Intestinal Permeability in Relapsing-Remitting Multiple Sclerosis

  • M. C. Buscarinu
  • S. Romano
  • R. Mechelli
  • R. Pizzolato Umeton
  • M. Ferraldeschi
  • A. Fornasiero
  • R. Reniè
  • B. Cerasoli
  • E. Morena
  • C. Romano
  • N. D. Loizzo
  • R. Umeton
  • M. Salvetti
  • G. Ristori
Review

Abstract

Changes of intestinal permeability (IP) have been extensively investigated in inflammatory bowel diseases (IBD) and celiac disease (CD), underpinned by a known unbalance between microbiota, IP and immune responses in the gut. Recently the influence of IP on brain function has greatly been appreciated. Previous works showed an increased IP that preceded experimental autoimmune encephalomyelitis development and worsened during disease with disruption of TJ. Moreover, studying co-morbidity between Crohn's disease and MS, a report described increased IP in a minority of cases with MS. In a recent work we found that an alteration of IP is a relatively frequent event in relapsing-remitting MS, with a possible genetic influence on the determinants of IP changes (as inferable from data on twins); IP changes included a deficit of the active mechanism of absorption from intestinal lumen. The results led us to hypothesize that gut may contribute to the development of MS, as suggested by another previous work of our group: a population of CD8+CD161high T cells, belonging to the mucosal-associated invariant T (MAIT) cells, a gut- and liver-homing subset, proved to be of relevance for MS pathogenesis. We eventually suggest future lines of research on IP in MS: studies on IP changes in patients under first-line oral drugs may result useful to improve their therapeutic index; correlating IP and microbiota changes, or IP and blood-brain barrier changes may help clarify disease pathogenesis; exploiting the IP data to disclose co-morbidities in MS, especially with CD and IBD, may be important for patient care.

Keywords

Multiple sclerosis Intestinal permeability Mucosal-associated invariant T (MAIT) cells Autoimmune comorbidity Celiac disease Crohn’ disease 

Supplementary material

13311_2017_582_MOESM1_ESM.pdf (35.4 mb)
ESM 1(PDF 36223 kb)

References

  1. 1.
    Vaishnava S, Yamamoto M, Severson KM, et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science. 2011;334(6053):255-8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Van Spaendonk H, Ceuleers H, Witters L, et al. Regulation of intestinal permeability: The role of proteases. World J Gastroenterol. 2017;23(12):2106-2123.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    König J, Wells J, Cani PD , et al. Human intestinal barrier function in health and disease. Clin Transl Gastroenterol. 2016;7(10):e196.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Morris G, Berk M, Carvalho AF, Caso JR, Sanz Y, Maes M. The role of microbiota and intestinal permeability in the pathophysiology of autoimmune and neuroimmune processes with an emphasis on inflammatory bowel disease type 1 diabetes and chronic fatigue syndrome. Curr Pharm Des. 2016; 22(40):6058-6075.CrossRefPubMedGoogle Scholar
  5. 5.
    Haghikia A, Jörg S, Duscha A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity, 2015; 43:817-29.CrossRefPubMedGoogle Scholar
  6. 6.
    Horai R, Zárate-Bladés CR, Dillenburg-Pilla P, et al. Microbiota-dependent activation of an autoreactive T cell receptor provokes autoimmunity in an immunologically privileged site. Immunity, 2015; 43:343-53CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91(1):151-75.CrossRefPubMedGoogle Scholar
  8. 8.
    Ochoa-Repáraz J, Mielcarz DW, Ditrio LE, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol, 2009; 183: 6041–50.CrossRefPubMedGoogle Scholar
  9. 9.
    Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2011;108 Suppl 1:4615-22.CrossRefPubMedGoogle Scholar
  10. 10.
    Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature, 2011; 479:538-41CrossRefPubMedGoogle Scholar
  11. 11.
    Yacyshyn B, Meddings J, Sadowski D, Bowen-Yacyshyn MB. Multiple sclerosis patients have peripheral blood CD45RO B cells and increased intestinal permeability. Dig Dis Sci, 1996; 41: 2493.CrossRefPubMedGoogle Scholar
  12. 12.
    Nouri M, Bredberg A, Weström B, Lavasani S. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLoS One, 2014; 9:e106335.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Buscarinu MC, Cerasoli B, Annibali V, et al. Altered intestinal permeability in patients with relapsing–remitting multiple sclerosis: a pilot study. Multiple Sclerosis Journal, 2017;23(3):442-446.CrossRefPubMedGoogle Scholar
  14. 14.
    Polman, CH, Reingold, SC, Banwell, B, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69:292–302.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lostia AM, Lionetto L, Principessa L, et al. A liquid chromatography/mass spectrometry method for the evaluation of intestinal permeability. Clin Biochem, 2008;41:887-92.CrossRefPubMedGoogle Scholar
  16. 16.
    Marsilio R, D'Antiga L, Zancan L, et al. Simultaneous HPLC determination with light scattering detection of lactulose and mannitol in studies of intestinal permeability in pediatrics. Clin Chem 1998;44:81685–91.Google Scholar
  17. 17.
    Cosorich I, dalla Costa G, Sorini C, et al. High frequency of intestinal Th17 cells correlates with microbiota alterations and disease activity in mltiple sclerosis. Si Adv 2017; 3:e1700492.CrossRefGoogle Scholar
  18. 18.
    Annibali V, Ristori G, Angelini DF, et al. CD161(high)CD8+T cells bear pathogenetic potential in multiple sclerosis. Brain, 2011; 134: 542-54CrossRefPubMedGoogle Scholar
  19. 19.
    Moreira ML, Tsuji M, Corbett AJ, et al. MAIT-cells: A tailor-made mate in the ancient battle against infectious diseases?. Immunol Lett. 2017 Jul;187:53-60.CrossRefPubMedGoogle Scholar
  20. 20.
    Serriari NE, Eoche M, Lamotte L, et al. Innate mucosal-associated invariant T (MAIT) cells are activated in inflammatory bowel diseases. Clin Exp Immunol. 2014;176(2):266-74.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Menon B, Gullick NJ, Walter GJ, et al. Interleukin-17+CD8+ T cells are enriched in the joints of patients with psoriatic arthritis and correlate with disease activity and joint damage progression. Arthritis Rheumatol. 2014;66(5):1272-81.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Spadoni I, Zagato E, Bertocchi A, et al. A gut-vascular barrier controls the systemic dissemination of bacteria. Science, 2015; 350:830-4CrossRefPubMedGoogle Scholar
  23. 23.
    van Wijck K, Verlinden TJ, van Eijk HM, et al. Novel multi-sugar assay for site-specific gastrointestinal permeability analysis: a randomized controlled crossover trial. Clin Nutr. 2013;32(2):245-51CrossRefPubMedGoogle Scholar
  24. 24.
    Visser J, Rozing J, Sapone A, Lammers K, Fasano A. Tight junctions, intestinal permeability, and autoimmunity: celiac disease and type 1 diabetes paradigms. Ann NY Acad Sci. 2009;1165:195-205.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Floris S, van der Goes A, Killestein J, et al Monocyte activation and disease activity in multiple sclerosis. A longitudinal analysis of serum MRP8/14 levels. J Neuroimmunol. 2004;148(1-2):172-7CrossRefPubMedGoogle Scholar
  26. 26.
    Manceau H, Chicha-Cattoir V, Puy H, Peoc'h K. Fecal calprotectin in inflammatory bowel diseases: update and perspectives. Clin Chem Lab Med. 2017;55(4):474-483.CrossRefPubMedGoogle Scholar
  27. 27.
    Marrie RA, Cohen J, Stuve O, et al. A systematic review of the incidence and prevalence of comorbidity in multiple sclerosis: overview. Mult Scler. 2015 ;21(3):263-81.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Marrie RA. Comorbidity in multiple sclerosis: implications for patient care. Nat Rev Neurol. 2017;13(6):375-382.CrossRefPubMedGoogle Scholar
  29. 29.
    Marrie RA, Reider N, Cohen J, Stuve O, Sorensen PS, Cutter G, Reingold SC, Trojano M. A systematic review of the incidence and prevalence of autoimmune disease in multiple sclerosis. Mult Scler. 2015;21(3):282-93.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Catassi C, Fasano A. Coeliac disease. The debate on coeliac disease screening--are we there yet? Nat Rev Gastroenterol Hepatol. 2014;11(8):457-8.CrossRefPubMedGoogle Scholar
  31. 31.
    Salvatore S, Finazzi S, Ghezzi A, et al. Multiple sclerosis and celiac disease: is there an increased risk? Mult Scler. 2004;10(6):711-2CrossRefPubMedGoogle Scholar
  32. 32.
    Nicoletti A, Patti F, Lo Fermo S, et al. Frequency of celiac disease is not increased among multiple sclerosis patients. Mult Scler. 2008;14(5):698-700.CrossRefPubMedGoogle Scholar
  33. 33.
    Shor DB, Barzilai O, Ram M. et al. Gluten sensitivity in multiple sclerosis: experimental myth or clinical truth? Ann NY Acad Sci. 2009;1173:343-9CrossRefPubMedGoogle Scholar
  34. 34.
    Rodrigo L, Hernández-Lahoz C, Fuentes D, et al. Prevalence of celiac disease in multiple sclerosis. BMC Neurol. 2011;11:31.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Kosmidou M, Katsanos AH, Katsanos KH, et al. Multiple sclerosis and inflammatory bowel diseases: a systematic review and meta-analysis. J Neurol. 2017;264(2):254-259CrossRefPubMedGoogle Scholar
  36. 36.
    Gopalakrishnan S, Durai M, Kitchens K, et al. Larazotide acetate regulates epithelial tight junctions in vitro and in vivo. Peptides. 2012;35(1):86-94.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  • M. C. Buscarinu
    • 1
  • S. Romano
    • 1
  • R. Mechelli
    • 1
  • R. Pizzolato Umeton
    • 2
  • M. Ferraldeschi
    • 3
  • A. Fornasiero
    • 1
  • R. Reniè
    • 1
  • B. Cerasoli
    • 1
  • E. Morena
    • 1
  • C. Romano
    • 1
  • N. D. Loizzo
    • 1
  • R. Umeton
    • 4
  • M. Salvetti
    • 1
    • 5
  • G. Ristori
    • 1
  1. 1.Centre for Experimental Neurological Therapies, Department of Neurosciences, Mental Health and Sensory Organs, Faculty of Medicine and PsychologySapienza UniversityRomeItaly
  2. 2.Department of NeurologyUniversity of Massachusetts Medical SchoolWorcesterUSA
  3. 3.Department of Neurology and PsychiatrySapienza UniversityRomeItaly
  4. 4.Department of InformaticsDana-Farber Cancer InstituteBostonUSA
  5. 5.IRCCS Istituto Neurologico Mediterraneo (INM) NeuromedPozzilliItaly

Personalised recommendations