, Volume 14, Issue 2, pp 372–384 | Cite as

Brain Cancer Stem Cells in Adults and Children: Cell Biology and Therapeutic Implications

  • Tamara J. Abou-Antoun
  • James S. Hale
  • Justin D. Lathia
  • Stephen M. Dombrowski


Brain tumors represent some of the most malignant cancers in both children and adults. Current treatment options target the majority of tumor cells but do not adequately target self-renewing cancer stem cells (CSCs). CSCs have been reported to resist the most aggressive radiation and chemotherapies, and give rise to recurrent, treatment-resistant secondary malignancies. With advancing technologies, we now have a better understanding of the genetic, epigenetic and molecular signatures and microenvironmental influences which are useful in distinguishing between distinctly different tumor subtypes. As a result, efforts are now underway to identify and target CSCs within various tumor subtypes based on this foundation. This review discusses progress in CSC biology as it relates to targeted therapies which may be uniquely different between pediatric and adult brain tumors. Studies to date suggest that pediatric brain tumors may benefit more from genetic and epigenetic targeted therapies, while combination treatments aimed specifically at multiple molecular pathways may be more effective in treating adult brain tumors which seem to have a greater propensity towards microenvironmental interactions. Ultimately, CSC targeting approaches in combination with current clinical therapies have the potential to be more effective owing to their ability to compromise CSCs maintenance and the mechanisms which underlie their highly aggressive and deadly nature.


Cancer stem cells Childhood brain tumors Glioblastoma Epigenetics Microenvironment Therapeutic implications 


Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2017_524_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1224 kb)


  1. 1.
    Ostrom QT, Gittleman H, de Blank PM et al. American Brain Tumor Association. Adolescent and young adult primary brain and central nervous system tumors diagnosed in the United States in 2008–2012. Neuro Oncol 2016; Suppl 1:i1-i50.CrossRefGoogle Scholar
  2. 2.
    Vigneswaran K, Neill S, Hadjipanayis CG. Beyond the World Health Organization grading of infiltrating gliomas: advances in the molecular genetics of glioma classification. Ann Transl Med 2015;3:95.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Jelsma R, Bucy PC. The treatment of glioblastoma multiforme of the brain. J Neurosurg 1967;27(5):388-400.PubMedCrossRefGoogle Scholar
  4. 4.
    Weller M, Cloughesy T, Perry JR, Wick W. Standards of care for treatment of recurrent glioblastoma—are we there yet? Neuro Oncol 2013;15:4-27.PubMedCrossRefGoogle Scholar
  5. 5.
    Lathia JD, Mack SC, Mulkearns-Hubert EE, Valentim CLL, Rich JN. Cancer stem cells in glioblastoma. Genes Develop 2015;29:1203-1217.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Cavallucci V, Fidaleo M, Pani G. Neural stem cells and nutrients: poised between quiescence and exhaustion. Trends Endocrinol Metab 2016; 27:756-769.PubMedCrossRefGoogle Scholar
  7. 7.
    Rusznák Z, Henskens W, Schofield E, Kim WS, Fu Y. Adult neurogenesis and gliogenesis: possible mechanisms for neurorestoration. Exp Neurobiol 2016;25:103-112.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Hale JS, Sinyuk M, Rich JN, Lathia JD. Decoding the cancer stem cell hypothesis in glioblastoma. CNS Oncol 2013;2: 10.2217/cns.13.23.
  9. 9.
    Reynolds BA, Weiss S. Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 1996;175(1):1-13.PubMedCrossRefGoogle Scholar
  10. 10.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 2003;100:3983-3988.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E et al. Identification and expansion of human colon-cancer-initiating cells. Nature 2007;445:111-115.PubMedCrossRefGoogle Scholar
  12. 12.
    Ignatova TN, Kukekov VG, Laywell ED, Suslov ON, Vrionis FD, Steindler DA. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002;39(3):193-206.PubMedCrossRefGoogle Scholar
  13. 13.
    Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res 2005;65:3025-3029.PubMedGoogle Scholar
  14. 14.
    Lathia JD. Cancer stem cells: moving past the controversy. CNS Oncol 2013;2(6):465-467.PubMedCrossRefGoogle Scholar
  15. 15.
    Hemmati HD, Nakano I, Lazareff JA, et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci U S A 2003; 100:15178-15183.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lathia JD, Gallagher J, Heddleston JM, et al. Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 2010;6:421-432.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Hale JS, Otvos B, Sinyuk M, et al. Cancer stem cell-specific scavenger receptor CD36 drives glioblastoma progression. Stem Cells 2014;32:1746-1758.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Ogden AT, Waziri AE, Lochhead RA et al. Identification of A2B5+CD133- tumor-initiating cells in adult human gliomas. Neurosurgery 2008;62:505-514.PubMedCrossRefGoogle Scholar
  19. 19.
    Liu G, Yuan X, Zeng Z, et al. Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 2006;5:67.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Bao S, Wu Q, Li Z, et al. Targeting Cancer Stem Cells through L1CAM Suppresses glioma growth. Cancer Res 2008;68:6043-6048.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Mazzoleni S, Politi LS, Pala M, et al. Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res 2010;70:7500-7513.PubMedCrossRefGoogle Scholar
  22. 22.
    Wang X, Venugopal C, Manoranjan B, et al. Sonic hedgehog regulates Bmi1 in human medulloblastoma brain tumor-initiating cells. Oncogene 2012;31:187-199.PubMedCrossRefGoogle Scholar
  23. 23.
    Ligon KL, Huillard E, Mehta S, et al. Olig2-regulated lineage-restricted pathway controls replication competence in neural stem cells and malignant glioma. Neuron 2007;53:503-517.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Berezovsky AD, Poisson LM, Cherba D, et al. Sox2 promotes malignancy in glioblastoma by regulating plasticity and astrocytic differentiation. Neoplasia 2014;16:193-206.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Carén H, Pollard SM, Beck S. The good, the bad and the ugly: epigenetic mechanisms in glioblastoma. Mol Aspects Med 2013;34:849-862.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Brian J. P. Huntly and D. Gary Gilliland. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer 2005; 5:311-321.CrossRefGoogle Scholar
  27. 27.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3:730-737.PubMedCrossRefGoogle Scholar
  28. 28.
    Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 5821-5828.PubMedGoogle Scholar
  29. 29.
    Singh SK, Clarke ID, Hide T, Dirks PB. Cancer stem cells in nervous system tumors. Oncogene 2004; 23: 7267-7273.PubMedCrossRefGoogle Scholar
  30. 30.
    Read T-A, Fogarty MP, Markant SL, et al. Identification of CD15 as a marker for tumor-propagating cells in a mouse model of medulloblastoma. Cancer Cell 2009;15:135-147.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Vanner RJ, Remke M, Gallo M, et al. Quiescent Sox2+ cells drive hierarchical growth and relapse in sonic hedgehog subgroup medulloblastoma. Cancer Cell 2014; 26: 33-47.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chen J, Li Y, Yu T-S, et al. A restricted cell population propagates glioblastoma growth following chemotherapy. Nature 2012;488:522-526.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006;444:756-760.PubMedCrossRefGoogle Scholar
  34. 34.
    Carruthers R, Ahmed SU, Strathdee K. et al. Abrogation of radioresistance in glioblastoma stem-like cells by inhibition of ATM kinase. Mol Oncol 2015;9:192-203.PubMedCrossRefGoogle Scholar
  35. 35.
    Beier D, Röhrl S, Pillai DR. et al. Temozolomide preferentially depletes cancer stem cells in glioblastoma. Cancer Res 2008;68:5706-5715.PubMedCrossRefGoogle Scholar
  36. 36.
    Passagne I, Evrard A, Depeille P, Cuq P, Cupissol D, Vian L. O(6)-methylguanine DNA-methyltransferase (MGMT) overexpression in melanoma cells induces resistance to nitrosoureas and temozolomide but sensitizes to mitomycin C. Toxicol Appl Pharmacol 2006;211:97-105.PubMedCrossRefGoogle Scholar
  37. 37.
    Firat E, Niedermann G. FoxO proteins or loss of functional p53 maintain stemness of glioblastoma stem cells and survival after ionizing radiation plus PI3K/mTOR inhibition. Oncotarget 2016; 7: 54883-54896.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Duan R, Han L, Wang Q, et al. HOXA13 is a potential GBM diagnostic marker and promotes glioma invasion by activating the Wnt and TGF-β pathways. Oncotarget 2015;6:27778-27793.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yahyanejad S, King H, Iglesias VS et al. NOTCH blockade combined with radiation therapy and temozolomide prolongs survival of orthotopic glioblastoma. Oncotarget 2016;7:41251-41264.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Codrici E, Enciu AM, Popescu ID, Mihai S, Tanase C. Glioma stem cells and their microenvironments: providers of challenging therapeutic targets. Stem Cells Int 2016; 5728438.Google Scholar
  41. 41.
    Zhu TS, Costello MA, Talsma CE, et al. Endothelial cells create a stem cell niche in glioblastoma by providing Notch ligands that nurture self-renewal of cancer stem-like cells. Cancer Res 2011;71:6061-6072.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Fessler E, Borovski T, Medema JP. Endothelial cells induce cancer stem cell features in differentiated glioblastoma cells via bFGF. Mol Cancer 2015;14:157.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Charles N, Ozawa T, Squatrito M, et al. Perivascular nitric oxide activates Notch signaling and promotes stem-like character in PDGF-induced glioma cells. Cell Stem Cell 2010;6.Google Scholar
  44. 44.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 2007;17:165-172.PubMedCrossRefGoogle Scholar
  45. 45.
    Yang L, Lin C, Wang L, Guo H, Wang X. Hypoxia and hypoxia-inducible factors in glioblastoma multiforme progression and therapeutic implications. Exp Cell Res 2012;318:2417-2426.PubMedCrossRefGoogle Scholar
  46. 46.
    Li Z, Bao S, Wu Q, et al. Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 2009;15:501-513.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Xing Fan, William Matsui, Leila Khaki, et al. Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors. Cancer Res 2006;66:7445-7452.PubMedCrossRefGoogle Scholar
  48. 48.
    Lee J, Kotliarova S, Kotliarov Y et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006;9:391-403.PubMedCrossRefGoogle Scholar
  49. 49.
    Ghosh D, Ulasov IV, Chen L. et al. TGFβ-responsive HMOX1 expression is associated with stemness and invasion in glioblastoma multiforme. Stem Cells 2016;34:2276-2289.PubMedCrossRefGoogle Scholar
  50. 50.
    Jin X, Jeon HM, Jin X et al. The ID1-CULLIN3 axis regulates intracellular SHH and WNT signaling in glioblastoma stem cells. Cell Rep 2016;16:1629-1641.PubMedCrossRefGoogle Scholar
  51. 51.
    Cheng L, Wu Q, Guryanova OA, et al. Elevated invasive potential of glioblastoma stem cells. Biochem Biophys Res Commun 2011;406:643-648.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bao S, Wu Q, Sathornsumetee S. et al. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 2006;66:7843-7848.PubMedCrossRefGoogle Scholar
  53. 53.
    Xi G, Hayes E, Lewis R, et al. CD133 and DNA-PK regulate MDR1 via the PI3K- or Akt-NF-κB pathway in multidrug-resistant glioblastoma cells in vitro. Oncogene 2016;35:241-250.PubMedCrossRefGoogle Scholar
  54. 54.
    Dermawan JK, Hitomi M, Silver DJ, et al. Pharmacological targeting of the histone chaperone complex FACT preferentially eliminates glioblastoma stem cells and prolongs survival in preclinical models. Cancer Res 2016;76:2432-2442.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Maachani UB, Shankavaram U, Kramp T, Tofilon PJ, Camphausen K, Tandle AT. FOXM1 and STAT3 interaction confers radioresistance in glioblastoma cells. Oncotarget 2016;7:77365-77377.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Liu M, Inoue K, Leng T, Guo S, Xiong Z. TRPM7 channels regulate glioma stem cell through STAT3 and Notch signaling pathways. Cell Signal 2014;26:2773-2781.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Fang X, Zhou W, Wu Q, et al. Deubiquitinase USP13 maintains glioblastoma stem cells by antagonizing FBXL14-mediated Myc ubiquitination. J Exp Med 2017;214:245-267.PubMedCrossRefGoogle Scholar
  58. 58.
    Hu B, Emdad L, Kegelman TP, et al. Astrocyte elevated gene-1 regulates beta-catenin signaling to maintain glioma stem-like stemness and self-renewal. Mol Cancer Res 2017;15:225-233.PubMedCrossRefGoogle Scholar
  59. 59.
    Oliver TG, Wechsler-Reya RJ. Getting at the root and stem of brain tumors. Neuron 2004; 42: 885-888.PubMedCrossRefGoogle Scholar
  60. 60.
    Raffel C, Jenkins RB, Frederick L, et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res 1997; 57: 842-845.PubMedGoogle Scholar
  61. 61.
    Reifenberger J, Wolter M, Weber RG, et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 1998; 58: 1798-1803.PubMedGoogle Scholar
  62. 62.
    Zurawel RH, Chiappa SA, Allen C, Raffel C. Sporadic medulloblastomas contain oncogenic β-catenin mutations. Cancer Res 1998; 58: 896-899.PubMedGoogle Scholar
  63. 63.
    Hallahan AR, Pritchard JI, Hansen S, et al. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 2004; 64: 7794-7800.PubMedCrossRefGoogle Scholar
  64. 64.
    Ahmad Z, Jasnos L, Gil V, et al. Molecular and in vivo characterization of cancer-propagating cells derived from MYCN-dependent medulloblastoma. PLOS ONE 2015;10(3):e0119834.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Dolores Hambardzumyan, Oren J. Becher, et al. PI3K pathway regulates survival of cancer stem cells residing in the perivascular niche following radiation in medulloblastoma in vivo. Genes Dev 2008;22:436-448.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pei Y, Moore CE, Wang J, et al. An animal model of Myc-driven medduloblastoma. Cancer Cell 2012; 21: 155-167.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Mineo M, Ricklefs F, Rooj AK, et al. The Long Non-coding RNA HIF1A-AS2 facilitates the maintenance of mesenchymal glioblastoma stem-like cells in hypoxic niches. Cell Rep 2016; 15:2500-2509.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Iwadate Y, Matsutani T, Hirono S, Shinozaki N, Saeki N. Transforming growth factor-β and stem cell markers are highly expressed around necrotic areas in glioblastoma. J Neurooncol 2016;129:101-107.PubMedCrossRefGoogle Scholar
  69. 69.
    Fan Y, Potdar AA, Gong Y, et al. Profilin-1 phosphorylation directs angiocrine expression and glioblastoma progression through HIF-1α accumulation. Nat Cell Biol 2014;16:445-456.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Lee SB, Frattin V, Bansal M, et al. An ID2-dependent mechanism for VHL inactivation in cancer. Nature 2016;529:172-177.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Nigim F, Cavanaugh J, Patel AP, et al. targeting hypoxia-inducible factor 1α in a new orthotopic model of glioblastoma recapitulating the hypoxic tumor microenvironment. J Neuropathol Exp Neurol 2015;74:710-722.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Pistollato F, Chen HL, Rood BR, et al. Hypoxia and HIF1alpha repress the differentiative effects of BMPs in high-grade glioma. Stem Cells 2009;27:7-17.PubMedCrossRefGoogle Scholar
  73. 73.
    Friedman GK, Moore BP, Nan L, et al. Pediatric medulloblastoma xenografts including molecular subgroup 3 and CD133+ and CD15+ cells are sensitive to killing by oncolytic herpes simplex viruses. Neuro Oncol 2016;18:227-235.PubMedCrossRefGoogle Scholar
  74. 74.
    Huettner C, Czub S, Kerkau S, Roggendorf W, Tonn JC. Interleukin 10 is expressed in human gliomas in vivo and increases glioma cell proliferation and motility in vitro. Anticancer Res 1997;17:3217-3224.PubMedGoogle Scholar
  75. 75.
    Jackson C, Ruzevick J, Phallen J, Belcaid Z, Lim M. Challenges in immunotherapy presented by the glioblastoma multiforme microenvironment. Clin Dev Immunol 2011;732413.Google Scholar
  76. 76.
    Otvos B, Silver DJ, Mulkearns-Hubert EE, et al. Cancer stem cell-secreted macrophage migration inhibitory factor stimulates myeloid derived suppressor cell function and facilitates glioblastoma immune evasion. Stem Cells 2016; 34: 2026-2039.PubMedCrossRefGoogle Scholar
  77. 77.
    Zhou W, Ke SQ, Huang Z, et al. Periostin secreted by glioblastoma stem cells recruits M2 tumor-associated macrophages and promotes malignant growth. Nat Cell Biol 2015;17:170-182.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Silver DJ, Sinyuk M, Vogelbaum MA, Ahluwalia MS, Lathia JD. The intersection of cancer, cancer stem cells, and the immune system: therapeutic opportunities. Neuro Oncol 2016; 18: 153-159.PubMedCrossRefGoogle Scholar
  79. 79.
    Qiu B, Zhang D, Wang Y, et al. Interleukin-6 is overexpressed and augments invasiveness of human glioma stem cells in vitro. Clin Exp Metastasis 2013;30:1009-1018.PubMedCrossRefGoogle Scholar
  80. 80.
    Cheema TA, Fecci PE, Ning J, Rabkin SD. Immunovirotherapy for the treatment of glioblastoma. Oncoimmunology 2014;3:e27218.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Markovic DS, Vinnakota K, Chirasani S, et al. Gliomas induce and exploit microglial MT1-MMP expression for tumor expansion. Proc Natl Acad Sci U S A 2009;106:12530-12535.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ye XZ, Xu SL, Xin YH, et al. Tumor-associated microglia/macrophages enhance the invasion of glioma stem-like cells via TGF-beta1 signaling pathway. J Immunol 2012;189:444-453.PubMedCrossRefGoogle Scholar
  83. 83.
    Fonseca AC, Romao L, Amaral RF, et al. Microglial stress inducible protein 1 promotes proliferation and migration in human glioblastoma cells. Neuroscience 2012;200:130-141.PubMedCrossRefGoogle Scholar
  84. 84.
    Folgiero V, Miele E, Carai A, et al. IDO1 involvement in mTOR pathway: A molecular mechanism of resistance to mTOR targeting in medulloblastoma. Oncotarget 2016; 7: 52900-52911.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Vermeulen JF, van Hecke W, Spliet WG, et al. Pediatric primitive neuroectodermal tumors of the central nervous system differentially express granzyme inhibitors. PLOS ONE 2016;11:e0151465.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Gate D, Danielpour M, Rodriguez J Jr, et al. T-cell TGF-β signaling abrogation restricts medulloblastoma progression. Proc Natl Acad Sci U S A 2014;111:E3458-E3466.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Kunkle B, Yoo C, Roy D. Discovering gene-environment interactions in glioblastoma through a comprehensive data integration bioinformatics method. Neurotoxicology 2013;35:1-14.PubMedCrossRefGoogle Scholar
  88. 88.
    Parsons DW, Jones S, Zhang X, et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008;321:1807-1812.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Cancer Genome Atlas Research Network. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455:1061-1068.CrossRefGoogle Scholar
  90. 90.
    Weller M, Pfister SM, Wick W, Hegi ME, Reifenberger G, Stupp R. Molecular neuro-oncology in clinical practice: a new horizon. Lancet Oncol 2013;14: e370-e379.PubMedCrossRefGoogle Scholar
  91. 91.
    Meyera M, Reimandb J, Lan X, et al. Single cell-derived clonal analysis of human glioblastoma links functional and genomic heterogeneity. PNAS 2015;112: 851-856.CrossRefGoogle Scholar
  92. 92.
    Remke M, Ramaswamy V, Taylor MD. Medulloblastoma molecular dissection: the way toward targeted therapy. Curr Opin Oncol 2013;25:674-681.PubMedCrossRefGoogle Scholar
  93. 93.
    Jones C, Baker SJ. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nat Rev Cancer 2014;14:10.PubMedCentralGoogle Scholar
  94. 94.
    Appin CL, Brat DJ. Molecular genetics of gliomas. Cancer J 2014;20:66-72.PubMedCrossRefGoogle Scholar
  95. 95.
    Misuraca KL, Hu G, Barton KL, Chung A, Becher OJ. A Novel mouse model of diffuse intrinsic pontine glioma initiated in Pax3-expressing cells. Neoplasia 2016;18:60-70.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Smith ZD, Meissner A. DNA methylation: roles in mammalian development. Nat Rev Genet 2013;14:204-220.PubMedCrossRefGoogle Scholar
  97. 97.
    Heddleston JM, Hitomi M, Venere M, et al. Glioma stem cell maintenance: the role of the microenvironment. Curr Pharm Des 2011;17:2386-2401.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Heddleston JM, Wu Q, Rivera M, et al. Hypoxia-induced mixed-lineage leukemia 1 regulates glioma stem cell tumorigenic potential. Cell Death Differ 2012;19:428-439.PubMedCrossRefGoogle Scholar
  99. 99.
    Gallo M, Ho J, Coutinho FJ, et al. A tumorigenic MLL-homeobox network in human glioblastoma stem cells. Cancer Res 2013;73:417-427.PubMedCrossRefGoogle Scholar
  100. 100.
    Lee J, Son MJ, Woolard K, et al. Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells. Cancer Cell 2008;13:69-80.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Gangemi RM, Griffero F, Marubbi D, et al. SOX2 silencing in glioblastoma tumor-initiating cells causes stop of proliferation and loss of tumorigenicity. Stem Cells 2009;27:40-48.PubMedCrossRefGoogle Scholar
  102. 102.
    Joshi K, Banasavadi-Siddegowda Y, Mo X, et al. MELK-dependent FOXM1 phosphorylation is essential for proliferation of glioma stem cells. Stem Cells 2013;31:1051-1063.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Verginelli F, Perin A, Dali R, et al. Transcription factors FOXG1 and Groucho/TLE promote glioblastoma growth. Nat Commun 2013;4:2956.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Zbinden M, Duquet A, Lorente-Trigos A, Ngwabyt SN, Borges I, Ruiz i Altaba A. NANOG regulates glioma stem cells and is essential in vivo acting in a cross-functional network with GLI1 and p53. EMBO J 2010;29:2659-2674.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Sherry MM, Reeves A, Wu JK, Cochran BH. STAT3 is required for proliferation and maintenance of multipotency in glioblastoma stem cells. Stem Cells 2009;10:2383-2392.CrossRefGoogle Scholar
  106. 106.
    Rheinbay E, Suva ML, Gillespie SM, et al. An aberrant transcription factor network essential for Wnt signaling and stem cell maintenance in glioblastoma. Cell Rep 2013;3:1567-1579.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Fang X, Huang Z, Zhou W, et al. The zinc finger transcription factor ZFX is required for maintaining the tumorigenic potential of glioblastoma stem cells. Stem Cells 2014;32:2033-2047.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Chudnovsky Y, Kim D, Zheng S, et al. ZFHX4 interacts with the NuRD core member CHD4 and regulates the glioblastoma tumor-initiating cell state. Cell Rep 2014;6:313-324.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Liu A, Hou C, Chen H, Zong X, Zong P. Genetics and epigenetics of glioblastoma: applications and overall incidence of IDH1 mutation. Front Oncol 2016;6:16.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Suvà ML, Rheinbay E, Gillespie SM, et al. Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 2014;157:580-594.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Wu G, Broniscer A, McEachron TA, et al.; St. Jude Children’s Research Hospital-Washington University Pediatric Cancer Genome Project. Somatic histone H3 alterations in pediatric diffuse intrinsic pontine gliomas and non-brainstem glioblastomas. Nat Genet 2012;44:251-253.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Venneti S, Garimella MT, Sullivan LM, et al. Evaluation of histone 3 lysine 27 trimethylation (H3K27me3) and enhancer of Zest 2 (EZH2) in pediatric glial and glioneuronal tumors shows decreased H3K27me3 in H3F3A K27M mutant glioblastomas. Brain Pathol 2013;23:558-564.PubMedCrossRefGoogle Scholar
  113. 113.
    Funato K, Major T, Lewis PW, Allis CD, Tabar V. Use of human embryonic stem cells to model pediatric gliomas with H3.3K27M histone mutation. Science 2014;346:1529-1533.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Wu G, Diaz AK, Paugh BS, et al. St. Jude Children's Research Hospital-Washington University Pediatric Cancer Genome Project. The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nat Genet 2014;46:444-450.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Killela PJ, Reitman ZJ, Jiao Y, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self-renewal. Proc Natl Acad Sci U S A 2013;110:6021-6026.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Manoranjan B, Wang X, Hallett RM, et al. FoxG1 interacts with Bmi1 to regulate self-renewal and tumorigenicity of medulloblastoma stem cells. Stem Cells 2013;31:1266-1277.PubMedCrossRefGoogle Scholar
  117. 117.
    Takeuchi K, Ito F. Receptor tyrosine kinases and targeted cancer therapeutics. Biol Pharm Bull 2011;34:1774-1780.PubMedCrossRefGoogle Scholar
  118. 118.
    Vik-Mo EO, Nyakas M, Mikkelsen BV, et al. Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 2013;62:1499-1509.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci U S A 2004;101:14228-14233.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Costa PM, Cardoso AL, Custódia C, et al. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J Control Release 2015;207:31-39.PubMedCrossRefGoogle Scholar
  121. 121.
    Venugopal C, Hallett R, Vora P, et al. Pyrvinium targets CD133 in human glioblastoma brain tumor-initiating cells. Clin Cancer Res 2015;21:5324-5337.PubMedCrossRefGoogle Scholar
  122. 122.
    Fouladi M, Stewart CF, Olson J, et al. Phase I trial of MK-0752 in children with refractory CNS malignancies: a Pediatric Brain Tumor Consortium study. J Clin Oncol 2011;29:3529-3534.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Robinson GW, Orr BA, Wu G, et al. Vismodegib exerts targeted efficacy against recurrent sonic hedgehog-subgroup medulloblastoma: results from phase II pediatric brain tumor consortium studies PBTC-025B and PBTC032. J Clin Oncol 2015;33:2646-2654.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2017

Authors and Affiliations

  • Tamara J. Abou-Antoun
    • 1
  • James S. Hale
    • 2
  • Justin D. Lathia
    • 2
    • 3
    • 4
  • Stephen M. Dombrowski
    • 5
  1. 1.School of Pharmacy, Department of Pharmaceutical SciencesLebanese American UniversityByblosLebanon
  2. 2.Department of Cellular and Molecular Medicine, Lerner Research InstituteCleveland ClinicClevelandUSA
  3. 3.Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine at CaseWestern Reserve UniversityClevelandUSA
  4. 4.Case Comprehensive Cancer CenterClevelandUSA
  5. 5.Department of Neurological Surgery, Section of Pediatric Neurosurgical Oncology, Neurological InstituteCleveland ClinicClevelandUSA

Personalised recommendations