, Volume 15, Issue 4, pp 976–994 | Cite as

Autoimmune Myopathies: Updates on Evaluation and Treatment

  • Emer R. McGrathEmail author
  • Christopher T. Doughty
  • Anthony A. Amato


The major forms of autoimmune myopathies include dermatomyositis (DM), polymyositis (PM), myositis associated with antisynthetase syndrome (ASS), immune-mediated necrotizing myopathy (IMNM), and inclusion body myositis (IBM). While each of these conditions has unique clinical and histopathological features, they all share an immune-mediated component. These conditions can occur in isolation or can be associated with systemic malignancies or connective tissue disorders (overlap syndromes). As more has been learned about these conditions, it has become clear that traditional classification schemes do not adequately group patients according to shared clinical features and prognosis. Newer classifications are now utilizing myositis-specific autoantibodies which correlate with clinical and histopathological phenotypes and risk of malignancy, and help in offering prognostic information with regard to treatment response. Based on observational data and expert opinion, corticosteroids are considered first-line therapy for DM, PM, ASS, and IMNM, although intravenous immunoglobulin (IVIG) is increasingly being used as initial therapy in IMNM related to statin use. Second-line agents are often required, but further prospective investigation is required regarding the optimal choice and timing of these agents.


Autoimmune myopathy Inflammatory myopathy Immune-mediated myopathy Necrotizing myopathy 


Compliance with Ethical Standards

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.


  1. 1.
    AA Amato, JA Russell (eds): Neuromuscular Disorders, 2nd ed. New York, McGraw-Hill Education; 2016, Table 33-1, p. 828.Google Scholar
  2. 2.
    Bohan A, Peter JB. Polymyositis and dermatomyositis (first of two parts). N Engl J Med. 1975;292:344–347.CrossRefPubMedGoogle Scholar
  3. 3.
    Bohan A, Peter JB. Polymyositis and dermatomyositis (second of two parts). N Engl J Med. 1975;292:403–407.CrossRefPubMedGoogle Scholar
  4. 4.
    Hoogendijk JE, Amato AA, Lecky BR, et al. 119th ENMC international workshop: trial design in adult idiopathic inflammatory myopathies, with the exception of inclusion body myositis, 10-12 October 2003, Naarden, The Netherlands. Neuromuscular disorders : NMD. 2004;14:337–345.CrossRefPubMedGoogle Scholar
  5. 5.
    Dalakas MC. Inflammatory muscle diseases. N Engl J Med. 2015;372:1734–1747.CrossRefPubMedGoogle Scholar
  6. 6.
    Rose MR. 188th ENMC International Workshop: Inclusion Body Myositis, 2-4 December 2011, Naarden, The Netherlands. Neuromuscular disorders : NMD. 2013;23:1044–1055.CrossRefPubMedGoogle Scholar
  7. 7.
    Lundberg IE, Tjärnlund A, Bottai M, et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Annals of the rheumatic diseases. 2017;76:1955–1964.Google Scholar
  8. 8.
    Allenbach Y, Mammen AL, Benveniste O, Stenzel W. 224th ENMC International Workshop:: Clinico-sero-pathological classification of immune-mediated necrotizing myopathies Zandvoort, The Netherlands, 14–16 October 2016. Neuromuscular disorders : NMD. 2018;28:87–99.Google Scholar
  9. 9.
    Bendewald MJ, Wetter DA, Li X, Davis MD. Incidence of dermatomyositis and clinically amyopathic dermatomyositis: a population-based study in Olmsted County, Minnesota. Arch Dermatol. 2010;146:26–30.PubMedGoogle Scholar
  10. 10.
    Marie I, Hatron PY, Levesque H, et al. Influence of age on characteristics of polymyositis and dermatomyositis in adults. Medicine (Baltimore). 1999;78:139–147.CrossRefPubMedGoogle Scholar
  11. 11.
    Amato AA, Gronseth GS, Jackson CE, et al. Inclusion body myositis: clinical and pathological boundaries. Ann Neurol. 1996;40:581–586.CrossRefPubMedGoogle Scholar
  12. 12.
    Gerami P, Schope JM, McDonald L, Walling HW, Sontheimer RD. A systematic review of adult-onset clinically amyopathic dermatomyositis (dermatomyositis sine myositis): a missing link within the spectrum of the idiopathic inflammatory myopathies. J Am Acad Dermatol. 2006;54:597–613.CrossRefPubMedGoogle Scholar
  13. 13.
    Stonecipher MR, Jorizzo JL, White WL, Walker FO, Prichard E. Cutaneous changes of dermatomyositis in patients with normal muscle enzymes: dermatomyositis sine myositis? J Am Acad Dermatol. 1993;28:951–956.CrossRefPubMedGoogle Scholar
  14. 14.
    Mammen AL. Autoimmune Myopathies. Continuum (Minneapolis, Minn). 2016;22:1852–1870.Google Scholar
  15. 15.
    Nielsen AO, Johnson E, Hentzer B, Kobayasi T. Dermatomyositis with universal calcinosis. A histopathological and electron optic study. Journal of cutaneous pathology. 1979;6:486–491.CrossRefPubMedGoogle Scholar
  16. 16.
    Bohan A, Peter JB, Bowman RL, Pearson CM. Computer-assisted analysis of 153 patients with polymyositis and dermatomyositis. Medicine (Baltimore). 1977;56:255–286.CrossRefPubMedGoogle Scholar
  17. 17.
    Lundberg IE. The heart in dermatomyositis and polymyositis. Rheumatology (Oxford, England). 2006;45 Suppl 4:iv18–21.CrossRefGoogle Scholar
  18. 18.
    Rai SK, Choi HK, Sayre EC, Avina-Zubieta JA. Risk of myocardial infarction and ischaemic stroke in adults with polymyositis and dermatomyositis: a general population-based study. Rheumatology (Oxford, England). 2016;55:461–469.Google Scholar
  19. 19.
    Lai YT, Dai YS, Yen MF, et al. Dermatomyositis is associated with an increased risk of cardiovascular and cerebrovascular events: a Taiwanese population-based longitudinal follow-up study. Br J Dermatol. 2013;168:1054–1059.CrossRefPubMedGoogle Scholar
  20. 20.
    Diederichsen LP, Simonsen JA, Diederichsen AC, et al. Cardiac Abnormalities in Adult Patients With Polymyositis or Dermatomyositis as Assessed by Noninvasive Modalities. Arthritis care & research. 2016;68:1012–1020.CrossRefGoogle Scholar
  21. 21.
    Fathi M, Dastmalchi M, Rasmussen E, Lundberg IE, Tornling G. Interstitial lung disease, a common manifestation of newly diagnosed polymyositis and dermatomyositis. Annals of the rheumatic diseases. 2004;63:297–301.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Marie I, Hachulla E, Chérin P, et al. Interstitial lung disease in polymyositis and dermatomyositis. Arthritis care & research. 2002;47:614–622.CrossRefGoogle Scholar
  23. 23.
    de Merieux P, Verity MA, Clements PJ, Paulus HE. Esophageal abnormalities and dysphagia in polymyositis and dermatomyositis. Arthritis and rheumatism. 1983;26:961–968.Google Scholar
  24. 24.
    Mugii N, Hasegawa M, Matsushita T, et al. Oropharyngeal Dysphagia in Dermatomyositis: Associations with Clinical and Laboratory Features Including Autoantibodies. PLoS One. 2016;11:e0154746.Google Scholar
  25. 25.
    Laskin BL, Choyke P, Keenan GF, Miller FW, Rider LG. Novel gastrointestinal tract manifestations in juvenile dermatomyositis. The Journal of Pediatrics. 1999;135:371–374.CrossRefPubMedGoogle Scholar
  26. 26.
    Horowitz M, McNeil JD, Maddern GJ, Collins PJ, Shearman DJC. Abnormalities of gastric and esophageal emptying in polymyositis and dermatomyositis. Gastroenterology. 1986;90:434–439.CrossRefPubMedGoogle Scholar
  27. 27.
    Olazagasti JM, Baez PJ, Wetter DA, Ernste FC. Cancer risk in dermatomyositis: a meta-analysis of cohort studies. American journal of clinical dermatology. 2015;16:89–98.CrossRefPubMedGoogle Scholar
  28. 28.
    Yang Z, Lin F, Qin B, Liang Y, Zhong R. Polymyositis/dermatomyositis and malignancy risk: a metaanalysis study. J Rheumatol. 2015;42:282–291.CrossRefPubMedGoogle Scholar
  29. 29.
    Hill CL, Zhang Y, Sigurgeirsson B, et al. Frequency of specific cancer types in dermatomyositis and polymyositis: a population-based study. Lancet. 2001;357:96–100.CrossRefPubMedGoogle Scholar
  30. 30.
    Luu X, Leonard S, Joseph K-A. Dermatomyositis presenting as a paraneoplastic syndrome with resolution of symptoms following surgical management of underlying breast malignancy. Journal of Surgical Case Reports. 2015;2015:rjv075.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Bernatsky S, Joseph L, Pineau CA, et al. Estimating the prevalence of polymyositis and dermatomyositis from administrative data: age, sex and regional differences. Annals of the rheumatic diseases. 2009;68:1192–1196.CrossRefPubMedGoogle Scholar
  32. 32.
    Douglas WW, Tazelaar HD, Hartman TE, et al. Polymyositis-dermatomyositis-associated interstitial lung disease. American journal of respiratory and critical care medicine. 2001;164:1182–1185.CrossRefPubMedGoogle Scholar
  33. 33.
    Troyanov Y, Targoff IN, Tremblay JL, et al. Novel classification of idiopathic inflammatory myopathies based on overlap syndrome features and autoantibodies: analysis of 100 French Canadian patients. Medicine (Baltimore). 2005;84:231–249.CrossRefPubMedGoogle Scholar
  34. 34.
    Lega JC, Fabien N, Reynaud Q, et al. The clinical phenotype associated with myositis-specific and associated autoantibodies: a meta-analysis revisiting the so-called antisynthetase syndrome. Autoimmunity reviews. 2014;13:883–891.CrossRefPubMedGoogle Scholar
  35. 35.
    Witt LJ, Curran JJ, Strek ME. The Diagnosis and Treatment of Antisynthetase Syndrome. Clinical pulmonary medicine. 2016;23:218–226.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Katzap E, Barilla-LaBarca ML, Marder G. Antisynthetase syndrome. Current rheumatology reports. 2011;13:175–81.CrossRefPubMedGoogle Scholar
  37. 37.
    Noguchi E, Uruha A, Suzuki S, et al. Skeletal Muscle Involvement in Antisynthetase Syndrome. JAMA neurology. 2017;74:992–999.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mammen AL, Chung T, Christopher-Stine L, et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis and rheumatism. 2011;63:713–721.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Mohassel P, Mammen AL. Statin-associated autoimmune myopathy and anti-HMGCR autoantibodies. Muscle & nerve. 2013;48:477–483.CrossRefGoogle Scholar
  40. 40.
    Watanabe Y, Uruha A, Suzuki S, et al. Clinical features and prognosis in anti-SRP and anti-HMGCR necrotising myopathy. Journal of Neurology, Neurosurgery and Psychiatry. 2016;87:1038–1044.CrossRefPubMedGoogle Scholar
  41. 41.
    Christopher-Stine L, Casciola-Rosen LA, Hong G, et al. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis and rheumatism. 2010;62:2757–2766.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Allenbach Y, Drouot L, Rigolet A, et al. Anti-HMGCR autoantibodies in european patients with autoimmune necrotizing myopathies: Inconstant exposure to statin. Medicine (United States). 2014;93:150–157.PubMedCentralGoogle Scholar
  43. 43.
    Tiniakou E, Pinal-Fernandez I, Lloyd TE, et al. More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutarylcoenzyme A reductase-associated autoimmune myopathy. Rheumatology (United Kingdom). 2017;56:787–794.Google Scholar
  44. 44.
    Liang WC, Uruha A, Suzuki S, et al. Pediatric necrotizing myopathy associated with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase antibodies. Rheumatology (Oxford, England). 2017;56:287–293.Google Scholar
  45. 45.
    Miller T, Al-Lozi MT, Lopate G, Pestronk A. Myopathy with antibodies to the signal recognition particle: clinical and pathological features. J Neurol Neurosurg Psychiatry. 2002;73:420–428.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Hengstman GJ, ter Laak HJ, Vree Egberts WT, et al. Anti-signal recognition particle autoantibodies: marker of a necrotising myopathy. Annals of the rheumatic diseases. 2006;65:1635–1638.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Suzuki S, Nishikawa A, Kuwana M, et al. Inflammatory myopathy with anti-signal recognition particle antibodies: case series of 100 patients. Orphanet journal of rare diseases. 2015;10:61.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rider LG, Shah M, Mamyrova G, et al. The myositis autoantibody phenotypes of the juvenile idiopathic inflammatory myopathies. Medicine (Baltimore). 2013;92:223–243.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Pinal-Fernandez I, Parks C, Werner JL, et al. Longitudinal Course of Disease in a Large Cohort of Myositis Patients With Autoantibodies Recognizing the Signal Recognition Particle. Arthritis care & research. 2017;69:263–270.CrossRefGoogle Scholar
  50. 50.
    Kassardjian CD, Lennon VA, Alfugham NB, Mahler M, Milone M. Clinical features and treatment outcomes of necrotizing autoimmune myopathy. JAMA neurology. 2015;72:996–1003.CrossRefPubMedGoogle Scholar
  51. 51.
    Allenbach Y, Keraen J, Bouvier AM, et al. High risk of cancer in autoimmune necrotizing myopathies: usefulness of myositis specific antibody. Brain. 2016;139:2131–2135.CrossRefPubMedGoogle Scholar
  52. 52.
    Liewluck T, Kao JC, Mauermann ML. PD-1 Inhibitor-associated Myopathies: Emerging Immune-mediated Myopathies. Journal of immunotherapy (Hagerstown, Md : 1997). 2017.Google Scholar
  53. 53.
    Kao JC, Liao B, Markovic SN, et al. Neurological Complications Associated With Anti-Programmed Death 1 (PD-1) Antibodies. JAMA neurology. 2017;74:1216–1222.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Haddox CL, Shenoy N, Shah KK, et al. Pembrolizumab induced bulbar myopathy and respiratory failure with necrotizing myositis of the diaphragm. Annals of oncology : official journal of the European Society for Medical Oncology. 2017;28:673–675.Google Scholar
  55. 55.
    Vallet H, Gaillet A, Weiss N, et al. Pembrolizumab-induced necrotic myositis in a patient with metastatic melanoma. Annals of oncology : official journal of the European Society for Medical Oncology. 2016;27:1352–1353.CrossRefGoogle Scholar
  56. 56.
    Benveniste O, Guiguet M, Freebody J, et al. Long-term observational study of sporadic inclusion body myositis. Brain. 2011;134:3176–3184.CrossRefPubMedGoogle Scholar
  57. 57.
    Cox FM, Titulaer MJ, Sont JK, et al. A 12-year follow-up in sporadic inclusion body myositis: an end stage with major disabilities. Brain. 2011;134:3167–3175.CrossRefPubMedGoogle Scholar
  58. 58.
    Verma A, Bradley WG, Adesina AM, Sofferman R, Pendlebury WW. Inclusion body myositis with cricopharyngeus muscle involvement and severe dysphagia. Muscle & nerve. 1991;14:470–3.CrossRefGoogle Scholar
  59. 59.
    Riminton DS, Chambers ST, Parkin PJ, Pollock M, Donaldson IM. Inclusion body myositis presenting solely as dysphagia. Neurology. 1993;43:1241–1243.CrossRefPubMedGoogle Scholar
  60. 60.
    Lotz BP, Engel AG, Nishino H, Stevens JC, Litchy WJ. Inclusion body myositis. Observations in 40 patients. Brain. 1989;112 ( Pt 3):727–747.CrossRefPubMedGoogle Scholar
  61. 61.
    Uruha A, Noguchi S, Hayashi YK, et al. Hepatitis C virus infection in inclusion body myositis: A case-control study. Neurology. 2016;86:211–217.CrossRefPubMedGoogle Scholar
  62. 62.
    Lloyd TE, Pinal-Fernandez I, Michelle EH, et al. Overlapping features of polymyositis and inclusion body myositis in HIV-infected patients. Neurology. 2017;88:1454–1460.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Bouillot S, Coquet M, Ferrer X, et al. [Inclusion body myositis associated with sacroidosis: a report of 3 cases]. Annales de pathologie. 2001;21:334–336.Google Scholar
  64. 64.
    Sanmaneechai O, Swenson A, Gerke AK, Moore SA, Shy ME. Inclusion body myositis and sarcoid myopathy: coincidental occurrence or associated diseases. Neuromuscular disorders : NMD. 2015;25:297–300.CrossRefPubMedGoogle Scholar
  65. 65.
    Greenberg SA, Pinkus JL, Amato AA, Kristensen T, Dorfman DM. Association of inclusion body myositis with T cell large granular lymphocytic leukaemia. Brain. 2016;139:1348–1360.CrossRefPubMedGoogle Scholar
  66. 66.
    Tymms KE, Webb J. Dermatopolymyositis and other connective tissue diseases: a review of 105 cases. J Rheumatol. 1985;12:1140–1148.PubMedGoogle Scholar
  67. 67.
    Carter JD, Kanik KS, Vasey FB, Valeriano-Marcet J. Dermatomyositis with normal creatine kinase and elevated aldolase levels. J Rheumatol. 2001;28:2366–2367.PubMedGoogle Scholar
  68. 68.
    Nozaki K, Pestronk A. High aldolase with normal creatine kinase in serum predicts a myopathy with perimysial pathology. J Neurol Neurosurg Psychiatry. 2009;80:904–908.CrossRefPubMedGoogle Scholar
  69. 69.
    Pinal-Fernandez I, Casciola-Rosen LA, Christopher-Stine L, Corse AM, Mammen AL. The Prevalence of Individual Histopathologic Features Varies according to Autoantibody Status in Muscle Biopsies from Patients with Dermatomyositis. J Rheumatol. 2015;42:1448–1454.CrossRefPubMedGoogle Scholar
  70. 70.
    Roux S, Seelig HP, Meyer O. Significance of Mi-2 autoantibodies in polymyositis and dermatomyositis. J Rheumatol. 1998;25:395–396.PubMedGoogle Scholar
  71. 71.
    Shamim EA, Rider LG, Pandey JP, et al. Differences in idiopathic inflammatory myopathy phenotypes and genotypes between Mesoamerican Mestizos and North American Caucasians: ethnogeographic influences in the genetics and clinical expression of myositis. Arthritis and rheumatism. 2002;46:1885–1893.CrossRefPubMedGoogle Scholar
  72. 72.
    Hamaguchi Y, Kuwana M, Hoshino K, et al. Clinical correlations with dermatomyositis-specific autoantibodies in adult Japanese patients with dermatomyositis: a multicenter cross-sectional study. Arch Dermatol. 2011;147:391–398.CrossRefPubMedGoogle Scholar
  73. 73.
    Love LA, Leff RL, Fraser DD, et al. A new approach to the classification of idiopathic inflammatory myopathy: myositis-specific autoantibodies define useful homogeneous patient groups. Medicine (Baltimore). 1991;70:360–374.CrossRefPubMedGoogle Scholar
  74. 74.
    Sato S, Hoshino K, Satoh T, et al. RNA helicase encoded by melanoma differentiation-associated gene 5 is a major autoantigen in patients with clinically amyopathic dermatomyositis: Association with rapidly progressive interstitial lung disease. Arthritis and rheumatism. 2009;60:2193–2200.CrossRefPubMedGoogle Scholar
  75. 75.
    Fiorentino D, Chung L, Zwerner J, Rosen A, Casciola-Rosen L. The mucocutaneous and systemic phenotype of dermatomyositis patients with antibodies to MDA5 (CADM-140): a retrospective study. J Am Acad Dermatol. 2011;65:25–34.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Koga T, Fujikawa K, Horai Y, et al. The diagnostic utility of anti-melanoma differentiation-associated gene 5 antibody testing for predicting the prognosis of Japanese patients with DM. Rheumatology (Oxford, England). 2012;51:1278–1284.Google Scholar
  77. 77.
    Gil B, Merav L, Pnina L, Chagai G. Diagnosis and treatment of clinically amyopathic dermatomyositis (CADM): a case series and literature review. Clinical rheumatology. 2016;35:2125–2130.CrossRefPubMedGoogle Scholar
  78. 78.
    Trallero-Araguas E, Rodrigo-Pendas JA, Selva-O'Callaghan A, et al. Usefulness of anti-p155 autoantibody for diagnosing cancer-associated dermatomyositis: a systematic review and meta-analysis. Arthritis and rheumatism. 2012;64:523–532.CrossRefPubMedGoogle Scholar
  79. 79.
    Targoff IN, Mamyrova G, Trieu EP, et al. A novel autoantibody to a 155-kd protein is associated with dermatomyositis. Arthritis and rheumatism. 2006;54:3682–3689.CrossRefPubMedGoogle Scholar
  80. 80.
    Fujimoto M, Hamaguchi Y, Kaji K, et al. Myositis-specific anti-155/140 autoantibodies target transcription intermediary factor 1 family proteins. Arthritis and rheumatism. 2012;64:513–522.CrossRefPubMedGoogle Scholar
  81. 81.
    Fiorentino DF, Kuo K, Chung L, et al. Distinctive cutaneous and systemic features associated with antitranscriptional intermediary factor-1gamma antibodies in adults with dermatomyositis. J Am Acad Dermatol. 2015;72:449–455.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Gunawardena H, Wedderburn LR, Chinoy H, et al. Autoantibodies to a 140-kd protein in juvenile dermatomyositis are associated with calcinosis. Arthritis and rheumatism. 2009;60:1807–1814.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Fiorentino DF, Chung LS, Christopher-Stine L, et al. Most patients with cancer-associated dermatomyositis have antibodies to nuclear matrix protein NXP-2 or transcription intermediary factor 1gamma. Arthritis and rheumatism. 2013;65:2954–2962.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Valenzuela A, Chung L, Casciola-Rosen L, Fiorentino D. Identification of clinical features and autoantibodies associated with calcinosis in dermatomyositis. JAMA dermatology. 2014;150:724–729.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Tansley SL, Betteridge ZE, Shaddick G, et al. Calcinosis in juvenile dermatomyositis is influenced by both anti-NXP2 autoantibody status and age at disease onset. Rheumatology (Oxford, England). 2014;53:2204–2208.Google Scholar
  86. 86.
    Ceribelli A, Fredi M, Taraborelli M, et al. Anti-MJ/NXP-2 autoantibody specificity in a cohort of adult Italian patients with polymyositis/dermatomyositis. Arthritis research & therapy. 2012;14:R97.CrossRefGoogle Scholar
  87. 87.
    Greenberg SA. Cytoplasmic 5′-nucleotidase autoantibodies in inclusion body myositis: Isotypes and diagnostic utility. Muscle & nerve. 2014;50:488–492.CrossRefGoogle Scholar
  88. 88.
    Larman HB, Salajegheh M, Nazareno R, et al. Cytosolic 5′-nucleotidase 1A autoimmunity in sporadic inclusion body myositis. Ann Neurol. 2013;73:408–418.CrossRefPubMedGoogle Scholar
  89. 89.
    Lloyd TE, Christopher-Stine L, Pinal-Fernandez I, et al. Cytosolic 5'-Nucleotidase 1A As a Target of Circulating Autoantibodies in Autoimmune Diseases. Arthritis care & research. 2016;68:66–71.CrossRefGoogle Scholar
  90. 90.
    Herbert MK, Stammen-Vogelzangs J, Verbeek MM, et al. Disease specificity of autoantibodies to cytosolic 5′-nucleotidase 1A in sporadic inclusion body myositis versus known autoimmune diseases. Annals of the rheumatic diseases. 2016;75:696–701.CrossRefPubMedGoogle Scholar
  91. 91.
    Koffman BM, Rugiero M, Dalakas MC. Immune-mediated conditions and antibodies associated with sporadic inclusion body myositis. Muscle & nerve. 1998;21:115–117.CrossRefGoogle Scholar
  92. 92.
    Rojana-Udomsart A, Bundell C, James I, et al. Frequency of autoantibodies and correlation with HLA-DRB1 genotype in sporadic inclusion body myositis (s-IBM): a population control study. Journal of neuroimmunology. 2012;249:66–70.CrossRefPubMedGoogle Scholar
  93. 93.
    Eisen A, Berry K, Gibson G. Inclusion body myositis (IBM): myopathy or neuropathy? Neurology. 1983;33:1109–1114.CrossRefPubMedGoogle Scholar
  94. 94.
    Joy JL, Oh SJ, Baysal AI. Electrophysiological spectrum of inclusion body myositis. Muscle & nerve. 1990;13:949–951.CrossRefGoogle Scholar
  95. 95.
    Finanger EL, Russman B, Forbes SC, et al. Use of skeletal muscle MRI in diagnosis and monitoring disease progression in Duchenne muscular dystrophy. Physical medicine and rehabilitation clinics of North America. 2012;23:1–10, ix.CrossRefPubMedGoogle Scholar
  96. 96.
    Charlot-Lambrecht I, Brochot P, Noblet H, Varoquier C, Eschard JP. Neurogenic muscle hypertrophy. Joint, bone, spine : revue du rhumatisme. 2009;76:401–403.CrossRefGoogle Scholar
  97. 97.
    Tasca G, Monforte M, De Fino C, et al. Magnetic resonance imaging pattern recognition in sporadic inclusion-body myositis. Muscle & nerve. 2015;52:956–962.CrossRefGoogle Scholar
  98. 98.
    Tomasova Studynkova J, Charvat F, Jarosova K, Vencovsky J. The role of MRI in the assessment of polymyositis and dermatomyositis. Rheumatology (Oxford, England). 2007;46:1174–1179.Google Scholar
  99. 99.
    Pitt AM, Fleckenstein JL, Greenlee RG, Jr., et al. MRI-guided biopsy in inflammatory myopathy: initial results. Magnetic resonance imaging. 1993;11:1093–1099.Google Scholar
  100. 100.
    Greenberg SA, Pinkus JL, Pinkus GS, et al. Interferon-alpha/beta-mediated innate immune mechanisms in dermatomyositis. Ann Neurol. 2005;57:664–678.CrossRefPubMedGoogle Scholar
  101. 101.
    Uruha A, Nishikawa A, Tsuburaya RS, et al. Sarcoplasmic MxA expression: A valuable marker of dermatomyositis. Neurology. 2017;88:493–500.CrossRefPubMedGoogle Scholar
  102. 102.
    Greenberg SA. Proposed immunologic models of the inflammatory myopathies and potential therapeutic implications. Neurology. 2007;69:2008–2019.CrossRefPubMedGoogle Scholar
  103. 103.
    Engel AG, Arahata K. Monoclonal antibody analysis of mononuclear cells in myopathies. II: Phenotypes of autoinvasive cells in polymyositis and inclusion body myositis. Ann Neurol. 1984;16:209–215.CrossRefPubMedGoogle Scholar
  104. 104.
    Mozaffar T, Pestronk A. Myopathy with anti-Jo-1 antibodies: pathology in perimysium and neighbouring muscle fibres. J Neurol Neurosurg Psychiatry. 2000;68:472–478.CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Aouizerate J, De Antonio M, Bassez G, et al. Myofiber HLA-DR expression is a distinctive biomarker for antisynthetase-associated myopathy. Acta neuropathologica communications. 2014;2:154.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Chung T, Christopher-Stine L, Paik JJ, Corse A, Mammen AL. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle & nerve. 2015;52:189–195.CrossRefGoogle Scholar
  107. 107.
    Alshehri A, Choksi R, Bucelli R, Pestronk A. Myopathy with anti-HMGCR antibodies: Perimysium and myofiber pathology. Neurology(R) neuroimmunology & neuroinflammation. 2015;2:e124.Google Scholar
  108. 108.
    Emslie-Smith AM, Engel AG. Necrotizing myopathy with pipestem capillaries, microvascular deposition of the complement membrane attack complex (MAC), and minimal cellular infiltration. Neurology. 1991;41:936–939.CrossRefPubMedGoogle Scholar
  109. 109.
    O'Hanlon TP, Carrick DM, Targoff IN, et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1, and -DQA1 allelic profiles distinguish European American patients with different myositis autoantibodies. Medicine (Baltimore). 2006;85:111–127.CrossRefPubMedGoogle Scholar
  110. 110.
    Mammen AL, Gaudet D, Brisson D, et al. Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis care & research. 2012;64:1233–1237.CrossRefGoogle Scholar
  111. 111.
    Limaye V, Bundell C, Hollingsworth P, et al. Clinical and genetic associations of autoantibodies to 3-hydroxy-3-methyl-glutaryl-coenzyme a reductase in patients with immune-mediated myositis and necrotizing myopathy. Muscle & nerve. 2015;52:196–203.CrossRefGoogle Scholar
  112. 112.
    Hiniker A, Daniels BH, Lee HS, Margeta M. Comparative utility of LC3, p62 and TDP-43 immunohistochemistry in differentiation of inclusion body myositis from polymyositis and related inflammatory myopathies. Acta neuropathologica communications. 2013;1:29.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Gordon Pa, Winer JB, Hoogendijk JE, Choy EHS. Immunosuppressant and immunomodulatory treatment for dermatomyositis and polymyositis. Cochrane Database of Systematic Reviews. 2012;8:CD003643.Google Scholar
  114. 114.
    Mammen AL, Tiniakou E. Intravenous Immune Globulin for Statin-Triggered Autoimmune Myopathy. NEJM. 2015;373:1680–1682.CrossRefPubMedGoogle Scholar
  115. 115.
    Dimachkie MM, Barohn RJ, Amato A. Idiopathic Inflammatory Myopathies. Neurol Clin. 2014;32:595–628.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Mammen A. Autoimmune muscle disease. Handbook of clinical neurology. 2016;133:467–484.CrossRefPubMedGoogle Scholar
  117. 117.
    Mammen AL. Which nonautoimmune myopathies are most frequently misdiagnosed as myositis? Current Opinion in Rheumatology. 2017;29:618–622.PubMedPubMedCentralGoogle Scholar
  118. 118.
    Nguyen K, Bassez G, Krahn M, et al. Phenotypic Study in 40 Patients With Dysferlin Gene Mutations. Archives of Neurology. 2007;64:1176.CrossRefPubMedGoogle Scholar
  119. 119.
    Joffe MM, Love La, Ph D Leff RL. Drug Therapy of the Idiopathic Inflammatory Myopathies : Predictors of Response to Prednisone , Azathioprine , and. The American Journal of Medicine. 1993;94:379–387.CrossRefPubMedGoogle Scholar
  120. 120.
    Pinal-Fernandez I, Casal-Dominguez M, Carrino JA, et al. Thigh muscle MRI in immune-mediated necrotising myopathy: Extensive oedema, early muscle damage and role of anti-SRP autoantibodies as a marker of severity. Annals of the rheumatic diseases. 2017;76:681–687.CrossRefPubMedGoogle Scholar
  121. 121.
    Zheng Y, Liu L, Wang L, et al. Magnetic resonance imaging changes of thigh muscles in myopathy with antibodies to signal recognition particle. Rheumatology (United Kingdom). 2015;54:1017–1024.CrossRefGoogle Scholar
  122. 122.
    Miller FW. New approaches to the assessment and treatment of the idiopathic inflammatory myopathies. Annals of the rheumatic diseases. 2012;71:i82-i85.CrossRefPubMedGoogle Scholar
  123. 123.
    van de Vlekkert J, Hoogendijk JE, de Haan RJ, et al. Oral dexamethasone pulse therapy versus daily prednisolone in sub-acute onset myositis, a randomised clinical trial. Neuromuscular Disorders. 2010;20:382–389.CrossRefPubMedGoogle Scholar
  124. 124.
    Love LA, Leff RL, Fraser DD, et al. A new approach to the classification of idiopathic inflammatory myopathy: Myositis-specific autoantibodies define useful homoegeneous patient groups. Medicine (Baltimore). 1991;70:360–374.CrossRefPubMedGoogle Scholar
  125. 125.
    Koenig M, Fritzler MJ, Targoff IN, Troyanov Y, Senécal J-L. Heterogeneity of autoantibodies in 100 patients with autoimmune myositis: insights into clinical features and outcomes. Arthritis research & therapy. 2007;9:R78.CrossRefGoogle Scholar
  126. 126.
    Stanciu R, Guiguet M, Musset L, et al. Antisynthetase syndrome with anti-Jo1 antibodies in 48 patients: Pulmonary involvement predicts disease-modifying antirheumatic drug use. Journal of Rheumatology. 2012;39:1835–1839.CrossRefPubMedGoogle Scholar
  127. 127.
    Cavagna L, Caporali R, Abdì-Alì L, et al. Cyclosporine in anti-Jo1-positive patients with corticosteroid-refractory interstitial lung disease. Journal of Rheumatology. 2013;40:484–492.CrossRefPubMedGoogle Scholar
  128. 128.
    Grable-Esposito P, Katzberg HD, Greenberg SA, et al. Immune-mediated necrotizing myopathy associated with statins. Muscle and Nerve. 2010;41:185–190.PubMedGoogle Scholar
  129. 129.
    Ramanathan S, Langguth D, Hardy TA, et al. Clinical course and treatment of anti-HMGCR antibody-associated necrotizing autoimmune myopathy. Neurology: Neuroimmunology and NeuroInflammation. 2015;2:e96.Google Scholar
  130. 130.
    Distad BJ, Amato AA, Weiss MD. Inflammatory myopathies. Curr Treat Options Neurol. 2011;13:119–130.CrossRefPubMedGoogle Scholar
  131. 131.
    Giannini M, Callen JP. Treatment of Dermatomyositis with Methotrexate and Prednisone. Archives of Dermatology. 1979;115:1251–1252.CrossRefPubMedGoogle Scholar
  132. 132.
    Bunch TW. Prednisone and azathioprine for polymyositis. Long-term followup. Arthritis & Rheumatism. 1981;24:45–48.CrossRefGoogle Scholar
  133. 133.
    Majithia V, Harisdangkul V. Mycophenolate mofetil (CellCept): An alternative therapy for autoimmune inflammatory myopathy. Rheumatology. 2005;44:386–389.CrossRefPubMedGoogle Scholar
  134. 134.
    Fischer A, Brown KK, Du Bois RM, et al. Mycophenolate mofetil improves lung function in connective tissue disease-associated interstitial lung disease. Journal of Rheumatology. 2013;40:640–646.CrossRefPubMedGoogle Scholar
  135. 135.
    Morganroth PA, Kreider ME, Weth VP. Mycophenolate mofetil for interstitial lung disease in dermatomyositis. Arthritis care & research. 2010;62:1496–1501.CrossRefGoogle Scholar
  136. 136.
    Ibrahim F, Choy E, Gordon P, et al. Second-line agents in myositis: 1-year factorial trial of additional immunosuppression in patients who have partially responded to steroids. Rheumatology (United Kingdom). 2015;54:1050–1055.CrossRefPubMedGoogle Scholar
  137. 137.
    Schiopu E, Phillips K, MacDonald PM, Crofford LJ, Somers EC. Predictors of survival in a cohort of patients with polymyositis and dermatomyositis: Effect of corticosteroids, methotrexate and azathioprine. Arthritis Research and Therapy. 2012;14:1–9.CrossRefGoogle Scholar
  138. 138.
    Dalakas MC, Illa I, Dambrosia JM, et al. A controlled trial of high-dose intravenous immune globulin infusions as treatment for dermatomyositis. N Engl J Med. 1993;329:1993–2000.CrossRefPubMedGoogle Scholar
  139. 139.
    Anh-Tu Hoa S, Hudson M. Critical review of the role of intravenous immunoglobulins in idiopathic inflammatory myopathies. Seminars in arthritis and rheumatism. 2017;46:488–508.CrossRefPubMedGoogle Scholar
  140. 140.
    Cherin P, Pelletier S, Teixeira A, et al. Results and long-term followup of intravenous immunoglobulin infusions in chronic, refractory polymyositis: An open study with thirty-five adult patients. Arthritis and rheumatism. 2002;46:467–474.CrossRefPubMedGoogle Scholar
  141. 141.
    Nalotto L, Iaccarino L, Zen M, et al. Rituximab in refractory idiopathic inflammatory myopathies and antisynthetase syndrome: Personal experience and review of the literature. Immunologic Research. 2013;56:362–370.CrossRefPubMedGoogle Scholar
  142. 142.
    Oddis CV, Reed AM, Aggarwal R, et al. Rituximab in the treatment of refractory adult and juvenile dermatomyosistis and adult polymyositis: A randomized placebo phase trial. Arthritis and rheumatism. 2013;65:314–324.CrossRefPubMedPubMedCentralGoogle Scholar
  143. 143.
    De Visser M. The efficacy of rituximab in refractory myositis: The jury is still out. Arthritis and rheumatism. 2013;65:303–306.Google Scholar
  144. 144.
    Arouche-Delaperche L, Allenbach Y, Amelin D, et al. Pathogenic role of anti–signal recognition protein and anti–3-Hydroxy-3-methylglutaryl-CoA reductase antibodies in necrotizing myopathies: Myofiber atrophy and impairment of muscle regeneration in necrotizing autoimmune myopathies. Annals of Neurology. 2017;81:538–548.CrossRefPubMedGoogle Scholar
  145. 145.
    Allenbach Y, Arouche-Delaperche L, Preusse C, et al. Necrosis in anti-SRP and anti-HMGCR myopathies. Neurology. 2018;90:e507-e517.CrossRefPubMedGoogle Scholar
  146. 146.
    Benveniste O, Drouot L, Jouen F, et al. Correlation of anti-signal recognition particle autoantibody levels with creatine kinase activity in patients with necrotizing myopathy. Arthritis and rheumatism. 2011;63:1961–1971.CrossRefPubMedGoogle Scholar
  147. 147.
    Valiyil R, Casciola-Rosen L, Hong G, Mammen A, Christopher-Stine L. Rituximab therapy for myopathy associated with anti-signal recognition particle antibodies: A case series. Arthritis Care and Research. 2010;62:1328–1334.CrossRefPubMedGoogle Scholar
  148. 148.
    Aggarwal R, Oddis CV, Goudeau D, et al. Autoantibody levels in myositis patients correlate with clinical response during B cell depletion with rituximab. Rheumatology (United Kingdom). 2016;55:991–999.CrossRefGoogle Scholar
  149. 149.
    Pinal-fernandez I, Parks C, Werner JL, et al. Longitudinal course of disease in a large cohort of patients with autoantibodies recognizing the signal recognition particle. Arthritis care & research. 2017;69:263–270.CrossRefGoogle Scholar
  150. 150.
    Danieli M, Malcangi G, Palmieri C, et al. Cyclosporin A and intravenous immunoglobulin treatment in polymyositis / dermat ... Annals of the rheumatic diseases. 2002;61:37–41.CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Qushmaq KA, Chalmers A, Esdaile JM. Cyclosporin A in the treatment of refractory adult polymyositis/dermatomyositis: population based experience in 6 patients and literature review. J Rheumatol. 2000;27:2855–2859.PubMedGoogle Scholar
  152. 152.
    Takada K, Nagasaka K, Miyasaka N. Polymyositis/dermatomyositis and interstitial lung disease: A new therapeutic approach with T-cell-specific immunosuppressants. Autoimmunity. 2005;38:383–392.CrossRefPubMedGoogle Scholar
  153. 153.
    Kotani T, Takeuchi T, Makino S, et al. Combination with corticosteroids and cyclosporin-A improves pulmonary function test results and chest HRCT findings in dermatomyositis patients with acute/subacute interstitial pneumonia. Clinical rheumatology. 2011;30:1021–1028.CrossRefPubMedGoogle Scholar
  154. 154.
    Wilkes MR, Sereika SM, Fertig N, Lucas MR, Oddis CV. Treatment of antisynthetase-associated interstitial lung disease with tacrolimus. Arthritis and rheumatism. 2005;52:2439–2446.CrossRefPubMedGoogle Scholar
  155. 155.
    Oddis CV, Sciurba FC, Elmagd KA, Starzl TE. Tacrolimus in refractory polymyositis with interstitial lung disease. Lancet. 1999;353:1762–1763.CrossRefPubMedPubMedCentralGoogle Scholar
  156. 156.
    Yamasaki Y, Yamada H, Yamasaki M, et al. Intravenous cyclophosphamide therapy for progressive interstitial pneumonia in patients with polymyositis/dermatomyositis. Rheumatology. 2007;46:124–130.CrossRefPubMedGoogle Scholar
  157. 157.
    Kameda H, Nagasawa H, Ogawa H, et al. Combination therapy with corticosteroids, cyclosporin A, and intravenous pulse cyclophosphamide for acute/subacute interstitial pneumonia in patients with dermatomyositis. Journal of Rheumatology. 2005;32:1719–1726.PubMedGoogle Scholar
  158. 158.
    Naganathan V, Jones G, Nash P, et al. Vertebral Fracture Risk With Long-term Corticosteroid Therapy: Prevalence and relation to age, bone density, and corticosteroid use. Archives of Internal Medicine. 2000;160:2917–2922.CrossRefPubMedGoogle Scholar
  159. 159.
    Van Staa TP, Laan RF, Barton IP, et al. Bone density threshold and other predictors of vertebral fracture in patients receiving oral glucocorticoid therapy. Arthritis and rheumatism. 2003;48:3224–3229.CrossRefPubMedGoogle Scholar
  160. 160.
    Marie I, Ménard JF, Hachulla E, et al. Infectious Complications in Polymyositis and Dermatomyositis: A Series of 279 Patients. Seminars in arthritis and rheumatism. 2011;41:48–60.CrossRefPubMedGoogle Scholar
  161. 161.
    Shinjo SK, de Moraes JCB, Levy-Neto M, et al. Pandemic unadjuvanted influenza A (H1N1) vaccine in dermatomyositis and polymyositis: Immunogenicity independent of therapy and no harmful effect in disease. Vaccine. 2012;31:202–206.CrossRefPubMedGoogle Scholar
  162. 162.
    Efthimiou P, Pokharna H, Kukar M, Hennessey K. PCP chemoprophylaxis is essential for lymphopenic dermatomyositis patients treated with immunomodulators. Muscle & nerve. 2011;43:918–919.CrossRefGoogle Scholar
  163. 163.
    Dastmalchi M, Laki J, Lundberg IE, Iacobaeus E. The Journal of Rheumatology Progressive Multifocal Leukoencephalopathy in a Patient with Polymyositis : Case Report and Literature Review The Journal of Rheumatology is a monthly international serial edited by Earl D . Silverman featuring research article. The Journal of Rheumatology. 2012;39.Google Scholar
  164. 164.
    Belhassen-Garcia M, Rabano-Gutierrez A, Velasco-Tirado V, et al. Atypical Progressive Multifocal Leukoencephalopathy in a Patient with Antisynthetase Syndrome. Internal Medicine. 2015;54:519–524.CrossRefPubMedGoogle Scholar
  165. 165.
    Marie I, Guegan-Massardier E, Levesque H. Progressive multifocal leukoencephalopathy in refractory polymyositis treated with rituximab. European Journal of Internal Medicine. 2011;22:e13-e14.CrossRefPubMedGoogle Scholar
  166. 166.
    Barohn RJ, Amato AA, Sahenk Z, Kissel JT, Mendell JR. Inclusion body myositis: explanation for poor response to immunosuppressive therapy. Neurology. 1995;45:1302–1304.CrossRefPubMedGoogle Scholar
  167. 167.
    Amato AA, Sivakumar K, Goyal N, et al. Treatment of sporadic inclusion body myositis with bimagrumab. Neurology. 2014;83:2239–2246.CrossRefPubMedPubMedCentralGoogle Scholar
  168. 168.
    Mendell JR, Sahenk Z, Al-Zaidy S, et al. Follistatin Gene Therapy for Sporadic Inclusion Body Myositis Improves Functional Outcomes. Molecular Therapy. 2017;25:870–879.CrossRefPubMedPubMedCentralGoogle Scholar
  169. 169.
    Lilleker JB, Bukhari M, Chinoy H. Rapamycin for inclusion body myositis: targeting non-inflammatory mechanisms. Rheumatology. 2018:1–2.Google Scholar
  170. 170.
    Habers GEA, Takken T. Safety and efficacy of exercise training in patients with an idiopathic inflammatory myopathy—a systematic review. Rheumatology. 2011;50:2113–2124.CrossRefPubMedGoogle Scholar
  171. 171.
    Alemo Munters L, Dastmalchi M, Andgren V, et al. Improvement in health and possible reduction in disease activity using endurance exercise in patients with established polymyositis and dermatomyositis: A multicenter randomized controlled trial with a 1-year open extension followup. Arthritis Care and Research. 2013;65:1959–1968.CrossRefPubMedGoogle Scholar
  172. 172.
    Johnson LG, Edwards DJ, Walters S, Thickbroom GW, Mastaglia FL. The Effectiveness of an Individualized, Home-Based Functional Exercise Program for Patients With Sporadic Inclusion Body Myositis. Journal of clinical neuromuscular disease. 2007;8:187–194.CrossRefGoogle Scholar
  173. 173.
    Olthoff A, Carstens PO, Zhang S, et al. Evaluation of dysphagia by novel real-time MRI. Neurology. 2016;87:2132–2138.CrossRefPubMedGoogle Scholar
  174. 174.
    Darrow DH, Hoffman HT, Barnes GJ, Wiley CA. Management of dysphagia in inclusion body myositis. Archives of otolaryngology--head & neck surgery. 1992;118:313–317.CrossRefGoogle Scholar
  175. 175.
    Bronner IM, van der Meulen MFG, de Visser M, et al. Long-term outcome in polymyositis and dermatomyositis. Annals of the rheumatic diseases. 2006;65:1456–1461.CrossRefPubMedPubMedCentralGoogle Scholar
  176. 176.
    Marie I HE, Hatron PY, Hellot MF,Levesque H, Devulder B. Polymyositis and dermatomyositis: short term and longterm outcome, and predictive factors. J Rheumatol. 2001;28:22–30.CrossRefGoogle Scholar
  177. 177.
    van de Vlekkert J, Hoogendijk JE, de Visser M. Long-term follow-up of 62 patients with myositis. J Neurol. 2014;261:992–998.Google Scholar
  178. 178.
    Ponyi A, Borgulya G, Constantin T, et al. Functional outcome and quality of life in adult patients with idiopathic inflammatory myositis. Rheumatology. 2005;44:83–88.CrossRefPubMedGoogle Scholar
  179. 179.
    Cortese A, Machado P, Morrow J, et al. Longitudinal observational study of sporadic inclusion body myositis: Implications for clinical trials. Neuromuscular Disorders. 2013;23:404–412.CrossRefPubMedGoogle Scholar
  180. 180.
    Peng A, Koffman BM, Malley JD, Dalakas MC. Disease progression in sporadic inclusion body myositis: Observations in 78 patients. Neurology. 2000;55:296–298.CrossRefPubMedGoogle Scholar
  181. 181.
    Werner JL, Christopher-Stine L, Ghazarian SR, et al. Antibody Levels Correlate with Creatine Kinase Levels and Strength in Anti-HMG-CoA Reductase-Associated Autoimmune Myopathy. Arthritis Rhem. 2012;64:4087–4093.CrossRefGoogle Scholar
  182. 182.
    Limaye V, Hakendorf P, Woodman RJ, Blumbergs P, Roberts-Thomson P. Mortality and its predominant causes in a large cohort of patients with biopsy-determined inflammatory myositis. Intern Med J. 2012;42:191–198.CrossRefPubMedGoogle Scholar
  183. 183.
    Airio A, Kautiainen H, Hakala M. Prognosis and mortality of polymyositis and dermatomyositis patients. Clinical rheumatology. 2006;25:234–239.CrossRefPubMedGoogle Scholar
  184. 184.
    Marie I. Morbidity and mortality in adult polymyositis and dermatomyositis. Current rheumatology reports. 2012;14:275–285.CrossRefPubMedGoogle Scholar
  185. 185.
    Johnson C, Pinal-Fernandez I, Parikh R, et al. Assessment of Mortality in Autoimmune Myositis With and Without Associated Interstitial Lung Disease. Lung. 2016;194:733–737.CrossRefPubMedGoogle Scholar
  186. 186.
    Price MA, Barghout V, Benveniste O, et al. Mortality and Causes of Death in Patients with Sporadic Inclusion Body Myositis: Survey Study Based on the Clinical Experience of Specialists in Australia, Europe and the USA. Journal of Neuromuscular Diseases. 2016;3:67–75.CrossRefPubMedPubMedCentralGoogle Scholar
  187. 187.
    Ruperto N, Pistorio A, Oliveira S, et al. Prednisone versus prednisone plus ciclosporin versus prednisone plus methotrexate in new-onset juvenile dermatomyositis: A randomised trial. The Lancet. 2016;387:671–678.CrossRefGoogle Scholar
  188. 188.
    Suárez-Calvet X, Gallardo E, Nogales-Gadea G, et al. Altered RIG-I/DDX58-mediated innate immunity in dermatomyositis. Journal of Pathology. 2014;233:258–268.CrossRefPubMedGoogle Scholar
  189. 189.
    Salajegheh M, Kong SW, Pinkus JL, et al. Interferon-Stimulated Gene 15 (ISG15) Conjugates Proteins in Dermatomyositis Muscle with Perifascicular Atrophy. Ann Neurol. 2010;67:53–63.CrossRefPubMedPubMedCentralGoogle Scholar
  190. 190.
    Liao AP, Salajegheh M, Nazareno R, et al. Interferon β is associated with type 1 interferon-inducible gene expression in dermatomyositis. Annals of the rheumatic diseases. 2011;70:831–836.CrossRefPubMedGoogle Scholar
  191. 191.
    Higgs BW, Zhu W, Morehouse C, et al. A phase 1b clinical trial evaluating sifalimumab, an anti-IFN-α monoclonal antibody, shows target neutralisation of a type I IFN signature in blood of dermatomyositis and polymyositis patients. Annals of the rheumatic diseases. 2014;73:256–262.CrossRefPubMedGoogle Scholar
  192. 192.
    Kurtzman DJB, Wright NA, Lin J, et al. Tofacitinib citrate for refractory cutaneous dermatomyositis: An alternative treatment. JAMA dermatology. 2016;152:944–945.CrossRefPubMedGoogle Scholar
  193. 193.
    Paik JJ, Christopher-Stine L. A case of refractory dermatomyositis responsive to tofacitinib. Seminars in arthritis and rheumatism. 2017;46:e19.CrossRefPubMedGoogle Scholar
  194. 194.
    Lopez De Padilla CM, Crowson CS, Hein MS, et al. Interferon-regulated chemokine score associated with improvement in disease activity in refractory myositis patients treated with rituximab. Clinical and experimental rheumatology. 2015;33:655–663.PubMedGoogle Scholar
  195. 195.
    Nagaraju K, Ghimbovschi S, Rayavarapu S, et al. Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients. Rheumatology (United Kingdom). 2016;55:1673–1680.CrossRefGoogle Scholar
  196. 196.
    Reed AM, Crowson CS, Hein M, et al. Biologic predictors of clinical improvement in rituximab-treated refractory myositis. BMC musculoskeletal disorders. 2015;16:257.CrossRefPubMedPubMedCentralGoogle Scholar
  197. 197.
    López De Padilla CM, McNallan KT, Crowson CS, et al. BAFF expression correlates with idiopathic inflammatory myopathy disease activity measures and autoantibodies. Journal of Rheumatology. 2013;40:294–302.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  1. 1.Department of NeurologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations