrane-stabilizer, improves muscular dystrophy without side effects. EMBO molecular medicine. 2013;5(10):1569–85.CrossRefGoogle Scholar
  32. 32.
    A Study to Assess the Efficacy and Safety of Vamorolone in Boys With Duchenne Muscular Dystrophy (DMD). https://clinicaltrials.gov/ct2/show/NCT03439670.
  33. 33.
    Donovan JM, Zimmer M, Offman E, Grant T, Jirousek M. A Novel NF-kappaB Inhibitor, Edasalonexent (CAT-1004), in Development as a Disease-Modifying Treatment for Patients With Duchenne Muscular Dystrophy: Phase 1 Safety, Pharmacokinetics, and Pharmacodynamics in Adult Subjects. Journal of clinical pharmacology. 2017;57(5):627–39.CrossRefGoogle Scholar
  34. 34.
    Phase 1/2 Study in Boys With Duchenne Muscular Dystrophy (MoveDMD®). https://clinicaltrials.gov/ct2/show/NCT02439216.
  35. 35.
    McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90.CrossRefGoogle Scholar
  36. 36.
    Wagner KR, McPherron AC, Winik N, Lee SJ. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol. 2002;52(6):832–6.CrossRefGoogle Scholar
  37. 37.
    A Phase 2 Study to Evaluate the Safety, Efficacy, Pharmacokinetics and Pharmacodynamics of PF-06252616 in Duchenne Muscular Dystrophy. https://clinicaltrials.gov/ct2/show/NCT02310763.
  38. 38.
    Pfizer terminates domagrozumab PF-06252616 clinical studies for the treatment of Duchenne Muscular Dystrophy [press release]. https://www.pfizer.com/news/press-release/press-release-detail/pfizer_terminates_domagrozumab_pf_06252616_clinical_studies_for_the_treatment_of_duchenne_muscular_dystrophy, 30 August 2018 2018.
  39. 39.
    Clinical Trial to Evaluate the Efficacy, Safety, and Tolerability of RO7239361 in Ambulatory Boys With Duchenne Muscular Dystrophy. https://clinicaltrials.gov/ct2/show/NCT03039686.
  40. 40.
    Gueven N, Woolley K, Smith J. Border between natural product and drug: comparison of the related benzoquinones idebenone and coenzyme Q10. Redox biology. 2015;4:289–95.CrossRefGoogle Scholar
  41. 41.
    Buyse GM, Voit T, Schara U, Straathof CS, D'Angelo MG, Bernert G, et al. Efficacy of idebenone on respiratory function in patients with Duchenne muscular dystrophy not using glucocorticoids (DELOS): a double-blind randomised placebo-controlled phase 3 trial. Lancet 2015;385(9979):1748–57.CrossRefGoogle Scholar
  42. 42.
    A Phase III Double-blind Study With Idebenone in Patients With Duchenne Muscular Dystrophy (DMD) Taking Glucocorticoid Steroids (SIDEROS). https://clinicaltrials.gov/ct2/show/NCT02814019.
  43. 43.
    Minetti GC, Colussi C, Adami R, Serra C, Mozzetta C, Parente V, et al. Functional and morphological recovery of dystrophic muscles in mice treated with deacetylase inhibitors. Nature medicine. 2006;12(10):1147–50.CrossRefGoogle Scholar
  44. 44.
    Clinical Study to Evaluate the Efficacy and Safety of Givinostat in Ambulant Patients With Duchenne Muscular Dystrophy. https://clinicaltrials.gov/ct2/show/NCT02851797.
  45. 45.
    Trial of Pamrevlumab (FG-3019), in Non-Ambulatory Subjects With Duchenne Muscular Dystrophy (DMD). https://clinicaltrials.gov/ct2/show/NCT02606136.
  46. 46.
    Aminzadeh MA, Rogers RG, Fournier M, Tobin RE, Guan X, Childers MK, et al. Exosome-Mediated Benefits of Cell Therapy in Mouse and Human Models of Duchenne Muscular Dystrophy. Stem cell reports. 2018;10(3):942–55.CrossRefGoogle Scholar
  47. 47.
    A Study of CAP-1002 in Ambulatory and Non-Ambulatory Patients With Duchenne Muscular Dystrophy (HOPE-2). https://clinicaltrials.gov/ct2/show/NCT03406780.
  48. 48.
    Tinsley JM, Blake DJ, Roche A, Fairbrother U, Riss J, Byth BC, et al. Primary structure of dystrophin-related protein. Nature. 1992;360(6404):591–3.CrossRefGoogle Scholar
  49. 49.
    Ohlendieck K, Ervasti JM, Matsumura K, Kahl SD, Leveille CJ, Campbell KP. Dystrophin-related protein is localized to neuromuscular junctions of adult skeletal muscle. Neuron. 1991;7(3):499–508.CrossRefGoogle Scholar
  50. 50.
    Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, et al. Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell. 1997;90(4):717–27.CrossRefGoogle Scholar
  51. 51.
    Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR. Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell. 1997;90(4):729–38.CrossRefGoogle Scholar
  52. 52.
    Tinsley J, Deconinck N, Fisher R, Kahn D, Phelps S, Gillis JM, et al. Expression of full-length utrophin prevents muscular dystrophy in mdx mice. Nature medicine. 1998;4(12):1441–4.CrossRefGoogle Scholar
  53. 53.
    PoC Study to Assess Activity and Safety of SMT C1100 (Ezutromid) in Boys With DMD (PhaseOut DMD). https://clinicaltrials.gov/ct2/show/NCT02858362.
  54. 54.
    Summit Announces PhaseOut DMD Did Not Meet Primary Endpoint [press release]. https://www.summitplc.com/wp-content/uploads/2018/08/2018_RNS_30-PhaseOut-Full-Results-FINAL.pdf, 27 June 2018 2018.
  55. 55.
    Gene Transfer Clinical Trial to Deliver rAAVrh74.MCK.GALGT2 for Duchenne Muscular Dystrophy. https://clinicaltrials.gov/ct2/show/NCT03333590.
  56. 56.
    Nguyen HH, Jayasinha V, Xia B, Hoyte K, Martin PT. Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proceedings of the National Academy of Sciences of the United States of America. 2002;99(8):5616–21.CrossRefGoogle Scholar
  57. 57.
    Martin PT, Xu R, Rodino-Klapac LR, Oglesbay E, Camboni M, Montgomery CL, et al. Overexpression of Galgt2 in skeletal muscle prevents injury resulting from eccentric contractions in both mdx and wild-type mice. American journal of physiology Cell physiology. 2009;296(3):C476–88.CrossRefGoogle Scholar
  58. 58.
    Welch EM, Barton ER, Zhuo J, Tomizawa Y, Friesen WJ, Trifillis P, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature. 2007;447(7140):87–91.CrossRefGoogle Scholar
  59. 59.
    McDonald CM, Campbell C, Torricelli RE, Finkel RS, Flanigan KM, Goemans N, et al. Ataluren in patients with nonsense mutation Duchenne muscular dystrophy (ACT DMD): a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10101):1489–98.CrossRefGoogle Scholar
  60. 60.
    Long-Term Outcomes of Ataluren in Duchenne Muscular Dystrophy. https://clinicaltrials.gov/ct2/show/record/NCT03179631.
  61. 61.
    Phase 2 Study to Assess Dystrophin Levels in Subjects With Nonsense Mutation Duchenne Muscular Dystrophy. https://clinicaltrials.gov/ct2/show/NCT03648827.
  62. 62.
    Mann CJ, Honeyman K, Cheng AJ, Ly T, Lloyd F, Fletcher S, et al. Antisense-induced exon skipping and synthesis of dystrophin in the mdx mouse. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(1):42–7.CrossRefGoogle Scholar
  63. 63.
    Aartsma-Rus A, Janson AA, Kaman WE, Bremmer-Bout M, den Dunnen JT, Baas F, et al. Therapeutic antisense-induced exon skipping in cultured muscle cells from six different DMD patients. Human Molecular Genetics. 2003;12(8):907–14.CrossRefGoogle Scholar
  64. 64.
    Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, et al. Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat. 2009;30(3):293–9.CrossRefGoogle Scholar
  65. 65.
    Goemans N, Mercuri E, Belousova E, Komaki H, Dubrovsky A, McDonald CM, et al. A randomized placebo-controlled phase 3 trial of an antisense oligonucleotide, drisapersen, in Duchenne muscular dystrophy. Neuromuscul Disord. 2018;28(1):4–15.CrossRefGoogle Scholar
  66. 66.
    Mendell JR, Goemans N, Lowes LP, Alfano LN, Berry K, Shao J, et al. Longitudinal effect of eteplirsen versus historical control on ambulation in Duchenne muscular dystrophy. Ann Neurol. 2016;79(2):257–71.CrossRefGoogle Scholar
  67. 67.
    Charleston JS, Schnell FJ, Dworzak J, Donoghue C, Lewis S, Chen L, et al. Eteplirsen treatment for Duchenne muscular dystrophy: Exon skipping and dystrophin production. Neurology. 2018;90(24):e2146-e54.CrossRefGoogle Scholar
  68. 68.
    Duchenne Muscular Dystrophy and Related Dystrophinopathies: Developing Drugs for Treatment - Guidance for Industry. http://www.fda.gov/downloads/drugs/GuidanceComplianceRegulatoryInfo/guidance/ucm450229.pdf: Food and Drug Administration; 2018.
  69. 69.
    Bioanalytical Method Validation - Guidance for Industry. http://www.fda.gov/downloads/drugs/guidances/ucm070107.pdf: Food and Drug Administration; 2018.
  70. 70.
    Study of SRP-4045 and SRP-4053 in DMD Patients (ESSENCE). https://clinicaltrials.gov/ct2/show/NCT02500381.
  71. 71.
    Passini MA. Development of Oligonucleotides for the Treatment of Duchenne Muscular Dystrophy (DMD). RNA Meeting, Cold Spring Harbor Laboratory; Cold Spring Harbor, New York2017.Google Scholar
  72. 72.
    Passini MAG, L.; Wood, J.A.; Yao, M.; Estrella, N.L.; Treleaven, C.M.; Charleston, J.S.; Rutkowski, J.V.; Hanson, G.J. Development of PPMO for the Treatment of DMD. 13th Annual Meeting of the Oligonucleotide Therapeutics Society; Bordeaux, France2017.Google Scholar
  73. 73.
    A Study to Evaluate the Safety, Tolerability, and Pharmacokinetics of a Single Dose of SRP-5051 in Patients With Duchenne Muscular Dystrophy (DMD). https://clinicaltrials.gov/ct2/show/NCT03375255.
  74. 74.
    Safety and Dose Finding Study of NS-065/NCNP-01 in Boys With Duchenne Muscular Dystrophy (DMD). https://clinicaltrials.gov/ct2/show/NCT02740972.
  75. 75.
    Safety and Tolerability of WVE-210201 in Patients With Duchenne Muscular Dystrophy. https://clinicaltrials.gov/ct2/show/NCT03508947.
  76. 76.
    Takaishi KK, M.; Ito, K.; Kanda, A.; Takakusa, H.; Miida, H.; Masuda, T.; Nakamura, A.; Onishi, Y.; Onoda, T.; Kazuki, Y.; Oshimura, M.; Takeshima, Y.; Matsuo, M.; Koizumi, M. . Stunning pharmacological properties of DS-5141b, an antisense oligonucleotide consisting of 2’-O,4’-C-ethylene-bridged nucleic acids and 2’-O-methyl RNA, on dystrophin mRNA exon skipping. 22nd International Congress of the World Muscle Society; San Malo, France 2017.Google Scholar
  77. 77.
    Study of DS-5141b in Patients With Duchenne Muscular Dystrophy. https://clinicaltrials.gov/ct2/show/NCT02667483.
  78. 78.
    Hartigan-O'Connor D, Chamberlain JS. Progress toward gene therapy of Duchenne muscular dystrophy. Seminars in neurology. 1999;19(3):323–32.CrossRefGoogle Scholar
  79. 79.
    Stolberg SG. The biotech death of Jesse Gelsinger. The New York times magazine. 1999:136-40, 49–50.Google Scholar
  80. 80.
    Assessment of adenoviral vector safety and toxicity: report of the National Institutes of Health Recombinant DNA Advisory Committee. Hum Gene Ther. 2002;13(1):3–13.Google Scholar
  81. 81.
    England SB, Nicholson LV, Johnson MA, Forrest SM, Love DR, Zubrzycka-Gaarn EE, et al. Very mild muscular dystrophy associated with the deletion of 46% of dystrophin. Nature. 1990;343(6254):180–2.CrossRefGoogle Scholar
  82. 82.
    Harper SQ, Hauser MA, DelloRusso C, Duan D, Crawford RW, Phelps SF, et al. Modular flexibility of dystrophin: implications for gene therapy of Duchenne muscular dystrophy. Nature medicine. 2002;8(3):253–61.CrossRefGoogle Scholar
  83. 83.
    Systemic Gene Delivery Clinical Trial for Duchenne Muscular Dystrophy. https://clinicaltrials.gov/ct2/show/NCT03375164.
  84. 84.
    Mendell J. System Delivery of AAVrh74.MHCK7.Micro-dystrophin for Duchenne Muscular Dystroph (Preliminary Results from Phase I/II Clinical Trial). Sarepta Therapeutics R&D Day2018.Google Scholar
  85. 85.
    Microdystrophin Gene Transfer Study in Adolescents and Children With DMD (IGNITE DMD). https://clinicaltrials.gov/ct2/show/NCT03368742.
  86. 86.
    Schneider JSG, J.P.; Brown, K.J.; Golebiowski, D.; Shanks, C.; Ricotti, V.; Quiroz, J.; Morris, C.A. SGT-001 Microdystrophin Gene Therapy for Duchenne Muscular Dystrophy. 22nd International Annual Congress of the World Muscle Society; Saint-Malo, France2017.Google Scholar
  87. 87.
    A Study to Evaluate the Safety and Tolerability of PF-06939926 Gene Therapy in Duchenne Muscular Dystrophy. https://clinicaltrials.gov/ct2/show/NCT03362502.
  88. 88.
    Moorehead T. Pfizer PF-06939926: Gene therapy safety and tolerability study in Duchenne Muscular Dystrophy (DMD). Parent Project Muscular Dystrophy Annual Conference; Scottsdale, Arizona2018.Google Scholar
  89. 89.
    Gardner JP, Zhu H, Colosi PC, Kurtzman GJ, Scadden DT. Robust, but transient expression of adeno-associated virus-transduced genes during human T lymphopoiesis. Blood. 1997;90(12):4854–64.Google Scholar
  90. 90.
    Deyle DR, Russell DW. Adeno-associated virus vector integration. Current opinion in molecular therapeutics. 2009;11(4):442–7.Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  1. 1.Department of NeurologyUniversity of California, Los AngelesLos AngelesUSA

Personalised recommendations