The “Gut Feeling”: Breaking Down the Role of Gut Microbiome in Multiple Sclerosis

  • Samantha N. Freedman
  • Shailesh K. Shahi
  • Ashutosh K. Mangalam
Review

Abstract

Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system with unknown etiology. Recently, the gut microbiota has emerged as a potential factor in the development of MS, with a number of studies having shown that patients with MS exhibit gut dysbiosis. The gut microbiota helps the host remain healthy by regulating various functions, including food metabolism, energy homeostasis, maintenance of the intestinal barrier, inhibition of colonization by pathogenic organisms, and shaping of both mucosal and systemic immune responses. Alteration of the gut microbiota, and subsequent changes in its metabolic network that perturb this homeostasis, may lead to intestinal and systemic disorders such as MS. Here we discuss the findings of recent MS microbiome studies and potential mechanisms through which gut microbiota can predispose to, or protect against, MS. These findings highlight the need of an improved understanding of the interactions between the microbiota and host for developing therapies based on gut commensals with which to treat MS.

Key Words

Multiple sclerosis (MS) gut microbiome immune response experimental autoimmune encephalomyelitis (EAE) host–microbe interaction microbial metabolism 

Notes

Acknowledgments

This work was supported by funding from the National Multiple Sclerosis Society (RG 5138A1/1T), the Carver College of Medicine at the University of Iowa (pathology pilot grant), a Carver Trust Medical Research Initiative Grant, and the Mayo Clinic Center for Individualized Medicine. S.N.F. was supported on institutional training grant (T32AI007485 to Gail Bishop).

Required Author FormsDisclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2017_588_MOESM1_ESM.pdf (516 kb)
ESM 1(PDF 515 kb)

References

  1. 1.
    Dendrou, C.A., Fugger, L. & Friese, M.A. Immunopathology of multiple sclerosis. Nat Rev Immunol 15, 545-558 (2015).PubMedCrossRefGoogle Scholar
  2. 2.
    Stinissen, P., Raus, J. & Zhang, J. Autoimmune pathogenesis of multiple sclerosis: role of autoreactive T lymphocytes and new immunotherapeutic strategies. Crit Rev Immunol 17, 33-75 (1997).PubMedCrossRefGoogle Scholar
  3. 3.
    Yadav, S.K., Mindur, J.E., Ito, K. & Dhib-Jalbut, S. Advances in the immunopathogenesis of multiple sclerosis. Curr Opin Neurol 28, 206-219 (2015).PubMedCrossRefGoogle Scholar
  4. 4.
    Ebers, G.C., Bulman, D.E., Sadovnick, A.D., et al. A population-based study of multiple sclerosis in twins. N Engl J Med 315, 1638-1642 (1986).PubMedCrossRefGoogle Scholar
  5. 5.
    Hollenbach, J.A. & Oksenberg, J.R. The immunogenetics of multiple sclerosis: A comprehensive review. J Autoimmun 64, 13-25 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Rook, G.A. Hygiene hypothesis and autoimmune diseases. Clin Rev Allergy Immunol 42, 5-15 (2012).PubMedCrossRefGoogle Scholar
  7. 7.
    Floreani, A., Leung, P.S. & Gershwin, M.E. Environmental Basis of Autoimmunity. Clin Rev Allergy Immunol 50, 287-300 (2016).PubMedCrossRefGoogle Scholar
  8. 8.
    Rook, G.A. & Brunet, L.R. Microbes, immunoregulation, and the gut. Gut 54, 317-320 (2005).PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Fleming, J. & Fabry, Z. The hygiene hypothesis and multiple sclerosis. Ann Neurol 61, 85-89 (2007).PubMedCrossRefGoogle Scholar
  10. 10.
    Kinross, J.M., Darzi, A.W. & Nicholson, J.K. Gut microbiome-host interactions in health and disease. Genome Med 3, 14 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Rescigno, M. The intestinal epithelial barrier in the control of homeostasis and immunity. Trends Immunol 32, 256-264 (2011).PubMedCrossRefGoogle Scholar
  12. 12.
    Singh, R.K., Chang, H.W., Yan, D., et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med 15, 73 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Lozupone, C.A., Stombaugh, J.I., Gordon, J.I., Jansson, J.K. & Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature 489, 220-230 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jarchum, I. & Pamer, E.G. Regulation of innate and adaptive immunity by the commensal microbiota. Curr Opin Immunol 23, 353-360 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Blacher, E., Levy, M., Tatirovsky, E. & Elinav, E. Microbiome-Modulated Metabolites at the Interface of Host Immunity. J Immunol 198, 572-580 (2017).PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang, K., Hornef, M.W. & Dupont, A. The intestinal epithelium as guardian of gut barrier integrity. Cell Microbiol 17, 1561-1569 (2015).PubMedCrossRefGoogle Scholar
  17. 17.
    Forbes, J.D., Van Domselaar, G. & Bernstein, C.N. The Gut Microbiota in Immune-Mediated Inflammatory Diseases. Front Microbiol 7, 1081 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kahrstrom, C.T., Pariente, N. & Weiss, U. Intestinal microbiota in health and disease. Nature 535, 47 (2016).PubMedCrossRefGoogle Scholar
  19. 19.
    Chen, J., Chia, N., Kalari, K.R., et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep 6, 28484 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Miyake, S., Kim, S., Suda, W., et al. Dysbiosis in the Gut Microbiota of Patients with Multiple Sclerosis, with a Striking Depletion of Species Belonging to Clostridia XIVa and IV Clusters. PLoS One 10, e0137429 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Tremlett, H., Fadrosh, D.W., Faruqi, A.A., et al. Associations between the gut microbiota and host immune markers in pediatric multiple sclerosis and controls. BMC Neurol 16, 182 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Tremlett, H., Fadrosh, D.W., Faruqi, A.A., et al. Gut microbiota in early pediatric multiple sclerosis: a case-control study. Eur J Neurol 23, 1308-1321 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Tremlett, H., Fadrosh, D.W., Faruqi, A.A., et al. Gut microbiota composition and relapse risk in pediatric MS: A pilot study. J Neurol Sci 363, 153-157 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Jangi, S., Gandhi, R., Cox, L.M., et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 7, 12015 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cantarel, B.L., Waubant, E., Chehoud, C., et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med 63, 729-734 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Cekanaviciute, E., Yoo, B.B., Runia, T.F., et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci U S A (2017).Google Scholar
  27. 27.
    Berer, K., Gerdes, L.A., Cekanaviciute, E., et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci U S A (2017).Google Scholar
  28. 28.
    Cosorich, I., Dalla-Costa, G., Sorini, C., et al. High frequency of intestinal TH17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv 3, e1700492 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Adamczyk-Sowa, M., Medrek, A., Madej, P., Michlicka, W. & Dobrakowski, P. Does the Gut Microbiota Influence Immunity and Inflammation in Multiple Sclerosis Pathophysiology? J Immunol Res 2017, 7904821 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Knip, M. & Siljander, H. The role of the intestinal microbiota in type 1 diabetes mellitus. Nat Rev Endocrinol 12, 154-167 (2016).PubMedCrossRefGoogle Scholar
  31. 31.
    Brown, C.T., Davis-Richardson, A.G., Giongo, A., et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 6, e25792 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Morgan, X.C., Tickle, T.L., Sokol, H., et al. Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13, R79 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Kostic, A.D., Xavier, R.J. & Gevers, D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 146, 1489-1499 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Sellitto, M., Bai, G., Serena, G., et al. Proof of concept of microbiome-metabolome analysis and delayed gluten exposure on celiac disease autoimmunity in genetically at-risk infants. PLoS One 7, e33387 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Wacklin, P., Kaukinen, K., Tuovinen, E., et al. The duodenal microbiota composition of adult celiac disease patients is associated with the clinical manifestation of the disease. Inflamm Bowel Dis 19, 934-941 (2013).PubMedCrossRefGoogle Scholar
  36. 36.
    Vaahtovuo, J., Munukka, E., Korkeamaki, M., Luukkainen, R. & Toivanen, P. Fecal microbiota in early rheumatoid arthritis. J Rheumatol 35, 1500-1505 (2008).PubMedGoogle Scholar
  37. 37.
    Chen, J., Wright, K., Davis, J.M., et al. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8, 43 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Scher, J.U., Sczesnak, A., Longman, R.S., et al. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2, e01202 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Buffie, C.G. & Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat Rev Immunol 13, 790-801 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Round, J.L. & Mazmanian, S.K. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9, 313-323 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Duerkop, B.A., Vaishnava, S. & Hooper, L.V. Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31, 368-376 (2009).PubMedCrossRefGoogle Scholar
  42. 42.
    Hooper, L.V. Epithelial cell contributions to intestinal immunity. Adv Immunol 126, 129-172 (2015).PubMedCrossRefGoogle Scholar
  43. 43.
    Sansonetti, P.J. To be or not to be a pathogen: that is the mucosally relevant question. Mucosal Immunol 4, 8-14 (2011).PubMedCrossRefGoogle Scholar
  44. 44.
    Mu, Q., Kirby, J., Reilly, C.M. & Luo, X.M. Leaky Gut As a Danger Signal for Autoimmune Diseases. Front Immunol 8, 598 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Li, X. & Atkinson, M.A. The role for gut permeability in the pathogenesis of type 1 diabetes--a solid or leaky concept? Pediatr Diabetes 16, 485-492 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Shahi, S.K., Freedman, S.N. & Mangalam, A.K. Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes, 1-9 (2017).Google Scholar
  47. 47.
    Goodrich, J.K., Waters, J.L., Poole, A.C., et al. Human genetics shape the gut microbiome. Cell 159, 789-799 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Turnbaugh, P.J., Ridaura, V.K., Faith, J.J., et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1, 6ra14 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Nishijima, S., Suda, W., Oshima, K., et al. The gut microbiome of healthy Japanese and its microbial and functional uniqueness. DNA Res 23, 125-133 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Rooks, M.G. & Garrett, W.S. Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16, 341-352 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rios-Covian, D., Ruas-Madiedo, P., Margolles, A., et al. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol 7, 185 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Correa-Oliveira, R., Fachi, J.L., Vieira, A., Sato, F.T. & Vinolo, M.A. Regulation of immune cell function by short-chain fatty acids. Clin Transl Immunology 5, e73 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Morrison, D.J. & Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7, 189-200 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Brestoff, J.R. & Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol 14, 676-684 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Duboc, H., Rajca, S., Rainteau, D., et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531-539 (2013).PubMedCrossRefGoogle Scholar
  56. 56.
    Iraporda, C., Errea, A., Romanin, D.E., et al. Lactate and short chain fatty acids produced by microbial fermentation downregulate proinflammatory responses in intestinal epithelial cells and myeloid cells. Immunobiology 220, 1161-1169 (2015).PubMedCrossRefGoogle Scholar
  57. 57.
    Macia, L., Tan, J., Vieira, A.T., et al. Metabolite-sensing receptors GPR43 and GPR109A facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat Commun 6, 6734 (2015).PubMedCrossRefGoogle Scholar
  58. 58.
    Fukuda, S., Toh, H., Taylor, T.D., Ohno, H. & Hattori, M. Acetate-producing bifidobacteria protect the host from enteropathogenic infection via carbohydrate transporters. Gut Microbes 3, 449-454 (2012).PubMedCrossRefGoogle Scholar
  59. 59.
    Nastasi, C., Candela, M., Bonefeld, C.M., et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells. Sci Rep 5, 16148 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Wang, B., Morinobu, A., Horiuchi, M., Liu, J. & Kumagai, S. Butyrate inhibits functional differentiation of human monocyte-derived dendritic cells. Cell Immunol 253, 54-58 (2008).PubMedCrossRefGoogle Scholar
  61. 61.
    Liu, L., Li, L., Min, J., et al. Butyrate interferes with the differentiation and function of human monocyte-derived dendritic cells. Cell Immunol 277, 66-73 (2012).PubMedCrossRefGoogle Scholar
  62. 62.
    Arpaia, N., Campbell, C., Fan, X., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504, 451-455 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Furusawa, Y., Obata, Y., Fukuda, S., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 504, 446-450 (2013).PubMedCrossRefGoogle Scholar
  64. 64.
    Smith, P.M., Howitt, M.R., Panikov, N., et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341, 569-573 (2013).PubMedCrossRefGoogle Scholar
  65. 65.
    Bourassa, M.W., Alim, I., Bultman, S.J. & Ratan, R.R. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci Lett 625, 56-63 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Cummings, J.H., Pomare, E.W., Branch, W.J., Naylor, C.P. & Macfarlane, G.T. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 1221-1227 (1987).PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    De Filippo, C., Cavalieri, D., Di Paola, M., et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107, 14691-14696 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lopetuso, L.R., Scaldaferri, F., Petito, V. & Gasbarrini, A. Commensal Clostridia: leading players in the maintenance of gut homeostasis. Gut Pathog 5, 23 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Atarashi, K., Tanoue, T., Oshima, K., et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 500, 232-236 (2013).PubMedCrossRefGoogle Scholar
  70. 70.
    Gophna, U., Sommerfeld, K., Gophna, S., Doolittle, W.F. & Veldhuyzen van Zanten, S.J. Differences between tissue-associated intestinal microfloras of patients with Crohn's disease and ulcerative colitis. J Clin Microbiol 44, 4136-4141 (2006).PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Collins, M.D., Lawson, P.A., Willems, A., et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44, 812-826 (1994).PubMedCrossRefGoogle Scholar
  72. 72.
    Nagano, Y., Itoh, K. & Honda, K. The induction of Treg cells by gut-indigenous Clostridium. Curr Opin Immunol 24, 392-397 (2012).PubMedCrossRefGoogle Scholar
  73. 73.
    Kabeerdoss, J., Jayakanthan, P., Pugazhendhi, S. & Ramakrishna, B.S. Alterations of mucosal microbiota in the colon of patients with inflammatory bowel disease revealed by real time polymerase chain reaction amplification of 16S ribosomal ribonucleic acid. Indian J Med Res 142, 23-32 (2015).PubMedPubMedCentralGoogle Scholar
  74. 74.
    Kanauchi, O., Fukuda, M., Matsumoto, Y., et al. Eubacterium limosum ameliorates experimental colitis and metabolite of microbe attenuates colonic inflammatory action with increase of mucosal integrity. World J Gastroenterol 12, 1071-1077 (2006).PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Menard, S., Candalh, C., Bambou, J.C., et al. Lactic acid bacteria secrete metabolites retaining anti-inflammatory properties after intestinal transport. Gut 53, 821-828 (2004).PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ze, X., Duncan, S.H., Louis, P. & Flint, H.J. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J 6, 1535-1543 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Fujimoto, T., Imaeda, H., Takahashi, K., et al. Decreased abundance of Faecalibacterium prausnitzii in the gut microbiota of Crohn's disease. J Gastroenterol Hepatol 28, 613-619 (2013).PubMedCrossRefGoogle Scholar
  78. 78.
    Prosberg, M., Bendtsen, F., Vind, I., Petersen, A.M. & Gluud, L.L. The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis. Scand J Gastroenterol 51, 1407-1415 (2016).PubMedCrossRefGoogle Scholar
  79. 79.
    Huang, X.L., Zhang, X., Fei, X.Y., et al. Faecalibacterium prausnitzii supernatant ameliorates dextran sulfate sodium induced colitis by regulating Th17 cell differentiation. World J Gastroenterol 22, 5201-5210 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Zhang, M., Qiu, X., Zhang, H., et al. Faecalibacterium prausnitzii inhibits interleukin-17 to ameliorate colorectal colitis in rats. PLoS One 9, e109146 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Qiu, X., Zhang, M., Yang, X., Hong, N. & Yu, C. Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. J Crohns Colitis 7, e558-568 (2013).PubMedCrossRefGoogle Scholar
  82. 82.
    Round, J.L. & Mazmanian, S.K. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 107, 12204-12209 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wrzosek, L., Miquel, S., Noordine, M.L., et al. Bacteroides thetaiotaomicron and Faecalibacterium prausnitzii influence the production of mucus glycans and the development of goblet cells in the colonic epithelium of a gnotobiotic model rodent. BMC Biol 11, 61 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Marietta, E.V., Murray, J.A., Luckey, D.H., et al. Human Gut-Derived Prevotella histicola Suppresses Inflammatory Arthritis in Humanized Mice. Arthritis Rheumatol (2016).Google Scholar
  85. 85.
    Mangalam, A., Shahi, S.K., Luckey, D., et al. Human Gut-derived Commensal Bacteria Suppress Central Nervous System Inflammatory and Demyelinating Disease. Cell Rep 20, 1269-1277 (2017).Google Scholar
  86. 86.
    Larsen, J.M. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology (2017).Google Scholar
  87. 87.
    Haghikia, A., Jorg, S., Duscha, A., et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine. Immunity 43, 817-829 (2015).PubMedCrossRefGoogle Scholar
  88. 88.
    Chitrala, K.N., Guan, H., Singh, N.P., et al. CD44 deletion leading to attenuation of experimental autoimmune encephalomyelitis results from alterations in gut microbiome in mice. Eur J Immunol (2017).Google Scholar
  89. 89.
    Mizuno, M., Noto, D., Kaga, N., Chiba, A. & Miyake, S. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS One 12, e0173032 (2017).PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Marino, E., Richards, J.L., McLeod, K.H., et al. Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nat Immunol 18, 552-562 (2017).PubMedCrossRefGoogle Scholar
  91. 91.
    Maslowski, K.M., Vieira, A.T., Ng, A., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282-1286 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Scheppach, W., Sommer, H., Kirchner, T., et al. Effect of butyrate enemas on the colonic mucosa in distal ulcerative colitis. Gastroenterology 103, 51-56 (1992).PubMedCrossRefGoogle Scholar
  93. 93.
    Staley, C., Weingarden, A.R., Khoruts, A. & Sadowsky, M.J. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol 101, 47-64 (2017).PubMedCrossRefGoogle Scholar
  94. 94.
    Wahlstrom, A., Sayin, S.I., Marschall, H.U. & Backhed, F. Intestinal Crosstalk between Bile Acids and Microbiota and Its Impact on Host Metabolism. Cell Metab 24, 41-50 (2016).PubMedCrossRefGoogle Scholar
  95. 95.
    Ridlon, J.M., Kang, D.J. & Hylemon, P.B. Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47, 241-259 (2006).PubMedCrossRefGoogle Scholar
  96. 96.
    Nicholson, J.K., Holmes, E., Kinross, J., et al. Host-gut microbiota metabolic interactions. Science 336, 1262-1267 (2012).PubMedCrossRefGoogle Scholar
  97. 97.
    Inagaki, T., Moschetta, A., Lee, Y.K., et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A 103, 3920-3925 (2006).PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Ji, C.G., Xie, X.L., Yin, J., et al. Bile acid receptor TGR5 overexpression is associated with decreased intestinal mucosal injury and epithelial cell proliferation in obstructive jaundice. Transl Res 182, 88-102 (2017).PubMedCrossRefGoogle Scholar
  99. 99.
    Cipriani, S., Mencarelli, A., Chini, M.G., et al. The bile acid receptor GPBAR-1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis. PLoS One 6, e25637 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Vavassori, P., Mencarelli, A., Renga, B., Distrutti, E. & Fiorucci, S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol 183, 6251-6261 (2009).PubMedCrossRefGoogle Scholar
  101. 101.
    Su, J., Zhang, Q., Qi, H., et al. The G-protein-coupled bile acid receptor Gpbar1 (TGR5) protects against renal inflammation and renal cancer cell proliferation and migration through antagonizing NF-kappaB and STAT3 signaling pathways. Oncotarget (2017).Google Scholar
  102. 102.
    Guo, C., Qi, H., Yu, Y., et al. The G-Protein-Coupled Bile Acid Receptor Gpbar1 (TGR5) Inhibits Gastric Inflammation Through Antagonizing NF-kappaB Signaling Pathway. Front Pharmacol 6, 287 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Wang, Y.D., Chen, W.D., Yu, D., Forman, B.M. & Huang, W. The G-protein-coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light-chain enhancer of activated B cells (NF-kappaB) in mice. Hepatology 54, 1421-1432 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Biagioli, M., Carino, A., Cipriani, S., et al. The Bile Acid Receptor GPBAR1 Regulates the M1/M2 Phenotype of Intestinal Macrophages and Activation of GPBAR1 Rescues Mice from Murine Colitis. J Immunol (2017).Google Scholar
  105. 105.
    Hogenauer, K., Arista, L., Schmiedeberg, N., et al. G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype. J Med Chem 57, 10343-10354 (2014).PubMedCrossRefGoogle Scholar
  106. 106.
    Ichikawa, R., Takayama, T., Yoneno, K., et al. Bile acids induce monocyte differentiation toward interleukin-12 hypo-producing dendritic cells via a TGR5-dependent pathway. Immunology 136, 153-162 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Jaensson-Gyllenback, E., Kotarsky, K., Zapata, F., et al. Bile retinoids imprint intestinal CD103+ dendritic cells with the ability to generate gut-tropic T cells. Mucosal Immunol 4, 438-447 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Wilson, K.H. Efficiency of various bile salt preparations for stimulation of Clostridium difficile spore germination. J Clin Microbiol 18, 1017-1019 (1983).PubMedPubMedCentralGoogle Scholar
  109. 109.
    Theriot, C.M., Koenigsknecht, M.J., Carlson, P.E., Jr., et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat Commun 5, 3114 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Devkota, S., Wang, Y., Musch, M.W., et al. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature 487, 104-108 (2012).PubMedPubMedCentralGoogle Scholar
  111. 111.
    Yanguas-Casas, N., Barreda-Manso, M.A., Nieto-Sampedro, M. & Romero-Ramirez, L. TUDCA: An Agonist of the Bile Acid Receptor GPBAR1/TGR5 With Anti-Inflammatory Effects in Microglial Cells. J Cell Physiol 232, 2231-2245 (2017).PubMedCrossRefGoogle Scholar
  112. 112.
    Mano, N., Goto, T., Uchida, M., et al. Presence of protein-bound unconjugated bile acids in the cytoplasmic fraction of rat brain. J Lipid Res 45, 295-300 (2004).PubMedCrossRefGoogle Scholar
  113. 113.
    Macho Fernandez, E., Pot, B. & Grangette, C. Beneficial effect of probiotics in IBD: are peptidogycan and NOD2 the molecular key effectors? Gut Microbes 2, 280-286 (2011).PubMedCrossRefGoogle Scholar
  114. 114.
    Lee, J., Yang, W., Hostetler, A., et al. Characterization of the anti-inflammatory Lactobacillus reuteri BM36301 and its probiotic benefits on aged mice. BMC Microbiol 16, 69 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Walker, D.K. & Gilliland, S.E. Relationship among bile tolerance, bile salt deconjugation, and assimilation of cholesterol by Lactobacillus acidophilus. J Dairy Sci 76, 956-961 (1993).PubMedCrossRefGoogle Scholar
  116. 116.
    Brashears, M.M., Gilliland, S.E. & Buck, L.M. Bile salt deconjugation and cholesterol removal from media by Lactobacillus casei. J Dairy Sci 81, 2103-2110 (1998).PubMedCrossRefGoogle Scholar
  117. 117.
    Studer, N., Desharnais, L., Beutler, M., et al. Functional Intestinal Bile Acid 7alpha-Dehydroxylation by Clostridium scindens Associated with Protection from Clostridium difficile Infection in a Gnotobiotic Mouse Model. Front Cell Infect Microbiol 6, 191 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Buffie, C.G., Bucci, V., Stein, R.R., et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205-208 (2015).PubMedCrossRefGoogle Scholar
  119. 119.
    Labbe, A., Ganopolsky, J.G., Martoni, C.J., Prakash, S. & Jones, M.L. Bacterial bile metabolising gene abundance in Crohn's, ulcerative colitis and type 2 diabetes metagenomes. PLoS One 9, e115175 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Rossi, O., van Berkel, L.A., Chain, F., et al. Faecalibacterium prausnitzii A2-165 has a high capacity to induce IL-10 in human and murine dendritic cells and modulates T cell responses. Sci Rep 6, 18507 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Narushima, S., Itoha, K., Miyamoto, Y., et al. Deoxycholic acid formation in gnotobiotic mice associated with human intestinal bacteria. Lipids 41, 835-843 (2006).PubMedCrossRefGoogle Scholar
  122. 122.
    Kverka, M., Zakostelska, Z., Klimesova, K., et al. Oral administration of Parabacteroides distasonis antigens attenuates experimental murine colitis through modulation of immunity and microbiota composition. Clin Exp Immunol 163, 250-259 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Leppik, R.A. The genetics of bile acid degradation in Pseudomonas spp.: location and cloning of catabolic genes. J Gen Microbiol 135, 1989-1996 (1989).PubMedGoogle Scholar
  124. 124.
    Reen, F.J., Flynn, S., Woods, D.F., et al. Bile signalling promotes chronic respiratory infections and antibiotic tolerance. Sci Rep 6, 29768 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Yoon, E.J., Chabane, Y.N., Goussard, S., et al. Contribution of resistance-nodulation-cell division efflux systems to antibiotic resistance and biofilm formation in Acinetobacter baumannii. MBio 6(2015).Google Scholar
  126. 126.
    Grigorescu, M., Serban, D. & Dumitrascu, D. Metabolism of bile acids by strains of Acinetobacter anitratum and Acinetobacter lwoffii. Am J Gastroenterol 69, 450-452 (1978).PubMedGoogle Scholar
  127. 127.
    Nie, Y.F., Hu, J. & Yan, X.H. Cross-talk between bile acids and intestinal microbiota in host metabolism and health. J Zhejiang Univ Sci B 16, 436-446 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Ho, P.P. & Steinman, L. Obeticholic acid, a synthetic bile acid agonist of the farnesoid X receptor, attenuates experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 113, 1600-1605 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Lewis, N.D., Patnaude, L.A., Pelletier, J., et al. A GPBAR1 (TGR5) small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE) in vivo. PLoS One 9, e100883 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Sakai, T. & Kogiso, M. Soy isoflavones and immunity. J Med Invest 55, 167-173 (2008).PubMedCrossRefGoogle Scholar
  131. 131.
    Rietjens, I., Louisse, J. & Beekmann, K. The potential health effects of dietary phytoestrogens. Br J Pharmacol 174, 1263-1280 (2017).PubMedCrossRefGoogle Scholar
  132. 132.
    Sirotkin, A.V. & Harrath, A.H. Phytoestrogens and their effects. Eur J Pharmacol 741, 230-236 (2014).PubMedCrossRefGoogle Scholar
  133. 133.
    Mueller, S.O., Simon, S., Chae, K., Metzler, M. & Korach, K.S. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor alpha (ERalpha) and ERbeta in human cells. Toxicol Sci 80, 14-25 (2004).PubMedCrossRefGoogle Scholar
  134. 134.
    Cooke, P.S., Selvaraj, V. & Yellayi, S. Genistein, estrogen receptors, and the acquired immune response. J Nutr 136, 704-708 (2006).PubMedGoogle Scholar
  135. 135.
    Clavel, T., Borrmann, D., Braune, A., Dore, J. & Blaut, M. Occurrence and activity of human intestinal bacteria involved in the conversion of dietary lignans. Anaerobe 12, 140-147 (2006).PubMedCrossRefGoogle Scholar
  136. 136.
    Rafii, F. The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites 5, 56-73 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Konstantinopoulos, P.A., Kominea, A., Vandoros, G., et al. Oestrogen receptor beta (ERbeta) is abundantly expressed in normal colonic mucosa, but declines in colon adenocarcinoma paralleling the tumour's dedifferentiation. Eur J Cancer 39, 1251-1258 (2003).PubMedCrossRefGoogle Scholar
  138. 138.
    Suzuki, T. & Hara, H. Role of flavonoids in intestinal tight junction regulation. J Nutr Biochem 22, 401-408 (2011).PubMedCrossRefGoogle Scholar
  139. 139.
    Masilamani, M., Wei, J. & Sampson, H.A. Regulation of the immune response by soybean isoflavones. Immunol Res 54, 95-110 (2012).PubMedCrossRefGoogle Scholar
  140. 140.
    Calvello, R., Aresta, A., Trapani, A., et al. Bovine and soybean milk bioactive compounds: Effects on inflammatory response of human intestinal Caco-2 cells. Food Chem 210, 276-285 (2016).PubMedCrossRefGoogle Scholar
  141. 141.
    Piegholdt, S., Pallauf, K., Esatbeyoglu, T., et al. Biochanin A and prunetin improve epithelial barrier function in intestinal CaCo-2 cells via downregulation of ERK, NF-kappaB, and tyrosine phosphorylation. Free Radic Biol Med 70, 255-264 (2014).PubMedCrossRefGoogle Scholar
  142. 142.
    Franciskovic, M., Gonzalez-Perez, R., Orcic, D., et al. Chemical Composition and Immuno-Modulatory Effects of Urtica dioica L. (Stinging Nettle) Extracts. Phytother Res (2017).Google Scholar
  143. 143.
    Gou, Z., Jiang, S., Zheng, C., Tian, Z. & Lin, X. Equol Inhibits LPS-Induced Oxidative Stress and Enhances the Immune Response in Chicken HD11 Macrophages. Cell Physiol Biochem 36, 611-621 (2015).PubMedCrossRefGoogle Scholar
  144. 144.
    Byun, E.B., Sung, N.Y., Yang, M.S., et al. Anti-inflammatory effect of gamma-irradiated genistein through inhibition of NF-kappaB and MAPK signaling pathway in lipopolysaccharide-induced macrophages. Food Chem Toxicol 74, 255-264 (2014).PubMedCrossRefGoogle Scholar
  145. 145.
    Junior, C.O., Castro, S.B., Pereira, A.A., et al. Synthesis of genistein coupled with sugar derivatives and their inhibitory effect on nitric oxide production in macrophages. Eur J Med Chem 85, 615-620 (2014).PubMedCrossRefGoogle Scholar
  146. 146.
    Wu, X.L., Liou, C.J., Li, Z.Y., et al. Sesamol suppresses the inflammatory response by inhibiting NF-kappaB/MAPK activation and upregulating AMP kinase signaling in RAW 264.7 macrophages. Inflamm Res 64, 577-588 (2015).PubMedCrossRefGoogle Scholar
  147. 147.
    Laffont, S., Seillet, C. & Guery, J.C. Estrogen Receptor-Dependent Regulation of Dendritic Cell Development and Function. Front Immunol 8, 108 (2017).PubMedPubMedCentralGoogle Scholar
  148. 148.
    Weng, B.B., Lin, W.S., Chang, J.C. & Chiou, R.Y. The phytogestrogenic stilbenes, arachidin-1 and resveratrol, modulate regulatory T cell functions responsible for successful aging in aged ICR mice. Int J Mol Med 38, 1895-1904 (2016).PubMedCrossRefGoogle Scholar
  149. 149.
    Zhao, L., Mao, Z., Schneider, L.S. & Brinton, R.D. Estrogen receptor beta-selective phytoestrogenic formulation prevents physical and neurological changes in a preclinical model of human menopause. Menopause 18, 1131-1142 (2011).PubMedCrossRefGoogle Scholar
  150. 150.
    Zhao, L., Mao, Z. & Brinton, R.D. A select combination of clinically relevant phytoestrogens enhances estrogen receptor beta-binding selectivity and neuroprotective activities in vitro and in vivo. Endocrinology 150, 770-783 (2009).PubMedCrossRefGoogle Scholar
  151. 151.
    Almey, A., Milner, T.A. & Brake, W.G. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav 74, 125-138 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Schogor, A.L., Huws, S.A., Santos, G.T., et al. Ruminal Prevotella spp. may play an important role in the conversion of plant lignans into human health beneficial antioxidants. PLoS One 9, e87949 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Barton, S., E. Marietta, M. Jacobson, S. Rashtak, J. Murray. Prevotella species from the small bowel of untreated celiac patients suppress production of systemic inflammatory cytokines in DQ8 transgenic murine model. . in Digestive Disease Week (DDW) (Elsevier, San Diego, CA, 2008).Google Scholar
  154. 154.
    De Cruz, P., Kang, S., Wagner, J., et al. Association between specific mucosa-associated microbiota in Crohn's disease at the time of resection and subsequent disease recurrence: a pilot study. J Gastroenterol Hepatol 30, 268-278 (2015).PubMedCrossRefGoogle Scholar
  155. 155.
    Toh, H., Oshima, K., Suzuki, T., Hattori, M. & Morita, H. Complete Genome Sequence of the Equol-Producing Bacterium Adlercreutzia equolifaciens DSM 19450T. Genome Announc 1(2013).Google Scholar
  156. 156.
    Schroder, C., Matthies, A., Engst, W., Blaut, M. & Braune, A. Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens. Appl Environ Microbiol 79, 3494-3502 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  157. 157.
    Eslami, S., Hadjati, J., Motevaseli, E., et al. Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs. APMIS 124, 697-710 (2016).PubMedCrossRefGoogle Scholar
  158. 158.
    Rekha, C.R. & Vijayalakshmi, G. Bioconversion of isoflavone glycosides to aglycones, mineral bioavailability and vitamin B complex in fermented soymilk by probiotic bacteria and yeast. J Appl Microbiol 109, 1198-1208 (2010).PubMedCrossRefGoogle Scholar
  159. 159.
    De Paula, M.L., Rodrigues, D.H., Teixeira, H.C., et al. Genistein down-modulates pro-inflammatory cytokines and reverses clinical signs of experimental autoimmune encephalomyelitis. Int Immunopharmacol 8, 1291-1297 (2008).PubMedCrossRefGoogle Scholar
  160. 160.
    Muthian, G. & Bright, J.J. Quercetin, a flavonoid phytoestrogen, ameliorates experimental allergic encephalomyelitis by blocking IL-12 signaling through JAK-STAT pathway in T lymphocyte. J Clin Immunol 24, 542-552 (2004).PubMedCrossRefGoogle Scholar
  161. 161.
    Shen, R., Deng, W., Li, C. & Zeng, G. A natural flavonoid glucoside icariin inhibits Th1 and Th17 cell differentiation and ameliorates experimental autoimmune encephalomyelitis. Int Immunopharmacol 24, 224-231 (2015).PubMedCrossRefGoogle Scholar
  162. 162.
    Razeghi Jahromi, S., Arrefhosseini, S.R., Ghaemi, A., et al. Alleviation of experimental allergic encephalomyelitis in C57BL/6 mice by soy daidzein. Iran J Allergy Asthma Immunol 13, 256-264 (2014).PubMedGoogle Scholar
  163. 163.
    Wei, Z., Deng, X., Hong, M., et al. Icariin has synergistic effects with methylprednisolone to ameliorate EAE via modulating HPA function, promoting anti-inflammatory and anti-apoptotic effects. Int J Clin Exp Med 8, 20188-20197 (2015).PubMedPubMedCentralGoogle Scholar
  164. 164.
    Wei, Z., Wang, M., Hong, M., et al. Icariin exerts estrogen-like activity in ameliorating EAE via mediating estrogen receptor beta, modulating HPA function and glucocorticoid receptor expression. Am J Transl Res 8, 1910-1918 (2016).PubMedPubMedCentralGoogle Scholar
  165. 165.
    Guo, T.L., Germolec, D.R., Zheng, J.F., et al. Genistein protects female nonobese diabetic mice from developing type 1 diabetes when fed a soy- and alfalfa-free diet. Toxicol Pathol 43, 435-448 (2015).PubMedCrossRefGoogle Scholar
  166. 166.
    Huang, G., Xu, J., Lefever, D.E., et al. Genistein prevention of hyperglycemia and improvement of glucose tolerance in adult non-obese diabetic mice are associated with alterations of gut microbiome and immune homeostasis. Toxicol Appl Pharmacol (2017).Google Scholar
  167. 167.
    Talaei, M. & Pan, A. Role of phytoestrogens in prevention and management of type 2 diabetes. World J Diabetes 6, 271-283 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Takagi, A., Kano, M. & Kaga, C. Possibility of breast cancer prevention: use of soy isoflavones and fermented soy beverage produced using probiotics. Int J Mol Sci 16, 10907-10920 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Adolphe, J.L., Whiting, S.J., Juurlink, B.H., Thorpe, L.U. & Alcorn, J. Health effects with consumption of the flax lignan secoisolariciresinol diglucoside. Br J Nutr 103, 929-938 (2010).PubMedCrossRefGoogle Scholar
  170. 170.
    Hooper, L., Madhavan, G., Tice, J.A., Leinster, S.J. & Cassidy, A. Effects of isoflavones on breast density in pre- and post-menopausal women: a systematic review and meta-analysis of randomized controlled trials. Hum Reprod Update 16, 745-760 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Wu, A.H., Spicer, D., Garcia, A., et al. Double-Blind Randomized 12-Month Soy Intervention Had No Effects on Breast MRI Fibroglandular Tissue Density or Mammographic Density. Cancer Prev Res (Phila) 8, 942-951 (2015).CrossRefGoogle Scholar
  172. 172.
    Zhang, L.S. & Davies, S.S. Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions. Genome Med 8, 46 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Korecka, A., Dona, A., Lahiri, S., et al. Bidirectional communication between the Aryl hydrocarbon Receptor (AhR) and the microbiome tunes host metabolism. NPJ Biofilms and Microbiomes 2, 16014 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Bansal, T., Alaniz, R.C., Wood, T.K. & Jayaraman, A. The bacterial signal indole increases epithelial-cell tight-junction resistance and attenuates indicators of inflammation. Proc Natl Acad Sci U S A 107, 228-233 (2010).PubMedCrossRefGoogle Scholar
  175. 175.
    Shimada, Y., Kinoshita, M., Harada, K., et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One 8, e80604 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Lanis, J.M., Alexeev, E.E., Curtis, V.F., et al. Tryptophan metabolite activation of the aryl hydrocarbon receptor regulates IL-10 receptor expression on intestinal epithelia. Mucosal Immunol (2017).Google Scholar
  177. 177.
    Qiu, J., Heller, J.J., Guo, X., et al. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36, 92-104 (2012).PubMedCrossRefGoogle Scholar
  178. 178.
    Garg, A., Zhao, A., Erickson, S.L., et al. Pregnane X Receptor Activation Attenuates Inflammation-Associated Intestinal Epithelial Barrier Dysfunction by Inhibiting Cytokine-Induced Myosin Light-Chain Kinase Expression and c-Jun N-Terminal Kinase 1/2 Activation. J Pharmacol Exp Ther 359, 91-101 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Venkatesh, M., Mukherjee, S., Wang, H., et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 41, 296-310 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Chng, S.H., Kundu, P., Dominguez-Brauer, C., et al. Ablating the aryl hydrocarbon receptor (AhR) in CD11c+ cells perturbs intestinal epithelium development and intestinal immunity. Sci Rep 6, 23820 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Nguyen, N.T., Kimura, A., Nakahama, T., et al. Aryl hydrocarbon receptor negatively regulates dendritic cell immunogenicity via a kynurenine-dependent mechanism. Proc Natl Acad Sci U S A 107, 19961-19966 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Harden, J.L. & Egilmez, N.K. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity. Immunol Invest 41, 738-764 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Zelante, T., Iannitti, R.G., Cunha, C., et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity 39, 372-385 (2013).PubMedCrossRefGoogle Scholar
  184. 184.
    Moroni, F. Tryptophan metabolism and brain function: focus on kynurenine and other indole metabolites. Eur J Pharmacol 375, 87-100 (1999).PubMedCrossRefGoogle Scholar
  185. 185.
    Lamas, B., Richard, M.L., Leducq, V., et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat Med 22, 598-605 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Stanisavljevic, S., Lukic, J., Sokovic, S., et al. Correlation of Gut Microbiota Composition with Resistance to Experimental Autoimmune Encephalomyelitis in Rats. Front Microbiol 7, 2005 (2016).Google Scholar
  187. 187.
    Lavasani, S., Dzhambazov, B., Nouri, M., et al. A novel probiotic mixture exerts a therapeutic effect on experimental autoimmune encephalomyelitis mediated by IL-10 producing regulatory T cells. PloS one 5, e9009 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Kadowaki, A., Miyake, S., Saga, R., et al. Gut environment-induced intraepithelial autoreactive CD4(+) T cells suppress central nervous system autoimmunity via LAG-3. Nat Commun 7, 11639 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Rothhammer, V., Mascanfroni, I.D., Bunse, L., et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med 22, 586-597 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Zeisel, S.H. & da Costa, K.A. Choline: an essential nutrient for public health. Nutr Rev 67, 615-623 (2009).PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Tremaroli, V. & Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242-249 (2012).PubMedCrossRefGoogle Scholar
  192. 192.
    Mokry, L.E., Ross, S., Timpson, N.J., et al. Obesity and Multiple Sclerosis: A Mendelian Randomization Study. PLoS Med 13, e1002053 (2016).PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Ley, R.E., Turnbaugh, P.J., Klein, S. & Gordon, J.I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022-1023 (2006).PubMedCrossRefGoogle Scholar
  194. 194.
    de Heredia, F.P., Gomez-Martinez, S. & Marcos, A. Obesity, inflammation and the immune system. Proc Nutr Soc 71, 332-338 (2012).PubMedCrossRefGoogle Scholar
  195. 195.
    Wang, Z., Tang, W.H., Buffa, J.A., et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur Heart J 35, 904-910 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  196. 196.
    Zhang, C., Yin, A., Li, H., et al. Dietary Modulation of Gut Microbiota Contributes to Alleviation of Both Genetic and Simple Obesity in Children. EBioMedicine 2, 968-984 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Wang, Z., Klipfell, E., Bennett, B.J., et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57-63 (2011).PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Gregory, J.C., Buffa, J.A., Org, E., et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J Biol Chem 290, 5647-5660 (2015).PubMedCrossRefGoogle Scholar
  199. 199.
    Zhu, Y., Jameson, E., Crosatti, M., et al. Carnitine metabolism to trimethylamine by an unusual Rieske-type oxygenase from human microbiota. Proc Natl Acad Sci U S A 111, 4268-4273 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Derrien, M., van Passel, M.W., van de Bovenkamp, J.H., et al. Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1, 254-268 (2010).PubMedPubMedCentralCrossRefGoogle Scholar
  201. 201.
    Dharmani, P., Srivastava, V., Kissoon-Singh, V. & Chadee, K. Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun 1, 123-135 (2009).PubMedCrossRefGoogle Scholar
  202. 202.
    McGuckin, M.A., Linden, S.K., Sutton, P. & Florin, T.H. Mucin dynamics and enteric pathogens. Nat Rev Microbiol 9, 265-278 (2011).PubMedCrossRefGoogle Scholar
  203. 203.
    Pelaseyed, T., Bergstrom, J.H., Gustafsson, J.K., et al. The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260, 8-20 (2014).PubMedPubMedCentralCrossRefGoogle Scholar
  204. 204.
    McDole, J.R., Wheeler, L.W., McDonald, K.G., et al. Goblet cells deliver luminal antigen to CD103+ dendritic cells in the small intestine. Nature 483, 345-349 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  205. 205.
    Ganesh, B.P., Klopfleisch, R., Loh, G. & Blaut, M. Commensal Akkermansia muciniphila exacerbates gut inflammation in Salmonella Typhimurium-infected gnotobiotic mice. PLoS One 8, e74963 (2013).PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Png, C.W., Linden, S.K., Gilshenan, K.S., et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105, 2420-2428 (2010).PubMedCrossRefGoogle Scholar
  207. 207.
    Tailford, L.E., Crost, E.H., Kavanaugh, D. & Juge, N. Mucin glycan foraging in the human gut microbiome. Front Genet 6, 81 (2015).PubMedPubMedCentralCrossRefGoogle Scholar
  208. 208.
    He, F., Morita, H., Hashimoto, H., et al. Intestinal Bifidobacterium species induce varying cytokine production. J Allergy Clin Immunol 109, 1035-1036 (2002).PubMedCrossRefGoogle Scholar
  209. 209.
    Rajilic-Stojanovic, M., Biagi, E., Heilig, H.G., et al. Global and deep molecular analysis of microbiota signatures in fecal samples from patients with irritable bowel syndrome. Gastroenterology 141, 1792-1801 (2011).PubMedCrossRefGoogle Scholar
  210. 210.
    Schirmer, M., Smeekens, S.P., Vlamakis, H., et al. Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity. Cell 167, 1897 (2016).Google Scholar
  211. 211.
    Cusick, M.F., Libbey, J.E. & Fujinami, R.S. Molecular mimicry as a mechanism of autoimmune disease. Clin Rev Allergy Immunol 42, 102-111 (2012).PubMedPubMedCentralCrossRefGoogle Scholar
  212. 212.
    Westall, F.C. Molecular mimicry revisited: gut bacteria and multiple sclerosis. J Clin Microbiol 44, 2099-2104 (2006).PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Wucherpfennig, K.W. & Strominger, J.L. Molecular mimicry in T cell-mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695-705 (1995).PubMedCrossRefGoogle Scholar
  214. 214.
    Harkiolaki, M., Holmes, S.L., Svendsen, P., et al. T cell-mediated autoimmune disease due to low-affinity crossreactivity to common microbial peptides. Immunity 30, 348-357 (2009).PubMedCrossRefGoogle Scholar
  215. 215.
    Guadamuro, L., Dohrmann, A.B., Tebbe, C.C., Mayo, B. & Delgado, S. Bacterial communities and metabolic activity of faecal cultures from equol producer and non-producer menopausal women under treatment with soy isoflavones. BMC Microbiol 17, 93 (2017).PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  1. 1.Interdisciplinary Graduate Program in ImmunologyUniversity of IowaIowa CityUSA
  2. 2.Department of PathologyCarver College of Medicine, University of IowaIowa CityUSA

Personalised recommendations