Microbiome, Immunomodulation, and the Neuronal System

Review

Abstract

Vertebrates harbor both symbiotic and pathogenic bacteria on the body and various mucosal surfaces. Of these surfaces, the intestine has the most diverse composition. This composition is dependent upon various environmental and genetic factors, with diet exerting the maximum influence. Significant roles of the intestinal bacteria are to stimulate the development of a competent mucosal immune system and to maintain tolerance within the intestine. One manner in which this is achieved is by the establishment of epithelial integrity by microbiota found in healthy individuals (healthy microbiota); however, in the case of a disrupted intestinal microbiome (dysbiosis), which can be caused by various conditions, the epithelial integrity is compromised. This decreased epithelial integrity can then lead to luminal products crossing the barrier, generating a systemic proinflammatory response. In addition to epithelial integrity, healthy intestinal commensals metabolize indigestible dietary substrates and produce short-chain fatty acids, which are bacterial metabolites that are essential for colonic health and regulating the function of the intestinal immune system. Intestinal commensals are also capable of producing neuroactive molecules and neurotransmitters that can affect the function of the vagus nerve. The observations that intestinal dysbiosis is associated with different diseases of the nervous system, suggests that cross-talk occurs amongst the gut, the nervous system, and the immune system.

Keywords

Immunomodulation Neuronal Dysbiosis Intestinal Microbiome 

Notes

Acknowledgements

VT is supported by a grant from Department of Defense and Center of Individualized Medicine, Mayo Clinic.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2017_601_MOESM1_ESM.pdf (498 kb)
ESM 1 (PDF 498 kb)

References

  1. 1.
    Taneja V. Arthritis susceptibility and the gut microbiome. FEBS Lett. 2014;588(22):4244-4249.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Roy CC, Kien CL, Bouthillier L, Levy E. Short-chain fatty acids: ready for prime time? Nutr Clin Pract. 2006;21(4):351-366.CrossRefPubMedGoogle Scholar
  3. 3.
    Vrieze A, Holleman F, Zoetendal EG, de Vos WM, Hoekstra JB, Nieuwdorp M. The environment within: how gut microbiota may influence metabolism and body composition. Diabetologia. 2010;53(4):606-613.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Artis D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol. 2008;8(6):411-420.CrossRefPubMedGoogle Scholar
  5. 5.
    Abreu MT. Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol. 2010;10(2):131-144.CrossRefPubMedGoogle Scholar
  6. 6.
    Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity. 2009;31(4):677-689.CrossRefPubMedGoogle Scholar
  7. 7.
    Rosser EC, and Mauri C. A clinical update on the significance of the gut microbiota in systemic autoimmunity. J Autoimmun. 2016;74:85-93.CrossRefPubMedGoogle Scholar
  8. 8.
    Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol. 2016;19(8).Google Scholar
  9. 9.
    Wostmann BS, Pleasants JR, Bealmear P, Kincade PW. Serum proteins and lymphoid tissues in germ-free mice fed a chemically defined, water soluble, low molecular weight diet. Immunology. 1970;19(3):443-448.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Reigstad CS, Salmonson CE, Rainey JF, 3rd, et al. Gut microbes promote colonic serotonin production through an effect of short-chain fatty acids on enterochromaffin cells. FASEB J. 2015;29(4):1395-1403.CrossRefPubMedGoogle Scholar
  11. 11.
    Collins J, Borojevic R, Verdu EF, Huizinga JD, Ratcliffe EM. Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil. 2014;26(1):98-107.CrossRefPubMedGoogle Scholar
  12. 12.
    Obata Y, Pachnis V. The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology. 2016;151(5):836-844.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Ramer-Quinn DS, Baker RA, Sanders VM. Activated T helper 1 and T helper 2 cells differentially express the beta-2-adrenergic receptor: a mechanism for selective modulation of T helper 1 cell cytokine production. J Immunol. 1997;159(10):4857-4867.PubMedGoogle Scholar
  14. 14.
    Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders. Front Cell Neurosci. 2015;9:392.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Forsyth CB, Shannon KM, Kordower JH, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson's disease. PLOS ONE. 2011;6(12):e28032.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol. 2008;6(2):111-120.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu WH, Chuang HL, Huang YT, et al. Alteration of behavior and monoamine levels attributable to Lactobacillus plantarum PS128 in germ-free mice. Behav Brain Res. 2016;298(Pt B):202-209.CrossRefPubMedGoogle Scholar
  18. 18.
    Nohr MK, Pedersen MH, Gille A, et al. GPR41/FFAR3 and GPR43/FFAR2 as cosensors for short-chain fatty acids in enteroendocrine cells vs FFAR3 in enteric neurons and FFAR2 in enteric leukocytes. Endocrinology. 2013;154(10):3552-3564.CrossRefPubMedGoogle Scholar
  19. 19.
    Marathe CS, Rayner CK, Jones KL, Horowitz M. Effects of GLP-1 and incretin-based therapies on gastrointestinal motor function. Exp Diabetes Res. 2011;2011:279530.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Soret R, Chevalier J, De Coppet P, et al. Short-chain fatty acids regulate the enteric neurons and control gastrointestinal motility in rats. Gastroenterology. 2010;138(5):1772-1782.CrossRefPubMedGoogle Scholar
  21. 21.
    Chen J, Chia N, Kalari KR, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Jangi S, Gandhi R, Cox LM, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A. 2017;114(40):10713-10718.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Strati F, Cavalieri D, Albanese D, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5(1):24.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Luna RA, Oezguen N, Balderas M, et al. Distinct microbiome–neuroimmune signatures correlate with functional abdominal pain in children with autism spectrum disorder. Cell Mol Gastroenterol Hepatol. 2017;3(2):218-230.CrossRefPubMedGoogle Scholar
  26. 26.
    Fang X, Wang X, Yang S, et al. Evaluation of the microbial diversity in amyotrophic lateral sclerosis using high-throughput sequencing. Front Microbiol. 2016;7:1479.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Scheperjans F, Aho V, Pereira PA, et al. Gut microbiota are related to Parkinson's disease and clinical phenotype. Mov Disord. 2015;30(3):350-358.CrossRefPubMedGoogle Scholar
  28. 28.
    Unger MM, Spiegel J, Dillmann KU, et al. Short chain fatty acids and gut microbiota differ between patients with Parkinson's disease and age-matched controls. Parkinsonism Relat Disord. 2016;32:66-72.CrossRefPubMedGoogle Scholar
  29. 29.
    Sampson TR, Debelius JW, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson's disease. Cell. 2016;167(6):1469-1480.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2011;108(Suppl. 1):4615-4622.CrossRefPubMedGoogle Scholar
  31. 31.
    Mangalam A, Shahi SK, Luckey D, et al. Human gut-derived commensal bacteria suppress CNS inflammatory and demyelinating disease. Cell Rep. 2017;20(6):1269-1277.CrossRefPubMedGoogle Scholar
  32. 32.
    Salehipour Z, Haghmorad D, Sankian M, et al. Bifidobacterium animalis in combination with human origin of Lactobacillus plantarum ameliorate neuroinflammation in experimental model of multiple sclerosis by altering CD4+ T cell subset balance. Biomed Pharmacother. 2017;95:1535-1548.CrossRefPubMedGoogle Scholar
  33. 33.
    Kwon HK, Kim GC, Kim Y, et al. Amelioration of experimental autoimmune encephalomyelitis by probiotic mixture is mediated by a shift in T helper cell immune response. Clin Immunol. 2013;146(3):217-227.CrossRefPubMedGoogle Scholar
  34. 34.
    Jaarsma D, Haasdijk ED, Grashorn JA, et al. Human Cu/Zn superoxide dismutase (SOD1) overexpression in mice causes mitochondrial vacuolization, axonal degeneration, and premature motoneuron death and accelerates motoneuron disease in mice expressing a familial amyotrophic lateral sclerosis mutant SOD1. Neurobiol Dis. 2000;7(6 Pt B):623-643.CrossRefPubMedGoogle Scholar
  35. 35.
    Gurney ME, Pu H, Chiu AY, et al. Motor neuron degeneration in mice that express a human Cu,Zn superoxide dismutase mutation. Science. 1994;264(5166):1772-1775.CrossRefPubMedGoogle Scholar
  36. 36.
    Ryu H, Smith K, Camelo SI, et al. Sodium phenylbutyrate prolongs survival and regulates expression of anti-apoptotic genes in transgenic amyotrophic lateral sclerosis mice. J Neurochem. 2005;93(5):1087-1098.CrossRefPubMedGoogle Scholar
  37. 37.
    Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: the bread and butter of the microbiota–gut–brain axis? Neurochem Int. 2016;99:110-132.CrossRefPubMedGoogle Scholar
  38. 38.
    Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K. Short chain fatty acids prevent high-fat-diet-induced obesity in mice by regulating G protein-coupled receptors and gut microbiota. Sci Rep. 2016;6:37589.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol. 2004;141(5):874-880.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Thangaraju M, Cresci GA, Liu K, et al. GPR109A is a G-protein-coupled receptor for the bacterial fermentation product butyrate and functions as a tumor suppressor in colon. Cancer Res. 2009;69(7):2826-2832.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Braniste V, Al-Asmakh M, Kowal C, et al. The gut microbiota influences blood–brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Devos D, Lebouvier T, Lardeux B, et al. Colonic inflammation in Parkinson's disease. Neurobiol Dis. 2013;50:42-48.CrossRefPubMedGoogle Scholar
  43. 43.
    Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol. 2017;10(4):946-956.CrossRefPubMedGoogle Scholar
  44. 44.
    Crabbe PA, Bazin H, Eyssen H, Heremans JF. The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut. The germ-free intestinal tract. Int Arch Allergy Appl Immunol. 1968;34(4):362-375.CrossRefPubMedGoogle Scholar
  45. 45.
    Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science. 1997;276(5321):2045-2047.CrossRefPubMedGoogle Scholar
  46. 46.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha-synuclein in Lewy bodies. Nature. 1997;388(6645):839-840.CrossRefPubMedGoogle Scholar
  47. 47.
    Hilton D, Stephens M, Kirk L, et al. Accumulation of alpha-synuclein in the bowel of patients in the pre-clinical phase of Parkinson's disease. Acta Neuropathol. 2014;127(2):235-241.CrossRefPubMedGoogle Scholar
  48. 48.
    Mertsalmi TH, Aho VTE, Pereira PAB, et al. More than constipation—bowel symptoms in Parkinson's disease and their connection to gut microbiota. Eur J Neurol. 2017;24(11):1375-1383.CrossRefPubMedGoogle Scholar
  49. 49.
    Cao H, Liu X, An Y, et al. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci Rep. 2017;7(1):10322.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Shukla R, Ghoshal U, Dhole TN, Ghoshal UC. Fecal microbiota in patients with irritable bowel syndrome compared with healthy controls using real-time polymerase chain reaction: an evidence of dysbiosis. Dig Dis Sci. 2015;60(10):2953-2962.CrossRefPubMedGoogle Scholar
  51. 51.
    Dalmasso M, Strain R, Neve H, et al. Three new Escherichia coli phages from the human gut show promising potential for phage therapy. PLOS ONE. 2016;11(6):e0156773.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chen J, Wright K, Davis JM, et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016;8(1):43.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Marietta EV, Murray JA, Luckey DH, et al. Suppression of Inflammatory Arthritis by Human Gut-Derived Prevotella histicola in humanized mice. Arthritis Rheumatol. 2016;68(12):2878-2888.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2018

Authors and Affiliations

  1. 1.Division of Gastroenterology and HepatologyMayo ClinicRochesterUSA
  2. 2.Department of ImmunologyMayo ClinicRochesterUSA
  3. 3.Division of RheumatologyMayo ClinicRochesterUSA

Personalised recommendations