Advertisement

Neurotherapeutics

, Volume 15, Issue 4, pp 915–927 | Cite as

Myopathies Related to Glycogen Metabolism Disorders

  • Mark A. Tarnopolsky
Review
  • 181 Downloads

Abstract

Most of the glycogen metabolism disorders that affect skeletal muscle involve enzymes in glycogenolysis (myophosphorylase (PYGM), glycogen debranching enzyme (AGL), phosphorylase b kinase (PHKB)) and glycolysis (phosphofructokinase (PFK), phosphoglycerate mutase (PGAM2), aldolase A (ALDOA), β-enolase (ENO3)); however, 3 involve glycogen synthesis (glycogenin-1 (GYG1), glycogen synthase (GSE), and branching enzyme (GBE1)). Many present with exercise-induced cramps and rhabdomyolysis with higher-intensity exercise (i.e., PYGM, PFK, PGAM2), yet others present with muscle atrophy and weakness (GYG1, AGL, GBE1). A failure of serum lactate to rise with exercise with an exaggerated ammonia response is a common, but not invariant, finding. The serum creatine kinase (CK) is often elevated in the myopathic forms and in PYGM deficiency, but can be normal and increase only with rhabdomyolysis (PGAM2, PFK, ENO3). Therapy for glycogen storage diseases that result in exercise-induced symptoms includes lifestyle adaptation and carefully titrated exercise. Immediate pre-exercise carbohydrate improves symptoms in the glycogenolytic defects (i.e., PYGM), but can exacerbate symptoms in glycolytic defects (i.e., PFK). Creatine monohydrate in low dose may provide a mild benefit in PYGM mutations.

Key Words

Glycolysis glycogenosis forearm exercise test myogenic hyperuricemia glycogenolytic 

Notes

Acknowledgments

I would like to thank Mr. Gordon Reid and Giant Tiger stores for the kind donations for the Giant Tiger Metabolic Testing facility and research into McArdle disease. The Canadian Institute for Health Research (CIHR) has supported Dr. Tarnopolsky’s work evaluating therapies for metabolic muscle disorders.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2018_684_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1225 kb)

References

  1. 1.
    Preisler N, Laforet P, Madsen KL, et al. Fat and carbohydrate metabolism during exercise in late-onset Pompe disease. Mol Genet Metab 2012;107(3):462–8.CrossRefPubMedGoogle Scholar
  2. 2.
    Thorell A, Hirshman MF, Nygren J et al. Exercise and insulin cause GLUT-4 translocation in human skeletal muscle. Am J Physiol 1999;277(4 Pt 1):E733–41.PubMedGoogle Scholar
  3. 3.
    Hayashi T, Wojtaszewski JF, Goodyear LJ. Exercise regulation of glucose transport in skeletal muscle. Am J Physiol 1997;273(6 Pt 1):E1039–51.PubMedGoogle Scholar
  4. 4.
    Costill DL, Sherman WM, Fink WJ, Maresh C, Witten M, Miller JM. The role of dietary carbohydrates in muscle glycogen resynthesis after strenuous running. Am J Clin Nutr 1981;34(9):1831–6.CrossRefPubMedGoogle Scholar
  5. 5.
    Tarnopolsky MA, Atkinson SA, Phillips SM, MacDougall JD. Carbohydrate loading and metabolism during exercise in men and women. J Appl Physiol (1985) 1995;78(4):1360–8.CrossRefGoogle Scholar
  6. 6.
    Storey KB, Hochachka PW. Activation of muscle glycolysis: a role for creatine phosphate in phosphofructokinase regulation. FEBS Lett 1974;46(1):337–9.CrossRefPubMedGoogle Scholar
  7. 7.
    Benton CR, Yoshida Y, Lally J, Han XX, Hatta H, Bonen A. PGC-1alpha increases skeletal muscle lactate uptake by increasing the expression of MCT1 but not MCT2 or MCT4. Physiol Genomics 2008;35(1):45–54.CrossRefPubMedGoogle Scholar
  8. 8.
    Gaitanos GC, Williams C, Boobis LH, Brooks S. Human muscle metabolism during intermittent maximal exercise. J Appl Physiol (1985) 1993;75(2):712–9.CrossRefGoogle Scholar
  9. 9.
    O'Brien MJ, Viguie CA, Mazzeo RS, Brooks GA. Carbohydrate dependence during marathon running. Med Sci Sports Exerc 1993;25(9):1009–17.PubMedGoogle Scholar
  10. 10.
    Romijn JA, Coyle EF, Sidossis LS, et al. Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 1993;265(3 Pt 1):E380–91.PubMedGoogle Scholar
  11. 11.
    Romijn JA, Coyle EF, Sidossis LS, Rosenblatt J, Wolfe RR. Substrate metabolism during different exercise intensities in endurance-trained women. J Appl Physiol (1985) 2000;88(5):1707–14.CrossRefGoogle Scholar
  12. 12.
    Haller RG, Vissing J. Spontaneous “second wind” and glucose-induced second “second wind” in McArdle disease: oxidative mechanisms. Arch Neurol 2002;59(9):1395–402.CrossRefPubMedGoogle Scholar
  13. 13.
    Better OS, Abassi ZA. Early fluid resuscitation in patients with rhabdomyolysis. Nat Rev Nephrol 2011;7(7):416–22.CrossRefPubMedGoogle Scholar
  14. 14.
    De Castro M, Johnston J, Biesecker L. Determining the prevalence of McArdle disease from gene frequency by analysis of next-generation sequencing data. Genet Med 2015;17(12):1002–6.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Santalla A, Nogales-Gadea G, Encinar AB, et al. Genotypic and phenotypic features of all Spanish patients with McArdle disease: a 2016 update. BMC Genomics 2017;18(Suppl 8):819.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lucia A, Ruiz JR, Santalla A, et al. Genotypic and phenotypic features of McArdle disease: insights from the Spanish national registry. J Neurol Neurosurg Psychiatry 2012;83(3):322–8.CrossRefPubMedGoogle Scholar
  17. 17.
    Mc AB. Myopathy due to a defect in muscle glycogen breakdown. Clin Sci 1951;10(1):13–35.Google Scholar
  18. 18.
    Mineo I, Tarui S. Myogenic hyperuricemia: what can we learn from metabolic myopathies? Muscle Nerve Suppl 1995;3:S75–81.CrossRefPubMedGoogle Scholar
  19. 19.
    Cheraud C, Froissart R, Lannes B, Echaniz-Laguna A. Novel variant in the PYGM gene causing late-onset limb-girdle myopathy, ptosis, and camptocormia. Muscle Nerve 2018;57(1):157–60.CrossRefPubMedGoogle Scholar
  20. 20.
    Tarnopolsky M, Stevens L, MacDonald JR, et al. Diagnostic utility of a modified forearm ischemic exercise test and technical issues relevant to exercise testing. Muscle Nerve 2003;27(3):359–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Kazemi-Esfarjani P, Skomorowska E, Jensen TD, Haller RG, Vissing J. A nonischemic forearm exercise test for McArdle disease. Ann Neurol 2002;52(2):153–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Clemens PR, Yamamoto M, Engel AG. Adult phosphorylase b kinase deficiency. Ann Neurol 1990;28(4):529–38.CrossRefPubMedGoogle Scholar
  23. 23.
    Wilkinson DA, Tonin P, Shanske S, Lombes A, Carlson GM, DiMauro S. Clinical and biochemical features of 10 adult patients with muscle phosphorylase kinase deficiency. Neurology 1994;44(3 Pt 1):461–6.CrossRefPubMedGoogle Scholar
  24. 24.
    Echaniz-Laguna A, Akman HO, Mohr M, et al. Muscle phosphorylase b kinase deficiency revisited. Neuromuscul Disord 2010;20(2):125–7.CrossRefPubMedGoogle Scholar
  25. 25.
    Wuyts W, Reyniers E, Ceuterick C, Storm K, de Barsy T, Martin JJ. Myopathy and phosphorylase kinase deficiency caused by a mutation in the PHKA1 gene. Am J Med Genet A 2005;133A(1):82–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Orngreen MC, Schelhaas HJ, Jeppesen TD, et al. Is muscle glycogenolysis impaired in X-linked phosphorylase b kinase deficiency? Neurology 2008;70(20):1876–82.CrossRefPubMedGoogle Scholar
  27. 27.
    Preisler N, Orngreen MC, Echaniz-Laguna A, et al. Muscle phosphorylase kinase deficiency: a neutral metabolic variant or a disease? Neurology 2012;78(4):265–8.CrossRefPubMedGoogle Scholar
  28. 28.
    Burwinkel B, Hu B, Schroers A, et al. Muscle glycogenosis with low phosphorylase kinase activity: mutations in PHKA1, PHKG1 or six other candidate genes explain only a minority of cases. Eur J Hum Genet 2003;11(7):516–26.CrossRefPubMedGoogle Scholar
  29. 29.
    Beauchamp NJ, Dalton A, Ramaswami U, et al. Glycogen storage disease type IX: high variability in clinical phenotype. Mol Genet Metab 2007;92(1–2):88–99.CrossRefPubMedGoogle Scholar
  30. 30.
    Aoyama Y, Ozer I, Demirkol M, et al. Molecular features of 23 patients with glycogen storage disease type III in Turkey: a novel mutation p.R1147G associated with isolated glucosidase deficiency, along with 9 AGL mutations. J Hum Genet 2009;54(11):681–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Endo Y, Horinishi A, Vorgerd M, et al. Molecular analysis of the AGL gene: heterogeneity of mutations in patients with glycogen storage disease type III from Germany, Canada, Afghanistan, Iran, and Turkey. J Hum Genet 2006;51(11):958–63.CrossRefPubMedGoogle Scholar
  32. 32.
    Lucchiari S, Fogh I, Prelle A, et al. Clinical and genetic variability of glycogen storage disease type IIIa: seven novel AGL gene mutations in the Mediterranean area. Am J Med Genet 2002;109(3):183–90.CrossRefPubMedGoogle Scholar
  33. 33.
    Okubo M, Horinishi A, Takeuchi M, et al. Heterogeneous mutations in the glycogen-debranching enzyme gene are responsible for glycogen storage disease type IIIa in Japan. Hum Genet 2000;106(1):108–15.CrossRefPubMedGoogle Scholar
  34. 34.
    Coleman RA, Winter HS, Wolf B, Gilchrist JM, Chen YT. Glycogen storage disease type III (glycogen debranching enzyme deficiency): correlation of biochemical defects with myopathy and cardiomyopathy. Ann Intern Med 1992;116(11):896–900.CrossRefPubMedGoogle Scholar
  35. 35.
    Cornelio F, Bresolin N, Singer PA, DiMauro S, Rowland LP. Clinical varieties of neuromuscular disease in debrancher deficiency. Arch Neurol 1984;41(10):1027–32.CrossRefPubMedGoogle Scholar
  36. 36.
    Kiechl S, Kohlendorfer U, Thaler C, et al. Different clinical aspects of debrancher deficiency myopathy. J Neurol Neurosurg Psychiatry 1999;67(3):364–8.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    DiMauro S, Hartwig GB, Hays A, et al. Debrancher deficiency: neuromuscular disorder in 5 adults. Ann Neurol 1979;5(5):422–36.CrossRefPubMedGoogle Scholar
  38. 38.
    Marbini A, Gemignani F, Saccardi F, Rimoldi M. Debrancher deficiency neuromuscular disorder with pseudohypertrophy in two brothers. J Neurol 1989;236(7):418–20.CrossRefPubMedGoogle Scholar
  39. 39.
    Stemmerik MG, Madsen KL, Laforet P, Buch AE, Vissing J. Muscle glycogen synthesis and breakdown are both impaired in glycogenin-1 deficiency. Neurology 2017;89(24):2491–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Moslemi AR, Lindberg C, Nilsson J, Tajsharghi H, Andersson B, Oldfors A. Glycogenin-1 deficiency and inactivated priming of glycogen synthesis. N Engl J Med 2010;362(13):1203–10.CrossRefPubMedGoogle Scholar
  41. 41.
    Malfatti E, Nilsson J, Hedberg-Oldfors C, et al. A new muscle glycogen storage disease associated with glycogenin-1 deficiency. Ann Neurol 2014;76(6):891–8.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Akman HO, Aykit Y, Amuk OC, et al. Late-onset polyglucosan body myopathy in five patients with a homozygous mutation in GYG1. Neuromuscul Disord 2016;26(1):16–20.CrossRefPubMedGoogle Scholar
  43. 43.
    High KA. The Jeremiah Metzger Lecture: gene therapy for inherited disorders: from Christmas disease to Leber’s amaurosis. Trans Am Clin Climatol Assoc 2009;120:331–59.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Holloszy JO, Oscai LB, Don IJ, Mole PA. Mitochondrial citric acid cycle and related enzymes: adaptive response to exercise. Biochem Biophys Res Commun 1970;40(6):1368–73.CrossRefPubMedGoogle Scholar
  45. 45.
    Ben Yaou R, Hubert A, Nelson I, et al. Clinical heterogeneity and phenotype/genotype findings in 5 families with GYG1 deficiency. Neurol Genet 2017;3(6):e208.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kollberg G, Tulinius M, Gilljam T, et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med 2007;357(15):1507–14.CrossRefPubMedGoogle Scholar
  47. 47.
    Cameron JM, Levandovskiy V, MacKay N, et al. Identification of a novel mutation in GYS1 (muscle-specific glycogen synthase) resulting in sudden cardiac death, that is diagnosable from skin fibroblasts. Mol Genet Metab 2009;98(4):378–82.CrossRefPubMedGoogle Scholar
  48. 48.
    McCue ME, Valberg SJ, Miller MB, et al. Glycogen synthase (GYS1) mutation causes a novel skeletal muscle glycogenosis. Genomics 2008;91(5):458–66.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Maile CA, Hingst JR, Mahalingan KK, et al. A highly prevalent equine glycogen storage disease is explained by constitutive activation of a mutant glycogen synthase. Biochim Biophys Acta 2017;1861(1 Pt A):3388–98.CrossRefGoogle Scholar
  50. 50.
    Bao Y, Kishnani P, Wu JY, Chen YT. Hepatic and neuromuscular forms of glycogen storage disease type IV caused by mutations in the same glycogen-branching enzyme gene. J Clin Invest 1996;97(4):941–8.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Bruno C, van Diggelen OP, Cassandrini D, et al. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Neurology 2004;63(6):1053–8.CrossRefPubMedGoogle Scholar
  52. 52.
    Bruno C, DiRocco M, Lamba LD, et al. A novel missense mutation in the glycogen branching enzyme gene in a child with myopathy and hepatopathy. Neuromuscul Disord 1999;9(6–7):403–7.CrossRefPubMedGoogle Scholar
  53. 53.
    Servidei S, Riepe RE, Langston C, et al. Severe cardiopathy in branching enzyme deficiency. J Pediatr 1987;111(1):51–6.Google Scholar
  54. 54.
    Malfatti E, Barnerias C, Hedberg-Oldfors C, et al. A novel neuromuscular form of glycogen storage disease type IV with arthrogryposis, spinal stiffness and rare polyglucosan bodies in muscle. Neuromuscul Disord 2016;26(10):681–7.CrossRefPubMedGoogle Scholar
  55. 55.
    Bruno C, Servidei S, Shanske S, et al. Glycogen branching enzyme deficiency in adult polyglucosan body disease. Ann Neurol 1993;33(1):88–93.CrossRefPubMedGoogle Scholar
  56. 56.
    Hellmann MA, Kakhlon O, Landau EH, et al. Frequent misdiagnosis of adult polyglucosan body disease. J Neurol 2015;262(10):2346–51.CrossRefPubMedGoogle Scholar
  57. 57.
    McDonald TD, Faust PL, Bruno C, DiMauro S, Goldman JE. Polyglucosan body disease simulating amyotrophic lateral sclerosis. Neurology 1993;43(4):785–90.CrossRefPubMedGoogle Scholar
  58. 58.
    Paradas C, Akman HO, Ionete C, et al. Branching enzyme deficiency: expanding the clinical spectrum. JAMA Neurol 2014;71(1):41–7.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Toscano A, Musumeci O. Tarui disease and distal glycogenoses: clinical and genetic update. Acta Myol 2007;26(2):105–7.PubMedPubMedCentralGoogle Scholar
  60. 60.
    Sherman JB, Raben N, Nicastri C, et al. Common mutations in the phosphofructokinase-M gene in Ashkenazi Jewish patients with glycogenesis VII—and their population frequency. Am J Hum Genet 1994;55(2):305–13.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Tani K, Fujii H, Takegawa S, et al. Two cases of phosphofructokinase deficiency associated with congenital hemolytic anemia found in Japan. Am J Hematol 1983;14(2):165–74.CrossRefPubMedGoogle Scholar
  62. 62.
    Hamaguchi T, Nakajima H, Noguchi T, et al. A new variant of muscle phosphofructokinase deficiency in a Japanese case with abnormal RNA splicing. Biochem Biophys Res Commun 1994;202(1):444–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Shimizu T, Kono N, Kiyokawa H, et al. Erythrocyte glycolysis and its marked alterations by muscular exercise in type VII glycogenosis. Blood 1988;71(4):1130–4.PubMedGoogle Scholar
  64. 64.
    Tarui S, Okuno G, Ikura Y, Tanaka T, Suda M, Nishikawa M. Phosphofructokinase deficiency in skeletal muscle. a new type of glycogenosis. Biochem Biophys Res Commun 1965;19:517–23.CrossRefPubMedGoogle Scholar
  65. 65.
    Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology 2004;62(1):82–6.CrossRefPubMedGoogle Scholar
  66. 66.
    Musumeci O, Bruno C, Mongini T, et al. Clinical features and new molecular findings in muscle phosphofructokinase deficiency (GSD type VII). Neuromuscul Disord 2012;22(4):325–30.CrossRefPubMedGoogle Scholar
  67. 67.
    Etiemble J, Kahn A, Boivin P, Bernard JF, Goudemand M. Hereditary hemolytic anemia with erythrocyte phosphofructokinase deficiency: studies of some properties of erythrocyte and muscle enzyme. Hum Genet 1976;31(1):83–91.CrossRefPubMedGoogle Scholar
  68. 68.
    Vives-Corrons JL, Koralkova P, Grau JM, Manu Pereira Mdel M, Van Wijk R. First description of phosphofructokinase deficiency in spain: identification of a novel homozygous missense mutation in the PFKM gene. Front Physiol 2013;4:393.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Lin HC, Young C, Wang PJ, Shen YZ. Muscle phosphofructokinase deficiency (Tarui’s disease): report of a case. J Formos Med Assoc 1999;98(3):205–8.PubMedGoogle Scholar
  70. 70.
    Wu PL, Yang YN, Tey SL, Yang CH, Yang SN, Lin CS. Infantile form of muscle phosphofructokinase deficiency in a premature neonate. Pediatr Int 2015;57(4):746–9.CrossRefPubMedGoogle Scholar
  71. 71.
    Amit R, Bashan N, Abarbanel JM, Shapira Y, Sofer S, Moses S. Fatal familial infantile glycogen storage disease: multisystem phosphofructokinase deficiency. Muscle Nerve 1992;15(4):455–8.CrossRefPubMedGoogle Scholar
  72. 72.
    Garcia M, Pujol A, Ruzo A, et al. Phosphofructo-1-kinase deficiency leads to a severe cardiac and hematological disorder in addition to skeletal muscle glycogenosis. PLoS Genet 2009;5(8):e1000615.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Servidei S, Bonilla E, Diedrich RG, et al. Fatal infantile form of muscle phosphofructokinase deficiency. Neurology 1986;36(11):1465–70.CrossRefPubMedGoogle Scholar
  74. 74.
    DiMauro S, Dalakas M, Miranda AF. Phosphoglycerate kinase deficiency: another cause of recurrent myoglobinuria. Ann Neurol 1983;13(1):11–9.CrossRefPubMedGoogle Scholar
  75. 75.
    Aasly J, van Diggelen OP, Boer AM, Bronstad G. Phosphoglycerate kinase deficiency in two brothers with McArdle-like clinical symptoms. Eur J Neurol 2000;7(1):111–3.CrossRefPubMedGoogle Scholar
  76. 76.
    Beutler E. PGK deficiency. Br J Haematol 2007;136(1):3–11.CrossRefPubMedGoogle Scholar
  77. 77.
    Cohen-Solal M, Valentin C, Plassa F, et al. Identification of new mutations in two phosphoglycerate kinase (PGK) variants expressing different clinical syndromes: PGK Creteil and PGK Amiens. Blood 1994;84(3):898–903.PubMedGoogle Scholar
  78. 78.
    Fermo E, Bianchi P, Chiarelli LR, et al. A new variant of phosphoglycerate kinase deficiency (p.I371K) with multiple tissue involvement: molecular and functional characterization. Mol Genet Metab 2012;106(4):455–61.CrossRefPubMedGoogle Scholar
  79. 79.
    Sugie H, Sugie Y, Nishida M, et al. Recurrent myoglobinuria in a child with mental retardation: phosphoglycerate kinase deficiency. J Child Neurol 1989;4(2):95–9.CrossRefPubMedGoogle Scholar
  80. 80.
    Svaasand EK, Aasly J, Landsem VM, Klungland H. Altered expression of PGK1 in a family with phosphoglycerate kinase deficiency. Muscle Nerve 2007;36(5):679–84.CrossRefPubMedGoogle Scholar
  81. 81.
    Salameh J, Goyal N, Choudry R, Camelo-Piragua S, Chong PS. Phosphoglycerate mutase deficiency with tubular aggregates in a patient from Panama. Muscle Nerve 2013;47(1):138–40.CrossRefPubMedGoogle Scholar
  82. 82.
    Koo B, Oskarsson B. Phosphoglycerate mutase deficiency (glycogen storage disease X) caused by a novel variant in PGAM-M. Neuromuscul Disord 2016;26(10):688–90.CrossRefPubMedGoogle Scholar
  83. 83.
    DiMauro S, Miranda AF, Khan S, Gitlin K, Friedman R. Human muscle phosphoglycerate mutase deficiency: newly discovered metabolic myopathy. Science 1981;212(4500):1277–9.CrossRefPubMedGoogle Scholar
  84. 84.
    Tsujino S, Shanske S, Sakoda S, Toscano A, DiMauro S. Molecular genetic studies in muscle phosphoglycerate mutase (PGAM-M) deficiency. Muscle Nerve Suppl 1995;3:S50–3.CrossRefPubMedGoogle Scholar
  85. 85.
    Tonin P, Bruno C, Cassandrini D, et al. Unusual presentation of phosphoglycerate mutase deficiency due to two different mutations in PGAM-M gene. Neuromuscul Disord 2009;19(11):776–8.CrossRefPubMedGoogle Scholar
  86. 86.
    Toscano A, Tsujino S, Vita G, Shanske S, Messina C, Dimauro S. Molecular basis of muscle phosphoglycerate mutase (PGAM-M) deficiency in the Italian kindred. Muscle Nerve 1996;19(9):1134–7.CrossRefPubMedGoogle Scholar
  87. 87.
    Naini A, Toscano A, Musumeci O, Vissing J, Akman HO, DiMauro S. Muscle phosphoglycerate mutase deficiency revisited. Arch Neurol 2009;66(3):394–8.CrossRefPubMedGoogle Scholar
  88. 88.
    Kawashima N, Mishima M, Shindo R, et al. Partial deficiency of phosphoglycerate mutase with diabetic polyneuropathy: the first Japanese patient. Intern Med 1996;35(10):799–802.CrossRefPubMedGoogle Scholar
  89. 89.
    Vissing J, Quistorff B, Haller RG. Effect of fuels on exercise capacity in muscle phosphoglycerate mutase deficiency. Arch Neurol 2005;62(9):1440–3.CrossRefPubMedGoogle Scholar
  90. 90.
    Comi GP, Fortunato F, Lucchiari S, et al. Beta-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol 2001;50(2):202–7.CrossRefPubMedGoogle Scholar
  91. 91.
    Musumeci O, Brady S, Rodolico C, et al. Recurrent rhabdomyolysis due to muscle beta-enolase deficiency: very rare or underestimated? J Neurol 2014;261(12):2424–8.CrossRefPubMedGoogle Scholar
  92. 92.
    Kanno T, Sudo K, Maekawa M, Nishimura Y, Ukita M, Fukutake K. Lactate dehydrogenase M-subunit deficiency: a new type of hereditary exertional myopathy. Clin Chim Acta 1988;173(1):89–98.CrossRefPubMedGoogle Scholar
  93. 93.
    Kanno T, Sudo K, Takeuchi I, et al. Hereditary deficiency of lactate dehydrogenase M-subunit. Clin Chim Acta 1980;108(2):267–76.CrossRefPubMedGoogle Scholar
  94. 94.
    Maekawa M, Sudo K, Li SS, Kanno T. Genotypic analysis of families with lactate dehydrogenase A (M) deficiency by selective DNA amplification. Hum Genet 1991;88(1):34–8.CrossRefPubMedGoogle Scholar
  95. 95.
    Kanno T, Maekawa M. Lactate dehydrogenase M-subunit deficiencies: clinical features, metabolic background, and genetic heterogeneities, Muscle Nerve Suppl 1995;3:S54–60.CrossRefPubMedGoogle Scholar
  96. 96.
    MacLean D, Vissing J, Vissing SF, Haller RG. Oral branched-chain amino acids do not improve exercise capacity in McArdle disease. Neurology 1998;51(5):1456–9.CrossRefPubMedGoogle Scholar
  97. 97.
    Andersen ST, Haller RG, Vissing J. Effect of oral sucrose shortly before exercise on work capacity in McArdle disease. Arch Neurol 2008;65(6):786–9.CrossRefPubMedGoogle Scholar
  98. 98.
    Haller RG, Wyrick P, Taivassalo T, Vissing J. Aerobic conditioning: an effective therapy in McArdle’s disease. Ann Neurol 2006;59(6):922–8.CrossRefPubMedGoogle Scholar
  99. 99.
    Izumi R, Suzuki N, Kato K, et al. A case of McArdle disease: efficacy of vitamin B6 on fatigability and impaired glycogenolysis. Intern Med 2010;49(15):1623–5.CrossRefPubMedGoogle Scholar
  100. 100.
    Martinuzzi A, Liava A, Trevisi E, Antoniazzi L, Frare M. Chronic therapy for McArdle disease: the randomized trial with ACE inhibitor. Acta Myol 2007;26(1):64–6.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Quinlivan R, Vissing J, Hilton-Jones D, Buckley J. Physical training for McArdle disease. Cochrane Database Syst Rev 2011(12):CD007931.Google Scholar
  102. 102.
    Vorgerd M, Grehl T, Jager M, Muller K, Freitag G, Patzold T, et al. Creatine therapy in myophosphorylase deficiency (McArdle disease): a placebo-controlled crossover trial. Arch Neurol 2000;57(7):956–63.CrossRefPubMedGoogle Scholar
  103. 103.
    Vorgerd M, Zange J, Kley R, Grehl T, Husing A, Jager M, et al. Effect of high-dose creatine therapy on symptoms of exercise intolerance in McArdle disease: double-blind, placebo-controlled crossover study. Arch Neurol 2002;59(1):97–101.CrossRefPubMedGoogle Scholar
  104. 104.
    Vissing J, Haller RG. The effect of oral sucrose on exercise tolerance in patients with McArdle’s disease. N Engl J Med 2003;349(26):2503–9.CrossRefPubMedGoogle Scholar
  105. 105.
    Blair SN, Kohl HW, 3rd, Paffenbarger RS, Jr., Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 1989;262(17):2395–401.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Wei M, Kampert JB, Barlow CE, Nichaman MZ, Gibbons LW, Paffenbarger RS, Jr., et al. Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA 1999;282(16):1547–53.CrossRefGoogle Scholar
  107. 107.
    Mate-Munoz JL, Moran M, Perez M, Chamorro-Vina C, Gomez-Gallego F, Santiago C, et al. Favorable responses to acute and chronic exercise in McArdle patients. Clin J Sport Med 2007;17(4):297–303.CrossRefPubMedGoogle Scholar
  108. 108.
    Garcia-Benitez S, Fleck SJ, Naclerio F, Martin MA, Lucia A. Resistance (weight lifting) training in an adolescent with McArdle disease. J Child Neurol 2013;28(6):805–8.CrossRefPubMedGoogle Scholar
  109. 109.
    Santalla A, Munguia-Izquierdo D, Brea-Alejo L, Pagola-Aldazabal I, Diez-Bermejo J, Fleck SJ, et al. Feasibility of resistance training in adult McArdle patients: clinical outcomes and muscle strength and mass benefits. Front Aging Neurosci 2014;6:334.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Morton RW, McGlory C, Phillips SM. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Front Physiol 2015;6:245.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Haller RG, Lewis SF. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N Engl J Med 1991;324(6):364–9.CrossRefPubMedGoogle Scholar
  112. 112.
    Tarnopolsky MA, Atkinson SA, MacDougall JD, Chesley A, Phillips S, Schwarcz HP. Evaluation of protein requirements for trained strength athletes. J Appl Physiol (1985) 1992;73(5):1986–95.CrossRefGoogle Scholar
  113. 113.
    McKenzie S, Phillips SM, Carter SL, Lowther S, Gibala MJ, Tarnopolsky MA. Endurance exercise training attenuates leucine oxidation and BCOAD activation during exercise in humans. Am J Physiol Endocrinol Metab 2000;278(4):E580–7.CrossRefPubMedGoogle Scholar
  114. 114.
    Slonim AE, Goans PJ. Myopathy in McArdle’s syndrome. Improvement with a high-protein diet. N Engl J Med 1985;312(6):355–9.CrossRefPubMedGoogle Scholar
  115. 115.
    Goldberg T, Slonim AE. Nutrition therapy for hepatic glycogen storage diseases. J Am Diet Assoc 1993;93(12):1423–30.CrossRefPubMedGoogle Scholar
  116. 116.
    Slonim AE, Weisberg C, Benke P, Evans OB, Burr IM. Reversal of debrancher deficiency myopathy by the use of high-protein nutrition. Ann Neurol 1982;11(4):420–2.CrossRefPubMedGoogle Scholar
  117. 117.
    Traylor DA, Gorissen SHM, Phillips SM. Perspective: Protein requirements and optimal intakes in aging: are we ready to recommend more than the recommended daily allowance? Adv Nutr 2018.Google Scholar
  118. 118.
    Andersen ST, Jeppesen TD, Taivassalo T, Sveen ML, Heinicke K, Haller RG, et al. Effect of changes in fat availability on exercise capacity in McArdle disease. Arch Neurol 2009;66(6):762–6.CrossRefPubMedGoogle Scholar
  119. 119.
    Orngreen MC, Jeppesen TD, Andersen ST, Taivassalo T, Hauerslev S, Preisler N, et al. Fat metabolism during exercise in patients with McArdle disease. Neurology 2009;72(8):718–24.CrossRefPubMedGoogle Scholar
  120. 120.
    Baranano KW, Hartman AL. The ketogenic diet: uses in epilepsy and other neurologic illnesses. Curr Treat Options Neurol 2008;10(6):410–9.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Vorgerd M, Zange J. Treatment of glycogenosys type V (McArdle disease) with creatine and ketogenic diet with clinical scores and with 31P-MRS on working leg muscle. Acta Myol 2007;26(1):61–3.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Sato S, Ohi T, Nishino I, Sugie H. Confirmation of the efficacy of vitamin B6 supplementation for McArdle disease by follow-up muscle biopsy. Muscle Nerve 2012;45(3):436–40.CrossRefPubMedGoogle Scholar
  123. 123.
    Quinlivan R, Martinuzzi A, Schoser B. Pharmacological and nutritional treatment for McArdle disease (glycogen storage disease type V). Cochrane Database Syst Rev 2014;11:CD003458.Google Scholar
  124. 124.
    Hultman E, Soderlund K, Timmons JA, Cederblad G, Greenhaff PL. Muscle creatine loading in men. J Appl Physiol (1985) 1996;81(1):232–7.CrossRefGoogle Scholar
  125. 125.
    Kley RA, Tarnopolsky MA, Vorgerd M. Creatine for treating muscle disorders. Cochrane Database Syst Rev 2013;6:CD004760.Google Scholar
  126. 126.
    Roe CR, Mochel F. Anaplerotic diet therapy in inherited metabolic disease: therapeutic potential. J Inherit Metab Dis 2006;29(2–3):332–40.CrossRefPubMedGoogle Scholar
  127. 127.
    Orngreen MC, Vissing J. Treatment opportunities in patients with metabolic myopathies. Curr Treat Options Neurol 2017;19(11):37.CrossRefPubMedGoogle Scholar
  128. 128.
    Alvarez R, Casas J, Lopez DJ, Ibarguren M, Suari-Rivera A, Teres S, et al. Triacylglycerol mimetics regulate membrane interactions of glycogen branching enzyme: implications for therapy. J Lipid Res 2017;58(8):1598–612.CrossRefPubMedPubMedCentralGoogle Scholar
  129. 129.
    Kaczor JJ, Robertshaw HA, Tarnopolsky MA. Higher oxidative stress in skeletal muscle of McArdle disease patients. Mol Genet Metab Rep 2017;12:69–75.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Kitaoka Y, Ogborn DI, Nilsson MI, Mocellin NJ, MacNeil LG, Tarnopolsky MA. Oxidative stress and Nrf2 signaling in McArdle disease. Mol Genet Metab 2013;110(3):297–302.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  1. 1.Division of Neuromuscular & Neurometabolic Disorders, Departments of Pediatrics and MedicineMcMaster UniversityHamiltonCanada

Personalised recommendations