Neurotherapeutics

, Volume 14, Issue 1, pp 199–211

Lipopolysaccharide Binding Protein and Oxidative Stress in a Multiple Sclerosis Model

  • Begoña M. Escribano
  • Francisco J. Medina-Fernández
  • Macarena Aguilar-Luque
  • Eduardo Agüera
  • Montserrat Feijoo
  • Fe I. Garcia-Maceira
  • Rafael Lillo
  • Patricia Vieyra-Reyes
  • Ana I. Giraldo
  • Evelio Luque
  • René Drucker-Colín
  • Isaac Túnez
Original Article

Abstract

Recent findings in experimental autoimmune encephalomyelitis (EAE) suggest that altering certain bacterial populations present in the gut may lead to a proinflammatory condition, that could result in the development of multiple sclerosis (MS). Also, Reactive Oxygen Species seem to be involved in the course of MS. In this study, it has been aimed to relate all these variables starting from an analysis of the lipopolysaccharide (LPS) and LPS-binding protein (LBP) with the determination of parameters related to oxidative stress in the blood, brain and spinal cord. For this purpose, samples obtained from EAE rats and relapsing-remitting (RRMS) MS patients were used. In addition, EAE rats were treated with Natalizumab, N-acetyl-cysteine and dimethyl fumarate. Natalizumab was also employed in RRMS. The results of this study revealed an improvement in the clinical symptoms of the EAE and MS with the treatments, as well as a reduction in the oxidative stress parameters and in LBP. Correlations between the clinical variables of the disease, i.e. oxidative damage and LBP, were established. Although the conclusions of this research are indeed relevant, further investigation would be necessary to establish the intrinsic mechanisms of the MS-oxidative stress-microbiota relationship.

Keywords

Dimethyl fumarate Experimental autoimmune encephalomyelitis Lipopolysaccharide binding protein Natalizumab Oxidative stress Relapsing-remitting multiple sclerosis 

Supplementary material

13311_2016_480_Fig8_ESM.jpg (48 kb)
Supplementary Material S1

(JPG 47 kb)

13311_2016_480_MOESM1_ESM.tiff (94 kb)
High resolution image (TIFF 93 kb)
13311_2016_480_MOESM2_ESM.docx (15 kb)
Supplementary Material S2(DOCX 15 kb)
13311_2016_480_MOESM3_ESM.doc (34 kb)
Supplementary Material S3(DOC 33 kb)
13311_2016_480_Fig9_ESM.jpg (203 kb)
Supplementary Material S4

(JPG 203 kb)

13311_2016_480_MOESM4_ESM.tif (1.4 mb)
High resolution image (TIF 1445 kb)
13311_2016_480_Fig10_ESM.jpg (343 kb)
Supplementary Material S5

(JPG 343 kb)

13311_2016_480_MOESM5_ESM.tif (2.1 mb)
High resolution image (TIF 2121 kb)
13311_2016_480_MOESM6_ESM.pdf (498 kb)
ESM 6(PDF 498 kb)

References

  1. 1.
    McQualter JL, Bernard CC. Multiple sclerosis: a battle between destruction and repair. J Neurochem 2007;100:295-306.CrossRefPubMedGoogle Scholar
  2. 2.
    Perez-Nievas BG, Garcia-Bueno B, Madrigal JL, Leza JC. Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in Dark Agouti rats: mechanisms implicated. J Neuroinflammation 2010;7:60.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000;47:707-717.CrossRefPubMedGoogle Scholar
  4. 4.
    Ochoa-Reparaz J, Mielcarz DW, Begum-Haque S, Kasper LH. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann Neurol 2011;69:240-247.CrossRefPubMedGoogle Scholar
  5. 5.
    Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014;38:1-12.CrossRefPubMedGoogle Scholar
  6. 6.
    Kabat EA, Wolf A, Bezer AE. Rapid production of acute disseminated encephalomyelitis in Rhesus monkeys by injection of brain tissue with adjuvants. Science 1946;104:362-363.CrossRefGoogle Scholar
  7. 7.
    Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell 2012:148:1258-1270.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Yokote H, Miyake S, Croxford JL, Oki S, Mizusawa H, Yamamura T. NKT cell-dependent amelioration of a mouse model of multiple sclerosis by altering gut flora. Am J Pathol 2008:173:1714-1723.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Berer K, Mues M, Koutroulos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature 2011:479:538-541.CrossRefPubMedGoogle Scholar
  10. 10.
    Legroux L, Arbour N. Multiple sclerosis and T lymphocytes: an entangled story (review). J Neuroimmune Pharmacol 2015:10:528-546.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wekerle H, Berer K, Krishnamoorthy G. Remote control-triggering of brain autoimmune disease in the gut. Curr Opin Immunol 2013;25:683-689.CrossRefPubMedGoogle Scholar
  12. 12.
    Chen J, Chia N, Kalari KR, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep2016:6:28484.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jangi S, Gandhi R, Cox LM, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun 2016:7:12015.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Dasgupta S, Kasper DL. Novel tools for modulating immune responses in the host-polysaccharides from the capsule of commensal bacteria. Adv Immunol 2010;106:61-91.CrossRefPubMedGoogle Scholar
  15. 15.
    Mazmanian SK, Kasper DL. The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 2006;6:849-858.CrossRefPubMedGoogle Scholar
  16. 16.
    Riccio P. The molecular basis of nutritional intervention in multiple sclerosis: a narrative review. Complement Ther Med 2011;19:228-237.CrossRefPubMedGoogle Scholar
  17. 17.
    Cani PD, Delzenne NM. The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 2009;15:1546-1558.CrossRefPubMedGoogle Scholar
  18. 18.
    Guarner F. Hygiene, microbial diversity and immune regulation. Curr Opin Gastroenterol 2007;23:667-672.CrossRefPubMedGoogle Scholar
  19. 19.
    Veldhoen M, Hirota K, Westendorf AM, et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 2008;453:106-109.CrossRefPubMedGoogle Scholar
  20. 20.
    Kim SY, Lee JG, Cho WS, et al. Role of NADPH oxidase-2 in lipopolysaccharide-induced matrix metalloproteinase expression and cell migration. Immunol Cell Biol 2010:88:197-204.CrossRefPubMedGoogle Scholar
  21. 21.
    Bahamonde C, Conde C, Aguera E, et al. Elevated melatonin levels in natalizumab-treated female patients with relapsing-remitting multiple sclerosis: relationship to oxidative stress. Eur J Pharmacol 2014;730:26-30.CrossRefPubMedGoogle Scholar
  22. 22.
    Melamud L, Golan D, Luboshitzky R, Lavi I, Miller A. Melatonin dysregulation, sleep disturbances and fatigue in multiple sclerosis. J Neurol Sci 2012;314:37-40.CrossRefPubMedGoogle Scholar
  23. 23.
    Miller E, Walczak A, Saluk J, Ponczek MB, Majsterek I. Oxidative modification of patient's plasma proteins and its role in pathogenesis of multiple sclerosis. Clin Biochem 2012;45:26-30.CrossRefPubMedGoogle Scholar
  24. 24.
    Tasset I, Aguera E, Gascon F, et al. Natalizumab and reduction of carbonylated proteins in patients with multiple sclerosis. Rev Neurol 2012;54:449-452.PubMedGoogle Scholar
  25. 25.
    Tasset I, Aguera E, Sanchez-Lopez F, et al. Peripheral oxidative stress in relapsing-remitting multiple sclerosis. Clin Biochem 2012;45:440-444.CrossRefPubMedGoogle Scholar
  26. 26.
    Neish AS. Redox signaling mediated by the gut microbiota. Free Radic Res 2013;47:950-957.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Miljkovic D, Spasojevic I. Multiple sclerosis: molecular mechanisms and therapeutic opportunities. Antioxidant Redox Signal 2013;19:2286-2334.CrossRefGoogle Scholar
  28. 28.
    Stosic-Grujicic S, Ramic Z, Bumbasirevic V, Harhaji L, Mostarica-Stojkovic M. Induction of experimental autoimmune encephalomyelitis in Dark Agouti rats without adjuvant. Clin Exp Immunol 2004;136:49-55.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Deloire MS, Touil T, Brochet B, Dousset V, Caille JM, Petry KG. Macrophage brain infiltration in experimental autoimmune encephalomyelitis is not completely compromised by suppressed T-cell invasion: in vivo magnetic resonance imaging illustration in effective anti-VLA-4 antibody treatment. Mult Scler 2004;10:540-548.CrossRefPubMedGoogle Scholar
  30. 30.
    Papadopoulos D, Rundle J, Patel R, et al. FTY720 ameliorates MOG-induced experimental autoimmune encephalomyelitis by suppressing both cellular and humoral immune responses. J Neurosci Res 2010;88:346-359.CrossRefPubMedGoogle Scholar
  31. 31.
    Kamboj SS, Sandhir R. Protective effect of N-acetylcysteine supplementation on mitochondrial oxidative stress and mitochondrial enzymes in cerebral cortex of streptozotocin-treated diabetic rats. Mitochondrion 2011;11:214-222.CrossRefPubMedGoogle Scholar
  32. 32.
    Milenkovic M, Arsenovic-Ranin N, Vucicevic D, Bufan B, Jancic I, Stojic-Vukanic Z. Beneficial effects of dimethyl fumarate on experimental autoimmune myocarditis. Arch Med Res 2008;39:639-646.CrossRefPubMedGoogle Scholar
  33. 33.
    Polman CH, Wolinsky JS, Reingold SC. Multiple sclerosis diagnostic criteria: three years later. Mult Scler 2005;11:5-12.CrossRefPubMedGoogle Scholar
  34. 34.
    Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983;33:1444-1452.CrossRefPubMedGoogle Scholar
  35. 35.
    Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 1990;186:464-478.CrossRefPubMedGoogle Scholar
  36. 36.
    Trooster WJ, Teelken AW, Gerrits PO, et al. The effect of gonadectomy on the clinical course of chronic experimental allergic encephalomyelitis. Clin Neurol Neurosurg 1996;98:222-226.CrossRefPubMedGoogle Scholar
  37. 37.
    Nouri M, Bredberg A, Westrom B, Lavasani S. Intestinal barrier dysfunction develops at the onset of experimental autoimmune encephalomyelitis, and can be induced by adoptive transfer of auto-reactive T cells. PLOS ONE 2014;9:e106335.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Calabrese V, Bella R, Testa D, et al. Increased cerebrospinal fluid and plasma levels of ultraweak chemiluminescence are associated with changes in the thiol pool and lipid-soluble fluorescence in multiple sclerosis: the pathogenic role of oxidative stress. Drugs Exp Clin Res 1998;24:125-131.PubMedGoogle Scholar
  39. 39.
    Ortiz GG, Macias-Islas MA, Pacheco-Moises FP, et al. Oxidative stress is increased in serum from Mexican patients with relapsing-remitting multiple sclerosis. Disease Markers 2009;26:35-39.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ferreira B, Mendes F, Osorio N, Caseiro A, Gabriel A, Valado A. Glutathione in multiple sclerosis. Br J Biomed Sci 2013;70:75-79.CrossRefPubMedGoogle Scholar
  41. 41.
    Wang T, Qin L, Liu B, et al. Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 2004;88:939-947.CrossRefPubMedGoogle Scholar
  42. 42.
    Bannerman DD, Paape MJ, Hare WR, Sohn EJ. Increased levels of LPS-binding protein in bovine blood and milk following bacterial lipopolysaccharide challenge. J Dairy Sci 2003;86:3128-3137.CrossRefPubMedGoogle Scholar
  43. 43.
    Galea E, Reis DJ, Fox ES, Xu H, Feinstein DL. CD14 mediate endotoxin induction of nitric oxide synthase in cultured brain glial cells. J Neuroimmunol 1996;64:19-28.CrossRefPubMedGoogle Scholar
  44. 44.
    Mancuso C, Scapagini G, Curro D, et al. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci 2007;12:1107-1123.CrossRefPubMedGoogle Scholar
  45. 45.
    Usatyuk PV, Parinandi NL, Natarajan V. Redox regulation of 4-hydroxy-2-nonenal-mediated endothelial barrier dysfunction by focal adhesion, adherens, and tight junction proteins. J Biol Chem 2006;281:35554-35566.CrossRefPubMedGoogle Scholar
  46. 46.
    Breithaupt TB, Vazquez A, Baez I, Eylar EH. The suppression of T cell function and NF(kappa)B expression by serine protease inhibitors is blocked by N-acetylcysteine. Cell Immunol 1996;173:124-130.CrossRefPubMedGoogle Scholar
  47. 47.
    Heussler VT, Fernandez PC, Machado J, Jr, Botteron C, Dobbelaere DA. N-acetylcysteine blocks apoptosis induced by N-alpha-tosyl-L-phenylalanine chloromethyl ketone in transformed T-cells. Cell Death Differ 1999;6:342-350.CrossRefPubMedGoogle Scholar
  48. 48.
    Ljubisavljevic S, Stojanovic I, Pavlovic D, Sokolovic D, Stevanovic I. Aminoguanidine and N-acetyl-cysteine supress oxidative and nitrosative stress in EAE rat brains. Redox Rep 2011;16:166-172.CrossRefPubMedGoogle Scholar
  49. 49.
    Kappos L, Gold R, Miller DH, et al. Efficacy and safety of oral fumarate in patients with relapsing-remitting multiple sclerosis: a multicentre, randomised, double-blind, placebo-controlled phase IIb study. Lancet 2008;372:1463-1472.CrossRefPubMedGoogle Scholar
  50. 50.
    Albrecht P, Bouchachia I, Goebels N, et al. Effects of dimethyl fumarate on neuroprotection and immunomodulation. J Neuroinflammation 2012;9:163.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lin SX, Lisi L, Dello Russo C, et al. The anti-inflammatory effects of dimethyl fumarate in astrocytes involve glutathione and haem oxygenase-1. ASN Neuro 2011;3.Google Scholar
  52. 52.
    Schmidt MM, Dringen R. Fumaric acid diesters deprive cultured primary astrocytes rapidly of glutathione. Neurochem Int 2010;57:460-467.CrossRefPubMedGoogle Scholar
  53. 53.
    Sheremata W, Brown AD, Rammohan KW. Dimethyl fumarate for treating relapsing multiple sclerosis. Exp Opin Drug Saf 2015;14:161-170.CrossRefGoogle Scholar
  54. 54.
    Moharregh-Khiabani D, Blank A, Skripuletz T, et al. Effects of fumaric acids on cuprizone induced central nervous system de- and remyelination in the mouse. PLOS ONE 2010;5:e11769.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Treumer F, Zhu K, Glaser R, Mrowietz U. Dimethylfumarate is a potent inducer of apoptosis in human T cells. J Invest Dermatol 2003;121:1383-1388.CrossRefPubMedGoogle Scholar
  56. 56.
    Radue EW, Stuart WH, Calabresi PA, et al. Natalizumab plus interferon beta-1a reduces lesion formation in relapsing multiple sclerosis. J Neurol Sci 2010;292:28-35.CrossRefPubMedGoogle Scholar
  57. 57.
    Gunnarsson M, Malmestrom C, Axelsson M, et al. Axonal damage in relapsing multiple sclerosis is markedly reduced by natalizumab. Ann Neurol 2011;69:83-89.CrossRefPubMedGoogle Scholar
  58. 58.
    Bielekova B, Becker BL. Monoclonal antibodies in MS: mechanisms of action. Neurology 2010;74(Suppl. 1):S31-S40.CrossRefPubMedGoogle Scholar
  59. 59.
    Trebst C, Voss E, Skripuletz T, Stangel M. Specific immune intervention with monoclonal antibodies for the treatment of multiple sclerosis. Curr Med Chem 2010;17:640-650.CrossRefPubMedGoogle Scholar
  60. 60.
    Signoriello E, Lanzillo R, Brescia Morra V, et al. Lymphocytosis as a response biomarker of natalizumab therapeutic efficacy in multiple sclerosis. Mult Scler 2016:22:921-925.CrossRefPubMedGoogle Scholar
  61. 61.
    Tasset I, Bahamonde C, Aguera E, et al. Effect of natalizumab on oxidative damage biomarkers in relapsing-remitting multiple sclerosis. Pharmacol Rep 2013;65:624-631.CrossRefPubMedGoogle Scholar
  62. 62.
    Escribano BM, Túnez I. Gut microbiota and central nervous system condemned to understand each other: their role in multiple sclerosis. MOJ Cell Sci Rep 2014;1:00005.Google Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2016

Authors and Affiliations

  • Begoña M. Escribano
    • 1
    • 2
  • Francisco J. Medina-Fernández
    • 2
    • 3
  • Macarena Aguilar-Luque
    • 2
    • 3
  • Eduardo Agüera
    • 2
    • 4
  • Montserrat Feijoo
    • 2
    • 3
  • Fe I. Garcia-Maceira
    • 5
  • Rafael Lillo
    • 2
    • 6
  • Patricia Vieyra-Reyes
    • 7
  • Ana I. Giraldo
    • 2
    • 3
  • Evelio Luque
    • 2
    • 8
  • René Drucker-Colín
    • 9
  • Isaac Túnez
    • 2
    • 3
    • 10
  1. 1.Departamento de Biologia Celular, Fisiologia e Inmunologia, Facultad de VeterinariaUniversidad de CordobaCordobaSpain
  2. 2.Instituto Maimonides de Investigacion Biomedica de Cordoba (IMIBIC)CordobaSpain
  3. 3.Departamento de Bioquimica y Biologia Molecular, Facultad de MedicinaUniversidad de CordobaCordobaSpain
  4. 4.Servicio de NeurologíaHospital Universitario Reina Sofía de CordobaCordobaSpain
  5. 5.Canvax Biotech SLCordobaSpain
  6. 6.Departamento de Ciencias Sociosanitarias y Radiologia y Medicina Fisica, Seccion de Psiquiatria, Facultad de MedicinaUniversidad de CordobaCordobaSpain
  7. 7.Departamento Neurofisiología de la Conducta, Facultad de MedicinaUniversidad Autonoma del Estado de MéxicoTolucaMexico
  8. 8.Departamento de Ciencias Morfologicas, Seccion Histologia, Facultad de MedicinaUniversidad de CordobaCordobaSpain
  9. 9.Departamento de Neuropatologia Molecular, Instituto de Fisiologia CelularUniversidad Nacional Autonoma de Mexico (UNAM)Ciudad de MexicoMexico
  10. 10.Red Tematica de Investigacion Cooperativa en Envejecimiento y Fragilidad (RETICEF)CordobaSpain

Personalised recommendations