Advertisement

Neurotherapeutics

, Volume 15, Issue 4, pp 872–884 | Cite as

Myotonic Dystrophies: Targeting Therapies for Multisystem Disease

  • Samantha LoRusso
  • Benjamin Weiner
  • W. David Arnold
Review

Abstract

Myotonic dystrophy is an autosomal dominant muscular dystrophy not only associated with muscle weakness, atrophy, and myotonia but also prominent multisystem involvement. There are 2 similar, but distinct, forms of myotonic dystrophy; type 1 is caused by a CTG repeat expansion in the DMPK gene, and type 2 is caused by a CCTG repeat expansion in the CNBP gene. Type 1 is associated with distal limb, neck flexor, and bulbar weakness and results in different phenotypic subtypes with variable onset from congenital to very late-onset as well as variable signs and symptoms. The classically described adult-onset form is the most common. In contrast, myotonic dystrophy type 2 is adult-onset or late-onset, has proximal predominant muscle weakness, and generally has less severe multisystem involvement. In both forms of myotonic dystrophy, the best characterized disease mechanism is a RNA toxic gain-of-function during which RNA repeats form nuclear foci resulting in sequestration of RNA-binding proteins and, therefore, dysregulated splicing of premessenger RNA. There are currently no disease-modifying therapies, but clinical surveillance, preventative measures, and supportive treatments are used to reduce the impact of muscular impairment and other systemic involvement including cataracts, cardiac conduction abnormalities, fatigue, central nervous system dysfunction, respiratory weakness, dysphagia, and endocrine dysfunction. Exciting preclinical progress has been made in identifying a number of potential strategies including genome editing, small molecule therapeutics, and antisense oligonucleotide-based therapies to target the pathogenesis of type 1 and type 2 myotonic dystrophies at the DNA, RNA, or downstream target level.

Key Words

Myotonic dystrophy myopathies biomarker splicing therapeutic. 

Notes

Acknowledgments

W. David Arnold has received support from an investigator-initiated clinical trial grant from Gilead Sciences and Benjamin Weiner was supported by the Ohio State University College of Medicine (Roessler Research Scholarship).

Required Author

Forms Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2018_679_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1224 kb)

References

  1. 1.
    Emery AEH. Population frequencies of inherited neuromuscular diseases—a world survey. Neuromuscul Disord 1991;1:19–29.Google Scholar
  2. 2.
    Suominen T, Bachinski LL, Auvinen S, Hackman P, Baggerly KA, Angelini C et al. Population frequency of myotonic dystrophy: higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. Eur J Hum Genet. 2011;19:776–782.  https://doi.org/10.1038/ejhg.2011.23.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Liquori CL, Ricker K, Moseley ML, Jacobsen JF, Kress W, Naylor SL et al. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001;293:864–867.  https://doi.org/10.1126/science.1062125.PubMedGoogle Scholar
  4. 4.
    Hilbert JE, Ashizawa T, Day JW, Luebbe EA, Martens WB, McDermott MP et al. Diagnostic odyssey of patients with myotonic dystrophy. J Neurol 2013;260:2497–2504.  https://doi.org/10.1007/s00415-013-6993-0.PubMedPubMedCentralGoogle Scholar
  5. 5.
    De Antonio M, Dogan C, Hamroun D, Mati M, Zerrouki S, Eymard B et al. Unravelling the myotonic dystrophy type 1 clinical spectrum: a systematic registry-based study with implications for disease classification. Rev Neurol 2016;172:572–580.  https://doi.org/10.1016/j.neurol.2016.08.003.PubMedGoogle Scholar
  6. 6.
    Ho G, Cardamone M, Farrar M. Congenital and childhood myotonic dystrophy: current aspects of disease and future directions. World J Clin Pediatr 2015;4:66–80.  https://doi.org/10.5409/wjcp.v4.i4.66.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Theadom A, Rodrigues M, Roxburgh R. Knowledge of sub-types important to understanding of the prevalence of myotonic dystrophy. Neuroepidemiology 2016;46:228.  https://doi.org/10.1159/000444469.PubMedGoogle Scholar
  8. 8.
    Thornton CA. Myotonic dystrophy. Neurol Clin 2014;32:705–719, viii.  https://doi.org/10.1016/j.ncl.2014.04.011.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Mejersjo C, Kiliaridis S. Temporomandibular dysfunction in adult patients with myotonic dystrophy (DM1). J Oral Rehabil 2017;44:749–755.  https://doi.org/10.1111/joor.12534.PubMedGoogle Scholar
  10. 10.
    Campbell C, Levin S, Siu VM, Venance S, Jacob P. Congenital myotonic dystrophy: Canadian population-based surveillance study. J Pediatr 2013;163:120-5.e1–120-5.e3.  https://doi.org/10.1016/j.jpeds.2012.12.070.Google Scholar
  11. 11.
    Echenne B, Bassez G. Congenital and infantile myotonic dystrophy. Handb Clin Neurol 2013;113:1387–1393.  https://doi.org/10.1016/b978-0-444-59565-2.00009-5.PubMedGoogle Scholar
  12. 12.
    Dogan C, De Antonio M, Hamroun D, Varet H, Fabbro M, Rougier F et al. Gender as a modifying factor influencing myotonic dystrophy type 1 phenotype severity and mortality: a nationwide multiple databases cross-sectional observational study. PLoS ONE 2016;11:e0148264.  https://doi.org/10.1371/journal.pone.0148264.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Day JW, Ricker K, Jacobsen JF, Rasmussen LJ, Dick KA, Kress W et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 2003;60:657–664.Google Scholar
  14. 14.
    Montagnese F, Mondello S, Wenninger S, Kress W, Schoser B. Assessing the influence of age and gender on the phenotype of myotonic dystrophy type 2. J Neurol 2017;264:2472–2480.  https://doi.org/10.1007/s00415-017-8653-2.PubMedGoogle Scholar
  15. 15.
    Peric M, Peric S, Rapajic N, Dobricic V, Savic-Pavicevic D, Nesic I et al. Multidimensional aspects of pain in myotonic dystrophies. Acta Myol 2015;34:126–132.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Miro J, Gertz KJ, Carter GT, Jensen MP. Pain location and intensity impacts function in persons with myotonic dystrophy type 1 and facioscapulohumeral dystrophy with chronic pain. Muscle Nerve 2014;49:900–905.  https://doi.org/10.1002/mus.24079.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kierkegaard M, Harms-Ringdahl K, Edstrom L, Widen Holmqvist L, Tollback A. Feasibility and effects of a physical exercise programme in adults with myotonic dystrophy type 1: a randomized controlled pilot study. J Rehabil Med 2011;43:695–702.  https://doi.org/10.2340/16501977-0833.PubMedGoogle Scholar
  18. 18.
    Brady LI, MacNeil LG, Tarnopolsky MA. Impact of habitual exercise on the strength of individuals with myotonic dystrophy type 1. Am J Phys Med Rehabil 2014;93:739–746; quiz 47-8.  https://doi.org/10.1097/phm.0000000000000088.PubMedGoogle Scholar
  19. 19.
    Lindeman E, Leffers P, Spaans F, Drukker J, Reulen J, Kerckhoffs M et al. Strength training in patients with myotonic dystrophy and hereditary motor and sensory neuropathy: a randomized clinical trial. Arch Phys Med Rehabil 1995;76:612–620.Google Scholar
  20. 20.
    Orngreen MC, Olsen DB, Vissing J. Aerobic training in patients with myotonic dystrophy type 1. Ann Neurol 2005;57:754–757.  https://doi.org/10.1002/ana.20460.PubMedGoogle Scholar
  21. 21.
    Mnatsakanian A, Kissel JT, Terry P, King WM. One clinic’s experience with carbon fiber orthoses in neuromuscular disease. Muscle Nerve 2017;55:202–205.  https://doi.org/10.1002/mus.25233.PubMedGoogle Scholar
  22. 22.
    Logigian EL, Moxley RT, Blood CL, Barbieri CA, Martens WB, Wiegner AW et al. Leukocyte CTG repeat length correlates with severity of myotonia in myotonic dystrophy type 1. Neurology 2004;62:1081–1089.  https://doi.org/10.1212/01.wnl.0000118206.49652.a3.PubMedGoogle Scholar
  23. 23.
    Meola G, Cardani R. Myotonic dystrophy type 2 and modifier genes: an update on clinical and pathomolecular aspects. Neurol Sci 2017;38:535–546.  https://doi.org/10.1007/s10072-016-2805-5.PubMedGoogle Scholar
  24. 24.
    Bugiardini E, Rivolta I, Binda A, et al. SCN4A mutation as modifying factor of myotonic dystrophy type 2 phenotype. Neuromuscul Disord. 2015;25:301–307.  https://doi.org/10.1016/j.nmd.2015.01.006.PubMedGoogle Scholar
  25. 25.
  26. 26.
    Binda A, Renna LV, Bose F, Brigonzi E, Botta A, Valaperta R et al. SCN4A as modifier gene in patients with myotonic dystrophy type 2. Sci Rep. 2018;8:11058.  https://doi.org/10.1038/s41598-018-29302-z.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Logigian EL, Martens WB, Moxley RTt, McDermott MP, Dilek N, Wiegner AW et al. Mexiletine is an effective antimyotonia treatment in myotonic dystrophy type 1. Neurology 2010;74:1441–1448.  https://doi.org/10.1212/WNL.0b013e3181dc1a3a.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Novak KR, Norman J, Mitchell JR, Pinter MJ, Rich MM. Sodium channel slow inactivation as a therapeutic target for myotonia congenita. Ann Neurol 2015;77:320–332.  https://doi.org/10.1002/ana.24331.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Arnold WD, Kline D, Sanderson A, Hawash AA, Bartlett A, Novak KR et al. Open-label trial of ranolazine for the treatment of myotonia congenita. Neurology 2017.  https://doi.org/10.1212/wnl.0000000000004229.
  30. 30.
    LoRusso S, Kline D, Bartlett A, Agriesti J, Freimer M, Rich M et al. Open label trial of ranolazine for the treatment of paramyotonia congenita (P3.436). Neurology. 2018;90(15 Supplement).Google Scholar
  31. 31.
    Andersen G, Hedermann G, Witting N, Duno M, Andersen H, Vissing J. The antimyotonic effect of lamotrigine in non-dystrophic myotonias: a double-blind randomized study. Brain 2017;140:2295–2305.  https://doi.org/10.1093/brain/awx192.PubMedGoogle Scholar
  32. 32.
    Lawless M, Arnold W, Agriesti J, Moravec T, Moravec T, Moravec T. Investigation of ranolazine as an anti-myotonia treatment in myotonic dystrophy type 1 (P5.443). Neurology. 2018;90(15 Supplement).Google Scholar
  33. 33.
    Gourdon G, Meola G. Myotonic dystrophies: state of the art of new therapeutic developments for the CNS. Front Cell Neurosci 2017;11:101.  https://doi.org/10.3389/fncel.2017.00101.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Zalonis I, Bonakis A, Christidi F, Vagiakis E, Papageorgiou SG, Kalfakis N et al. Toward understanding cognitive impairment in patients with myotonic dystrophy type 1. Arch Clin Neuropsychol. 2010;25:303–313.  https://doi.org/10.1093/arclin/acq016.PubMedGoogle Scholar
  35. 35.
    Baldanzi S, Ricci G, Bottari M, Chico L, Simoncini C, Siciliano G. The proposal of a clinical protocol to assess central and peripheral fatigue in myotonic dystrophy type 1. Arch Ital Biol. 2017;155:43–53.  https://doi.org/10.12871/000398292017125.CrossRefPubMedGoogle Scholar
  36. 36.
    Belanger AY, McComas AJ. Contractile properties of muscles in myotonic dystrophy. J Neurol Neurosurg Psychiatry 1983;46:625–631.Google Scholar
  37. 37.
    Annane D, Moore DH, Barnes PR, Miller RG. Psychostimulants for hypersomnia (excessive daytime sleepiness) in myotonic dystrophy. Cochrane Database Syst Rev 2006(3):Cd003218.  https://doi.org/10.1002/14651858.CD003218.pub2.
  38. 38.
    Wintzen AR, Lammers GJ, van Dijk JG. Does modafinil enhance activity of patients with myotonic dystrophy?: a double-blind placebo-controlled crossover study. J Neurol 2007;254:26–28.  https://doi.org/10.1007/s00415-006-0186-z.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Hilton-Jones D, Bowler M, Lochmueller H, Longman C, Petty R, Roberts M et al. Modafinil for excessive daytime sleepiness in myotonic dystrophy type 1—the patients’ perspective. Neuromuscul Disord. 2012;22:597–603.  https://doi.org/10.1016/j.nmd.2012.02.005.PubMedGoogle Scholar
  40. 40.
    Rakocevic-Stojanovic V, Peric S, Madzarevic R, Dobricic V, Ralic V, Ilic V et al. Significant impact of behavioral and cognitive impairment on quality of life in patients with myotonic dystrophy type 1. Clin Neurol Neurosurg 2014;126:76–81.  https://doi.org/10.1016/j.clineuro.2014.08.021.PubMedGoogle Scholar
  41. 41.
    Peric S, Rakocevic Stojanovic V, Mandic Stojmenovic G, Ilic V, Kovacevic M, Parojcic A et al. Clusters of cognitive impairment among different phenotypes of myotonic dystrophy type 1 and type 2. Neurol Sci. 2017;38:415–423.  https://doi.org/10.1007/s10072-016-2778-4.PubMedGoogle Scholar
  42. 42.
    Jean S, Richer L, Laberge L, Mathieu J. Comparisons of intellectual capacities between mild and classic adult-onset phenotypes of myotonic dystrophy type 1 (DM1). Orphanet J Rare Dis 2014;9:186.  https://doi.org/10.1186/s13023-014-0186-5.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Sergeant N, Sablonniere B, Schraen-Maschke S, Ghestem A, Maurage CA, Wattez A et al. Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 2001;10:2143–2155.Google Scholar
  44. 44.
    Nojszewska M, Lusakowska A, Szmidt-Salkowska E, Gawel M, Lipowska M, Sulek A et al. Peripheral nerve involvement in myotonic dystrophy type 2—similar or different than in myotonic dystrophy type 1? Neurol Neurochir Pol 2015;49:164–170.  https://doi.org/10.1016/j.pjnns.2015.04.008.CrossRefPubMedGoogle Scholar
  45. 45.
    Hermans MC, Faber CG, Vanhoutte EK, Bakkers M, De Baets MH, de Die-Smulders CE et al. Peripheral neuropathy in myotonic dystrophy type 1. J Peripherl Nerv Syst. 2011;16:24–29.  https://doi.org/10.1111/j.1529-8027.2011.00313.x.Google Scholar
  46. 46.
    Angelini C, Di Leo R, Cudia P. Autonomic regulation in muscular dystrophy. Front Physiol 2013;4:257.  https://doi.org/10.3389/fphys.2013.00257.PubMedPubMedCentralGoogle Scholar
  47. 47.
    Mathieu J, Allard P, Potvin L, Prevost C, Begin P. A 10-year study of mortality in a cohort of patients with myotonic dystrophy. Neurology 1999;52:1658–1662.Google Scholar
  48. 48.
    Poussel M, Kaminsky P, Renaud P, Laroppe J, Pruna L, Chenuel B. Supine changes in lung function correlate with chronic respiratory failure in myotonic dystrophy patients. Respir Physiol Neurobiol 2014;193:43–51.  https://doi.org/10.1016/j.resp.2014.01.006.PubMedGoogle Scholar
  49. 49.
    Sansone VA, Gagnon C. 207th ENMC Workshop on chronic respiratory insufficiency in myotonic dystrophies: management and implications for research, 27–29 June 2014, Naarden, The Netherlands. Neuromuscul Disord. 2015;25:432–442.  https://doi.org/10.1016/j.nmd.2015.01.011.PubMedGoogle Scholar
  50. 50.
    Poussel M, Thil C, Kaminsky P, Mercy M, Gomez E, Chaouat A et al. Lack of correlation between the ventilatory response to CO2 and lung function impairment in myotonic dystrophy patients: evidence for a dysregulation at central level. Neuromuscul Disord. 2015;25:403–408.  https://doi.org/10.1016/j.nmd.2015.02.006.PubMedGoogle Scholar
  51. 51.
    Leonardis L, Blagus R, Dolenc Groselj L. Sleep and breathing disorders in myotonic dystrophy type 2. Acta Neurol Scand 2015;132:42–48.  https://doi.org/10.1111/ane.12355.PubMedGoogle Scholar
  52. 52.
    Pincherle A, Patruno V, Raimondi P, Moretti S, Dominese A, Martinelli-Boneschi F et al. Sleep breathing disorders in 40 Italian patients with Myotonic dystrophy type 1. Neuromuscul Disord. 2012;22:219–224.  https://doi.org/10.1016/j.nmd.2011.08.010.PubMedGoogle Scholar
  53. 53.
    Boussaid G, Prigent H, Laforet P, Raphael JC, Annane D, Orlikowski D et al. Effect and impact of mechanical ventilation in myotonic dystrophy type 1: a prospective cohort study. Thorax 2018.  https://doi.org/10.1136/thoraxjnl-2017-210610.
  54. 54.
    Church SC. The heart in myotonia atrophica. Arch Intern Med 1967;119:176–181.Google Scholar
  55. 55.
    Bhakta D, Lowe MR, Groh WJ. Prevalence of structural cardiac abnormalities in patients with myotonic dystrophy type I. Am Heart J 2004;147:224–227.  https://doi.org/10.1016/j.ahj.2003.08.008.PubMedGoogle Scholar
  56. 56.
    Melacini P, Villanova C, Menegazzo E, Novelli G, Danieli G, Rizzoli G et al. Correlation between cardiac involvement and CTG trinucleotide repeat length in myotonic dystrophy. J Am Coll Cardiol 1995;25:239–245.Google Scholar
  57. 57.
    Clarke NRA, Kelion AD, Nixon J, Hilton-Jones D, Forfar JC. Does cytosine-thymine-guanine (CTG) expansion size predict cardiac events and electrocardiographic progression in myotonic dystrophy?, Heart 2001;86:411–416.Google Scholar
  58. 58.
    Hardin BA, Lowe MR, Bhakta D, Groh WJ. Heart rate variability declines with increasing age and CTG repeat length in patients with myotonic dystrophy type 1. Ann Noninvasive Electrocardiol 2003;8:227–232.  https://doi.org/10.1046/j.1542-474X.2003.08310.x.PubMedGoogle Scholar
  59. 59.
    Prystowsky EN, Pritchett EL, Roses AD, Gallagher J. The natural history of conduction system disease in myotonic muscular dystrophy as determined by serial electrophysiologic studies. Circulation 1979;60:1360–1364.Google Scholar
  60. 60.
    Pelargonio G, Dello Russo A, Sanna T, De Martino G, Bellocci F. Myotonic dystrophy and the heart. Heart 2002;88:665–670.Google Scholar
  61. 61.
    Grigg LE, Chan W, Mond HG, Vohra JK, Downey WF. Ventricular tachycardia and sudden death in myotonic dystrophy: clinical, electrophysiologic and pathologic features. J Am Coll Cardiol 1985;6:254–256.  https://doi.org/10.1016/S0735-1097(85)80286-2.PubMedGoogle Scholar
  62. 62.
    Merino JL, Carmona JR, Fernández-Lozano I, Peinado R, Basterra N, Sobrino JA. Mechanisms of sustained ventricular tachycardia in myotonic dystrophy: implications for catheter ablation. Circulation 1998;98:541–546.  https://doi.org/10.1161/01.CIR.98.6.541.PubMedGoogle Scholar
  63. 63.
    Lau JK, Sy RW, Corbett A, Kritharides L. Myotonic dystrophy and the heart: a systematic review of evaluation and management. Int J Cardiol 2015;184:600–608.  https://doi.org/10.1016/j.ijcard.2015.03.069.PubMedGoogle Scholar
  64. 64.
    Ludatscher RM, Kerner H, Amikam S, Gellei B. Myotonia dystrophica with heart involvement: an electron microscopic study of skeletal, cardiac, and smooth muscle. J Clin Pathol 1978;31:1057–1064.Google Scholar
  65. 65.
    Motta J, Guilleminault C, Billingham M, Barry W, Mason J. Cardiac abnormalities in myotonic dystrophy. Electrophysiologic and histopathologic studies. Am J Med 1979;67:467–673.Google Scholar
  66. 66.
    Nguyen HH, Wolfe JT, 3rd, Holmes DR, Jr., Edwards WD. Pathology of the cardiac conduction system in myotonic dystrophy: a study of 12 cases. J Am Coll Cardiol 1988;11:662–671.Google Scholar
  67. 67.
    Sansone VA, Brigonzi E, Schoser B, Villani S, Gaeta M, De Ambroggi G et al. The frequency and severity of cardiac involvement in myotonic dystrophy type 2 (DM2): long-term outcomes. Int J Cardiol 2013;168:1147–1153.  https://doi.org/10.1016/j.ijcard.2012.11.076.PubMedGoogle Scholar
  68. 68.
    Duboc D, Wahbi K. What is the best way to detect infra-Hisian conduction abnormalities and prevent sudden cardiac death in myotonic dystrophy?, Heart 2012;98:433–434.  https://doi.org/10.1136/heartjnl-2011-301407.PubMedGoogle Scholar
  69. 69.
    Verhaert D, Richards K, Rafael-Fortney JA, Raman SV. Cardiac involvement in patients with muscular dystrophies: magnetic resonance imaging phenotype and genotypic considerations. Circ Cardiovasc Imaging 2011;4:67–76.  https://doi.org/10.1161/circimaging.110.960740.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Wahbi K, Meune C, Porcher R, Bećane HM, Lazarus A, Laforêt P et al. Electrophysiological study with prophylactic pacing and survival in adults with myotonic dystrophy and conduction system disease. JAMA. 2012;307:1292–1301.  https://doi.org/10.1001/jama.2012.346.PubMedGoogle Scholar
  71. 71.
    Hilbert JE, Barohn RJ, Clemens PR, Luebbe EA, Martens WB, McDermott MP et al. High frequency of gastrointestinal manifestations in myotonic dystrophy type 1 and type 2. Neurology 2017;89:1348–1354.  https://doi.org/10.1212/wnl.0000000000004420.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Brunner HG, Hamel BC, Rieu P, Howeler CJ, Peters FT. Intestinal pseudo-obstruction in myotonic dystrophy. J Med Genet 1992;29:791–793.Google Scholar
  73. 73.
    Abercrombie JF, Rogers J, Swash M. Faecal incontinence in myotonic dystrophy. J Neurol Neurosurg Psychiatry 1998;64:128–130.Google Scholar
  74. 74.
    Degraeuwe J, Van Laecke E, De Muynck M, Van Biervliet S, Vande Velde S, Van Winckel M. Faecal incontinence due to atrophy of the anal sphincter in myotonic dystrophy: a case report. Acta Gastroenterol Belg 2011;74:88–90.PubMedGoogle Scholar
  75. 75.
    Bellini M, Biagi S, Stasi C, Costa F, Mumolo MG, Ricchiuti A et al. Gastrointestinal manifestations in myotonic muscular dystrophy. World J Gastroenterol. 2006;12:1821–1828.  https://doi.org/10.3748/wjg.v12.i12.1821.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Marcon M, Briani C, Ermani M, Menegazzo E, Iurilli V, Feltrin GP et al. Positive correlation of CTG expansion and pharyngoesophageal alterations in myotonic dystrophy patients. Ital J Neurol Sci 1998;19:75–80.Google Scholar
  77. 77.
    Tarnopolsky MA, Pearce E, Matteliano A, James C, Armstrong D. Bacterial overgrowth syndrome in myotonic muscular dystrophy is potentially treatable. Muscle Nerve 2010;42:853–855.  https://doi.org/10.1002/mus.21787.PubMedGoogle Scholar
  78. 78.
    Voermans NC, Erasmus CE, Ockeloen CW, Van Engelen BG, Eggink CA. Primary cataract as a key to recognition of myotonic dystrophy type 1. Eur J Ophthalmol 2015;25:e46–e49.  https://doi.org/10.5301/ejo.5000565.PubMedGoogle Scholar
  79. 79.
    Wochner RD, Drews G, Strober W, Waldmann TA. Accelerated breakdown of immunoglobulin G (IgG) in myotonic dystrophy: a hereditary error of immunoglobulin catabolism. J Clin Investig 1966;45:321–329.Google Scholar
  80. 80.
    Kaminsky P, Lesesve JF, Jonveaux P, Pruna L. IgG deficiency and expansion of CTG repeats in myotonic dystrophy. Clin Neurol Neurosurg 2011;113:464–468.  https://doi.org/10.1016/j.clineuro.2011.02.003.PubMedGoogle Scholar
  81. 81.
    Gadalla SM, Lund M, Pfeiffer RM, Gortz S, Mueller CM, Moxley RT, 3rd et al. Cancer risk among patients with myotonic muscular dystrophy. JAMA 2011;306:2480–2486.  https://doi.org/10.1001/jama.2011.1796.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Dahlqvist JR, Orngreen MC, Witting N, Vissing J. Endocrine function over time in patients with myotonic dystrophy type 1. Eur J Neurol 2015;22:116–122.  https://doi.org/10.1111/ene.12542.PubMedGoogle Scholar
  83. 83.
    Brook JD, McCurrach ME, Harley HG, Buckler AJ, Church D, Aburatani H et al. Molecular basis of myotonic dystrophy: expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992;68:799–808.  https://doi.org/10.1016/0092-8674(92)90154-5.PubMedGoogle Scholar
  84. 84.
    Martorell L, Illa I, Rosell J, Benitez J, Sedano MJ, Baiget M. Homozygous myotonic dystrophy: clinical and molecular studies of three unrelated cases. J Med Genet 1996;33:783–785.Google Scholar
  85. 85.
    Thornton CA, Johnson K, Moxley RT, III. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann Neurol 1994;35:104–107.  https://doi.org/10.1002/ana.410350116.PubMedGoogle Scholar
  86. 86.
    Bergoffen J, Kant J, Sladky J, McDonald-McGinn D, Zackai EH, Fischbeck KH. Paternal transmission of congenital myotonic dystrophy. J Med Genet 1994;31:518–520.Google Scholar
  87. 87.
    Zeesman S, Carson N, Whelan DT. Paternal transmission of the congenital form of myotonic dystrophy type 1: a new case and review of the literature. Am J Med Genet 2002;107:222–226.Google Scholar
  88. 88.
    Barbé L, Lanni S, López-Castel A, Franck S, Spits C, Keymolen K et al. CpG methylation, a parent-of-origin effect for maternal-biased transmission of congenital myotonic dystrophy. Am J Hum Genet 2017;100:488–505.  https://doi.org/10.1016/j.ajhg.2017.01.033.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Ashizawa T, Anvret M, Baiget M, Barcelo JM, Brunner H, Cobo AM et al. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am J Hum Genet 1994;54:414–423.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Tian B, White RJ, Xia T, Welle S, Turner DH, Mathews MB et al. Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA 2000;6:79–87.Google Scholar
  91. 91.
    Michalowski S, Miller JW, Urbinati CR, Paliouras M, Swanson MS, Griffith J. Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein. Nucleic Acids Res 1999;27:3534–3542.Google Scholar
  92. 92.
    Mooers BH, Logue JS, Berglund JA. The structural basis of myotonic dystrophy from the crystal structure of CUG repeats. Proc Natl Acad Sci U S A 2005;102:16626–16631.  https://doi.org/10.1073/pnas.0505873102.PubMedPubMedCentralGoogle Scholar
  93. 93.
    Mateos-Aierdi AJ, Goicoechea M, Aiastui A, Fernandez-Torron R, Garcia-Puga M, Matheu A et al. Muscle wasting in myotonic dystrophies: a model of premature aging. Front Aging Neurosci 2015;7:125.  https://doi.org/10.3389/fnagi.2015.00125.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Caillet-Boudin ML, Fernandez-Gomez FJ, Tran H, Dhaenens CM, Buee L, Sergeant N. Brain pathology in myotonic dystrophy: when tauopathy meets spliceopathy and RNAopathy. Front Mol Neurosci 2014;6:57.  https://doi.org/10.3389/fnmol.2013.00057.PubMedPubMedCentralGoogle Scholar
  95. 95.
    Sansone VA. The dystrophic and nondystrophic myotonias. Continuum (Minneapolis, Minn) 2016;22:1889–1915.  https://doi.org/10.1212/con.0000000000000414.CrossRefGoogle Scholar
  96. 96.
    Fugier C, Klein AF, Hammer C, Vassilopoulos S, Ivarsson Y, Toussaint A et al. Misregulated alternative splicing of BIN1 is associated with T tubule alterations and muscle weakness in myotonic dystrophy. Nat Med 2011;17:720–725.  https://doi.org/10.1038/nm.2374.PubMedGoogle Scholar
  97. 97.
    Charlet-B N, Savkur RS, Singh G, Philips AV, Grice EA, Cooper TA. Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 2002;10:45–53.  https://doi.org/10.1016/S1097-2765(02)00572-5.PubMedGoogle Scholar
  98. 98.
    Philips AV, Timchenko LT, Cooper TA. Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998;280:737–741.Google Scholar
  99. 99.
    Nakamori M, Kimura T, Fujimura H, Takahashi MP, Sakoda S. Altered mRNA splicing of dystrophin in type 1 myotonic dystrophy. Muscle Nerve 2007;36:251–257.  https://doi.org/10.1002/mus.20809.PubMedGoogle Scholar
  100. 100.
    Nakamori M, Sobczak K, Puwanant A, Welle S, Eichinger K, Pandya S et al. Splicing biomarkers of disease severity in myotonic dystrophy. Ann Neurol 2013;74:862–872.  https://doi.org/10.1002/ana.23992.PubMedPubMedCentralGoogle Scholar
  101. 101.
    Thornton CA, Wang E, Carrell EM. Myotonic dystrophy: approach to therapy. Curr Opin Genet Dev 2017;44:135–140.  https://doi.org/10.1016/j.gde.2017.03.007.PubMedPubMedCentralGoogle Scholar
  102. 102.
    Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A. 2011;108:260–265.  https://doi.org/10.1073/pnas.1013343108.PubMedGoogle Scholar
  103. 103.
    Cleary JD, Ranum LP. Repeat-associated non-ATG (RAN) translation in neurological disease. Hum Mol Genet 2013;22:R45–R51.  https://doi.org/10.1093/hmg/ddt371.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Klein AF, Gasnier E, Furling D. Gain of RNA function in pathological cases: focus on myotonic dystrophy. Biochimie 2011;93:2006–2012.  https://doi.org/10.1016/j.biochi.2011.06.028.PubMedGoogle Scholar
  105. 105.
    Berul CI, Maguire CT, Aronovitz MJ, Greenwood J, Miller C, Gehrmann J et al. DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model. J Clin Invest 1999;103:R1–R7.  https://doi.org/10.1172/jci5346.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Thornton CA, Wymer JP, Simmons Z, McClain C, Moxley RT, 3rd. Expansion of the myotonic dystrophy CTG repeat reduces expression of the flanking DMAHP gene. Nat Genet 1997;16:407–409.  https://doi.org/10.1038/ng0897-407.PubMedGoogle Scholar
  107. 107.
    Mahyera AS, Schneider T, Halliger-Keller B, Schrooten K, Horner EM, Rost S et al. Distribution and structure of DM2 repeat tract alleles in the German population. Front Neurol 2018;9:463.  https://doi.org/10.3389/fneur.2018.00463.PubMedPubMedCentralGoogle Scholar
  108. 108.
    Meola G, Cardani R. Myotonic dystrophy type 2: an update on clinical aspects, genetic and pathomolecular mechanism. J Neuromuscul Dis 2015;2:S59-S71.  https://doi.org/10.3233/JND-150088.PubMedPubMedCentralGoogle Scholar
  109. 109.
    Sellier C, Cerro-Herreros E, Blatter M, Freyermuth F, Gaucherot A, Ruffenach F et al. rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences. Nat Commun 2018;9:2009.  https://doi.org/10.1038/s41467-018-04370-x.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Cardani R, Bugiardini E, Renna LV, Rossi G, Colombo G, Valaperta R et al. Overexpression of CUGBP1 in skeletal muscle from adult classic myotonic dystrophy type 1 but not from myotonic dystrophy type 2. PLoS One 2013;8:e83777.  https://doi.org/10.1371/journal.pone.0083777.PubMedPubMedCentralGoogle Scholar
  111. 111.
    Chen W, Wang Y, Abe Y, Cheney L, Udd B, Li YP. Haploinsuffciency for Znf9 in Znf9+/− mice is associated with multiorgan abnormalities resembling myotonic dystrophy. J Mol Biol 2007;368:8–17.  https://doi.org/10.1016/j.jmb.2007.01.088.PubMedGoogle Scholar
  112. 112.
    Raheem O, Olufemi SE, Bachinski LL, Vihola A, Sirito M, Holmlund-Hampf J et al. Mutant (CCTG)n expansion causes abnormal expression of zinc finger protein 9 (ZNF9) in myotonic dystrophy type 2. Am J Pathol 2010;177:3025–3036.  https://doi.org/10.2353/ajpath.2010.100179.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Margolis JM, Schoser BG, Moseley ML, Day JW, Ranum LP. DM2 intronic expansions: evidence for CCUG accumulation without flanking sequence or effects on ZNF9 mRNA processing or protein expression. Hum Mol Genet 2006;15:1808–1815.  https://doi.org/10.1093/hmg/ddl103.PubMedGoogle Scholar
  114. 114.
    Zu T, Cleary JD, Liu Y, Banez-Coronel M, Bubenik JL, Ayhan F et al. RAN translation regulated by muscleblind proteins in myotonic dystrophy type 2. Neuron 2017;95:1292.e5–1305.e5.  https://doi.org/10.1016/j.neuron.2017.08.039.Google Scholar
  115. 115.
    van Agtmaal EL, Andre LM, Willemse M, Cumming SA, van Kessel IDG, van den Broek W et al. CRISPR/Cas9-induced (CTGCAG)n repeat instability in the myotonic dystrophy type 1 locus: implications for therapeutic genome editing. Mol Ther. 2017;25:24–43.  https://doi.org/10.1016/j.ymthe.2016.10.014.PubMedPubMedCentralGoogle Scholar
  116. 116.
    Nakamori M, Gourdon G, Thornton CA. Stabilization of expanded (CTG)*(CAG) repeats by antisense oligonucleotides. Mol Ther 2011;19:2222–2227.  https://doi.org/10.1038/mt.2011.191.PubMedPubMedCentralGoogle Scholar
  117. 117.
    Siboni RB, Nakamori M, Wagner SD, Struck AJ, Coonrod LA, Harriott SA et al. Actinomycin D specifically reduces expanded CUG repeat RNA in myotonic dystrophy models. Cell Rep 2015;13:2386–2394.  https://doi.org/10.1016/j.celrep.2015.11.028.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Witherspoon L, O’Reilly S, Hadwen J, Tasnim N, MacKenzie A, Farooq F. Sodium channel inhibitors reduce DMPK mRNA and protein. Clin Transl Sci 2015;8:298–304.  https://doi.org/10.1111/cts.12275.PubMedPubMedCentralGoogle Scholar
  119. 119.
    Coonrod LA, Nakamori M, Wang W, Carrell S, Hilton CL, Bodner MJ et al. Reducing levels of toxic RNA with small molecules. ACS Chem Biol 2013;8:2528–2537.  https://doi.org/10.1021/cb400431f.PubMedPubMedCentralGoogle Scholar
  120. 120.
    Nakamori M, Taylor K, Mochizuki H, Sobczak K, Takahashi MP. Oral administration of erythromycin decreases RNA toxicity in myotonic dystrophy. Ann Clin Transl Neurol 2016;3:42–54.  https://doi.org/10.1002/acn3.271.PubMedGoogle Scholar
  121. 121.
    Hoskins JW, Ofori LO, Chen CZ, Kumar A, Sobczak K, Nakamori M et al. Lomofungin and dilomofungin: inhibitors of MBNL1-CUG RNA binding with distinct cellular effects. Nucleic Acids Res 2014;42:6591–6602.  https://doi.org/10.1093/nar/gku275.PubMedPubMedCentralGoogle Scholar
  122. 122.
    Chen G, Masuda A, Konishi H, Ohkawara B, Ito M, Kinoshita M et al. Phenylbutazone induces expression of MBNL1 and suppresses formation of MBNL1-CUG RNA foci in a mouse model of myotonic dystrophy. Sci Rep 2016;6:25317.  https://doi.org/10.1038/srep25317.PubMedPubMedCentralGoogle Scholar
  123. 123.
    Kanadia RN, Shin J, Yuan Y, Beattie SG, Wheeler TM, Thornton CA et al. Reversal of RNA missplicing and myotonia after muscleblind overexpression in a mouse poly(CUG) model for myotonic dystrophy. Proc Natl Acad Sci U S A. 2006;103:11748–11753.  https://doi.org/10.1073/pnas.0604970103.PubMedPubMedCentralGoogle Scholar
  124. 124.
    Wei C, Jones K, Timchenko NA, Timchenko L. GSK3beta is a new therapeutic target for myotonic dystrophy type 1. Rare Diseases (Austin, Tex). 2013;1:e26555.  https://doi.org/10.4161/rdis.26555.Google Scholar
  125. 125.
    Group F-NBW. BEST (Biomarkers, EndpointS, and other Tools) resource. Silver Spring (MD): Food and Drug Administration (US); 2016.Google Scholar
  126. 126.
    Wojciechowska M, Sobczak K, Kozlowski P, Sedehizadeh S, Wojtkowiak-Szlachcic A, Czubak K et al. Quantitative methods to monitor RNA biomarkers in myotonic dystrophy. Sci Rep 2018;8:5885.  https://doi.org/10.1038/s41598-018-24156-x.PubMedPubMedCentralGoogle Scholar
  127. 127.
    Rzuczek SG, Colgan LA, Nakai Y, Cameron MD, Furling D, Yasuda R et al. Precise small-molecule recognition of a toxic CUG RNA repeat expansion. Nat Chem Biol 2017;13:188–193.  https://doi.org/10.1038/nchembio.2251.PubMedGoogle Scholar
  128. 128.
    Luu LM, Nguyen L, Peng S, Lee J, Lee HY, Wong CH et al. A potent inhibitor of protein sequestration by expanded triplet (CUG) repeats that shows phenotypic improvements in a Drosophila model of myotonic dystrophy. ChemMedChem 2016;11:1428–1435.  https://doi.org/10.1002/cmdc.201600081.PubMedPubMedCentralGoogle Scholar
  129. 129.
    Warf MB, Nakamori M, Matthys CM, Thornton CA, Berglund JA. Pentamidine reverses the splicing defects associated with myotonic dystrophy. Proc Natl Acad Sci U S A 2009;106:18551–18556.  https://doi.org/10.1073/pnas.0903234106.PubMedPubMedCentralGoogle Scholar
  130. 130.
    Nguyen L, Luu LM, Peng S, Serrano JF, Chan HY, Zimmerman SC. Rationally designed small molecules that target both the DNA and RNA causing myotonic dystrophy type 1. J Am Chem Soc 2015;137:14180–14189.  https://doi.org/10.1021/jacs.5b09266.PubMedGoogle Scholar
  131. 131.
    Jones K, Wei C, Iakova P, Bugiardini E, Schneider-Gold C, Meola G et al. GSK3beta mediates muscle pathology in myotonic dystrophy. J Clin Invest 2012;122:4461–4472.  https://doi.org/10.1172/jci64081.PubMedPubMedCentralGoogle Scholar
  132. 132.
    Ketley A, Chen CZ, Li X, Arya S, Robinson TE, Granados-Riveron J et al. High-content screening identifies small molecules that remove nuclear foci, affect MBNL distribution and CELF1 protein levels via a PKC-independent pathway in myotonic dystrophy cell lines. Hum Mol Genet 2014;23:1551–1562.  https://doi.org/10.1093/hmg/ddt542.PubMedGoogle Scholar
  133. 133.
    Kuyumcu-Martinez NM, Wang GS, Cooper TA. Increased steady-state levels of CUGBP1 in myotonic dystrophy 1 are due to PKC-mediated hyperphosphorylation. Mol Cell 2007;28:68–78.  https://doi.org/10.1016/j.molcel.2007.07.027.PubMedPubMedCentralGoogle Scholar
  134. 134.
    Brockhoff M, Rion N, Chojnowska K, Wiktorowicz T, Eickhorst C, Erne B et al. Targeting deregulated AMPK/mTORC1 pathways improves muscle function in myotonic dystrophy type I. J Clin Invest 2017;127:549–563.  https://doi.org/10.1172/jci89616.PubMedPubMedCentralGoogle Scholar
  135. 135.
    Yadava RS, Foff EP, Yu Q, Gladman JT, Kim YK, Bhatt KS et al. TWEAK/Fn14, a pathway and novel therapeutic target in myotonic dystrophy. Hum Mol Genet 2015;24:2035–2048.  https://doi.org/10.1093/hmg/ddu617.PubMedGoogle Scholar
  136. 136.
    Sardone V, Zhou H, Muntoni F, Ferlini A, Falzarano MS. Antisense oligonucleotide-based therapy for neuromuscular disease. Molecules (Basel, Switzerland). 2017;22.  https://doi.org/10.3390/molecules22040563.
  137. 137.
    Wheeler TM, Sobczak K, Lueck JD, Osborne RJ, Lin X, Dirksen RT et al. Reversal of RNA dominance by displacement of protein sequestered on triplet repeat RNA. Science 2009;325:336–339.  https://doi.org/10.1126/science.1173110.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Wheeler TM, Leger AJ, Pandey SK, MacLeod AR, Nakamori M, Cheng SH et al. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 2012;488:111–115.  https://doi.org/10.1038/nature11362.PubMedPubMedCentralGoogle Scholar
  139. 139.
    Jauvin D, Chretien J, Pandey SK, Martineau L, Revillod L, Bassez G et al. Targeting DMPK with antisense oligonucleotide improves muscle strength in myotonic dystrophy type 1 mice. Mol Ther Nucleic Acids 2017;7:465–474.  https://doi.org/10.1016/j.omtn.2017.05.007.PubMedPubMedCentralGoogle Scholar
  140. 140.
    Pandey SK, Wheeler TM, Justice SL, Kim A, Younis HS, Gattis D et al. Identification and characterization of modified antisense oligonucleotides targeting DMPK in mice and nonhuman primates for the treatment of myotonic dystrophy type 1. J Pharmacol Exp Ther 2015;355:329–340.  https://doi.org/10.1124/jpet.115.226969.PubMedPubMedCentralGoogle Scholar
  141. 141.
    Langlois MA, Boniface C, Wang G, Alluin J, Salvaterra PM, Puymirat J et al. Cytoplasmic and nuclear retained DMPK mRNAs are targets for RNA interference in myotonic dystrophy cells. J Biol Chem 2005;280:16949–16954.  https://doi.org/10.1074/jbc.M501591200.PubMedGoogle Scholar
  142. 142.
    Sobczak K, Wheeler TM, Wang W, Thornton CA. RNA interference targeting CUG repeats in a mouse model of myotonic dystrophy. Mol Ther 2013;21:380–387.  https://doi.org/10.1038/mt.2012.222.PubMedGoogle Scholar
  143. 143.
    Long C, Amoasii L, Bassel-Duby R, Olson EN. Genome editing of monogenic neuromuscular diseases: a systematic review. JAMA Neurol 2016;73:1349–1355.  https://doi.org/10.1001/jamaneurol.2016.3388.PubMedPubMedCentralGoogle Scholar
  144. 144.
    Provenzano C, Cappella M, Valaperta R, Cardani R, Meola G, Martelli F et al. CRISPR/Cas9-mediated deletion of CTG expansions recovers normal phenotype in myogenic cells derived from myotonic dystrophy 1 patients. Mol Ther Nucleic Acids 2017;9:337–348.  https://doi.org/10.1016/j.omtn.2017.10.006.PubMedPubMedCentralGoogle Scholar
  145. 145.
    Batra R, Nelles DA, Pirie E, Blue SM, Marina RJ, Wang H et al. Elimination of toxic microsatellite repeat expansion RNA by Rna-Targeting Cas9. Cell 2017;170:899.e10–912.e10.  https://doi.org/10.1016/j.cell.2017.07.010.Google Scholar
  146. 146.
    Gao Y, Guo X, Santostefano K, Wang Y, Reid T, Zeng D et al. Genome therapy of myotonic dystrophy type 1 iPS cells for development of autologous stem cell therapy. Mol Ther. 2016;24:1378–1387.  https://doi.org/10.1038/mt.2016.97.PubMedPubMedCentralGoogle Scholar
  147. 147.
    Xia G, Gao Y, Jin S, Subramony SH, Terada N, Ranum LP et al. Genome modification leads to phenotype reversal in human myotonic dystrophy type 1 induced pluripotent stem cell-derived neural stem cells. Stem Cells (Dayton, Ohio). 2015;33:1829–1838.  https://doi.org/10.1002/stem.1970.Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  • Samantha LoRusso
    • 1
  • Benjamin Weiner
    • 2
  • W. David Arnold
    • 1
  1. 1.Department of NeurologyThe Ohio State UniversityColumbusUSA
  2. 2.The Ohio State University College of MedicineThe Ohio State UniversityColumbusUSA

Personalised recommendations