Skip to main content
Log in

Intracranial Applications of Magnetic Resonance-guided Focused Ultrasound

  • Review
  • Published:
Neurotherapeutics

Abstract

The ability to focus acoustic energy through the intact skull on to targets millimeters in size represents an important milestone in the development of neurotherapeutics. Magnetic resonance-guided focused ultrasound (MRgFUS) is a novel, noninvasive method, which—under real-time imaging and thermographic guidance—can be used to generate focal intracranial thermal ablative lesions and disrupt the blood–brain barrier. An established treatment for bone metastases, uterine fibroids, and breast lesions, MRgFUS has now been proposed as an alternative to open neurosurgical procedures for a wide variety of indications. Studies investigating intracranial MRgFUS range from small animal preclinical experiments to large, late-phase randomized trials that span the clinical spectrum from movement disorders, to vascular, oncologic, and psychiatric applications. We review the principles of MRgFUS and its use for brain-based disorders, and outline future directions for this promising technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lynn JG, Zwemer RL, Chick AJ. The biological application of focused ultrasonic waves. Science. 1942;96:119-120.

    Article  CAS  PubMed  Google Scholar 

  2. Fry FJ, Ades HW, Fry WJ. Production of reversible changes in the central nervous system by ultrasound. Science. 1958;127:83-84.

    Article  CAS  PubMed  Google Scholar 

  3. Fry WJ. Use of intense ultrasound in neurological research. Am J Phys Med. 1958;37:143-147.

    CAS  PubMed  Google Scholar 

  4. Fry WJ, Fry FJ. Fundamental neurological research and human neurosurgery using intense ultrasound. IRE Trans Med Electron. 1960;ME-7:166-181.

    Article  CAS  PubMed  Google Scholar 

  5. Ram Z, Cohen ZR, Harnof S, et al. Magnetic resonance imaging-guided, high-intensity focused ultrasound for brain tumor therapy. Neurosurgery. 2006;59:949-955.

    PubMed  Google Scholar 

  6. Cline HE, Hynynen K, Watkins RD, et al. Focused US system for MR imaging-guided tumor ablation. Radiology. 1995;194:731-737.

    Article  CAS  PubMed  Google Scholar 

  7. Cline HE, Schenck JF, Watkins RD, Hynynen K, Jolesz FA. Magnetic resonance-guided thermal surgery. Magn Reson Med. 1993;30:98-106.

    Article  CAS  PubMed  Google Scholar 

  8. Cline HE, Schenck JF, Hynynen K, Watkins RD, Souza SP, Jolesz FA. MR-guided focused ultrasound surgery. J Comput Assist Tomogr. 1992;16:956-965.

    Article  CAS  PubMed  Google Scholar 

  9. Hynynen K, Damianou C, Darkazanli A, Unger E, Schenck JF. The feasibility of using MRI to monitor and guide noninvasive ultrasound surgery. Ultrasound Med Biol. 1993;19:91-92.

    Article  CAS  PubMed  Google Scholar 

  10. Hynynen K, Darkazanli A, Unger E, Schenck JF. MRI-guided noninvasive ultrasound surgery. Med Phys. 1993;20:107-115.

    Article  CAS  PubMed  Google Scholar 

  11. Clement GT, Hynynen K. A non-invasive method for focusing ultrasound through the human skull. Phys Med Biol. 2002;47:1219-1236.

    Article  CAS  PubMed  Google Scholar 

  12. Hynynen K, McDannold N, Clement G, et al. Pre-clinical testing of a phased array ultrasound system for MRI-guided noninvasive surgery of the brain—a primate study. Eur J Radiol. 2006;59:149-156.

    Article  PubMed  Google Scholar 

  13. McDannold N, Moss M, Killiany R, et al. MRI-guided focused ultrasound surgery in the brain: tests in a primate model. Magn Reson Med. 2003;49:1188-1191.

    Article  PubMed  Google Scholar 

  14. McDannold NJ, Jolesz FA. Magnetic resonance image-guided thermal ablations. Top Magn Reson Imaging. 2000;11:191-202.

    Article  CAS  PubMed  Google Scholar 

  15. Hynynen K, McDannold N, Mulkern RV, Jolesz FA. Temperature monitoring in fat with MRI. Magn Reson Med. 2000;43:901-904.

    Article  CAS  PubMed  Google Scholar 

  16. Ishihara Y, Calderon A, Watanabe H, et al. A precise and fast temperature mapping using water proton chemical shift. Magn Reson Med. 1995;34:814-823.

    Article  CAS  PubMed  Google Scholar 

  17. Kuroda K, Chung AH, Hynynen K, Jolesz FA. Calibration of water proton chemical shift with temperature for noninvasive temperature imaging during focused ultrasound surgery. J Magn Reson Imaging. 1998;8:175-181.

    Article  CAS  PubMed  Google Scholar 

  18. Hynynen K, Vykhodtseva NI, Chung AH, Sorrentino V, Colucci V, Jolesz FA. Thermal effects of focused ultrasound on the brain: determination with MR imaging. Radiology. 1997;204:247-253.

    Article  CAS  PubMed  Google Scholar 

  19. Vykhodtseva NI, Hynynen K, Damianou C. Pulse duration and peak intensity during focused ultrasound surgery: theoretical and experimental effects in rabbit brain in vivo. Ultrasound Med Biol. 1994;20:987-1000.

    Article  CAS  PubMed  Google Scholar 

  20. Hynynen K, Clement GT, McDannold N, et al. 500-element ultrasound phased array system for noninvasive focal surgery of the brain: a preliminary rabbit study with ex vivo human skulls. Magn Reson Med. 2004;52:100-107.

    Article  PubMed  Google Scholar 

  21. Hynynen K, McDannold N, Vykhodtseva N, Jolesz FA. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220:640-646.

    Article  CAS  PubMed  Google Scholar 

  22. Jordao JF, Ayala-Grosso CA, Markham K, et al. Antibodies targeted to the brain with image-guided focused ultrasound reduces amyloid-beta plaque load in the TgCRND8 mouse model of Alzheimer's disease. PLoS One. 2010;5:e10549.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Elias WJ, Khaled M, Hilliard JD, et al. A magnetic resonance imaging, histological, and dose modeling comparison of focused ultrasound, radiofrequency, and Gamma Knife radiosurgery lesions in swine thalamus. J Neurosurg. 2013;119:307-317.

    Article  PubMed  Google Scholar 

  24. Mougenot C, Quesson B, de Senneville BD, et al. Three-dimensional spatial and temporal temperature control with MR thermometry-guided focused ultrasound (MRgHIFU). Magn Reson Med. 2009;61:603-614.

    Article  PubMed  Google Scholar 

  25. Rieke V, Butts PK. MR thermometry. J Magn Reson Imaging. 2008;27:376-390.

    Article  PubMed Central  PubMed  Google Scholar 

  26. McDannold N, Vykhodtseva N, Jolesz FA, Hynynen K. MRI investigation of the threshold for thermally induced blood-brain barrier disruption and brain tissue damage in the rabbit brain. Magn Reson Med. 2004;51:913-923.

    Article  PubMed  Google Scholar 

  27. Vykhodtseva N, Sorrentino V, Jolesz FA, Bronson RT, Hynynen K. MRI detection of the thermal effects of focused ultrasound on the brain. Ultrasound Med Biol. 2000;26:871-880.

    Article  CAS  PubMed  Google Scholar 

  28. Vykhodtseva N, McDannold N, Hynynen K. Progress and problems in the application of focused ultrasound for blood-brain barrier disruption. Ultrasonics. 2008;48:279-296.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hynynen K, Clement G. Clinical applications of focused ultrasound-the brain. Int J Hyperth. 2007;23:193-202.

    Article  CAS  Google Scholar 

  30. Kimmel E. Cavitation bioeffects. Crit Rev Biomed Eng. 2006;34:105-161.

    Article  PubMed  Google Scholar 

  31. Hynynen K, Chung AH, Colucci V, Jolesz FA. Potential adverse effects of high-intensity focused ultrasound exposure on blood vessels in vivo. Ultrasound Med Biol. 1996;22:193-201.

    Article  CAS  PubMed  Google Scholar 

  32. Xu Z, Ludomirsky A, Eun LY, et al. Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51:726-736.

    Article  PubMed Central  PubMed  Google Scholar 

  33. Simon JC, Sapozhnikov OA, Khokhlova VA, Wang YN, Crum LA, Bailey MR. Ultrasonic atomization of tissue and its role in tissue fractionation by high intensity focused ultrasound. Phys Med Biol. 2012;57:8061-8078.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Smith NB, Hynynen K. The feasibility of using focused ultrasound for transmyocardial revascularization. Ultrasound Med Biol. 1998;24:1045-1054.

    Article  CAS  PubMed  Google Scholar 

  35. Martin E, Jeanmonod D, Morel A, Zadicario E, Werner B. High-intensity focused ultrasound for noninvasive functional neurosurgery. Ann Neurol. 2009;66:858-861.

    Article  PubMed  Google Scholar 

  36. Louis ED, Ottman R, Hauser WA. How common is the most common adult movement disorder? estimates of the prevalence of essential tremor throughout the world. Mov Disord. 1998;13:5-10.

    Article  CAS  PubMed  Google Scholar 

  37. Hubble JP, Busenbark KL, Wilkinson S, Penn RD, Lyons K, Koller WC. Deep brain stimulation for essential tremor. Neurology. 1996;46:1150-1153.

    Article  CAS  PubMed  Google Scholar 

  38. Koller W, Pahwa R, Busenbark K, et al. High-frequency unilateral thalamic stimulation in the treatment of essential and parkinsonian tremor. Ann Neurol. 1997;42:292-299.

    Article  CAS  PubMed  Google Scholar 

  39. Lipsman N, Schwartz ML, Huang Y, et al. MR-guided focused ultrasound thalamotomy for essential tremor: a proof-of-concept study. Lancet Neurol. 2013;12:462-468.

    Article  PubMed  Google Scholar 

  40. Lyons KE, Pahwa R. Deep brain stimulation and tremor. Neurotherapeutics. 2008;5:331-338.

    Article  PubMed  Google Scholar 

  41. Elias WJ, Shah BB. Tremor. JAMA. 2014;311:948-954.

    Article  CAS  PubMed  Google Scholar 

  42. Koller WC, Vetere-Overfield B. Acute and chronic effects of propranolol and primidone in essential tremor. Neurology. 1989;39:1587-1588.

    Article  CAS  PubMed  Google Scholar 

  43. Hua SE, Lenz FA, Zirh TA, Reich SG, Dougherty PM. Thalamic neuronal activity correlated with essential tremor. J Neurol Neurosurg Psychiatry. 1998;64:273-276.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Benabid AL, Pollak P, Seigneuret E, Hoffmann D, Gay E, Perret J. Chronic VIM thalamic stimulation in Parkinson's disease, essential tremor and extra-pyramidal dyskinesias. Acta Neurochir Suppl (Wien). 1993;58:39-44.

    CAS  Google Scholar 

  45. Kumar K, Kelly M, Toth C. Deep brain stimulation of the ventral intermediate nucleus of the thalamus for control of tremors in Parkinson's disease and essential tremor. Stereotact Funct Neurosurg. 1999;72:47-61.

    Article  CAS  PubMed  Google Scholar 

  46. Elias WJ, Huss D, Voss T, et al. A pilot study of focused ultrasound thalamotomy for essential tremor. N Engl J Med. 2013;369:640-648.

    Article  CAS  PubMed  Google Scholar 

  47. Chao Y, Gang L, Na ZL, Ming WY, Zhong WS, Mian WS. Surgical management of Parkinson's disease: update and review. Interv Neuroradiol. 2007;13:359-368.

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Matsumoto K, Asano T, Baba T, Miyamoto T, Ohmoto T. Long-term follow-up results of bilateral thalamotomy for parkinsonism. Appl Neurophysiol. 1976;39:257-260.

    PubMed  Google Scholar 

  49. Tasker RR. Deep brain stimulation is preferable to thalamotomy for tremor suppression. Surg Neurol. 1998;49:145-153.

    Article  CAS  PubMed  Google Scholar 

  50. Zirh A, Reich SG, Dougherty PM, Lenz FA. Stereotactic thalamotomy in the treatment of essential tremor of the upper extremity: reassessment including a blinded measure of outcome. J Neurol Neurosurg Psychiatry. 1999;66:772-775.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Cetas JS, Saedi T, Burchiel KJ. Destructive procedures for the treatment of nonmalignant pain: a structured literature review. J Neurosurg. 2008;109:389-404.

    Article  PubMed  Google Scholar 

  52. Jeanmonod D, Werner B, Morel A, et al. Transcranial magnetic resonance imaging-guided focused ultrasound: noninvasive central lateral thalamotomy for chronic neuropathic pain. Neurosurg Focus. 2012;32:E1.

    Article  PubMed  Google Scholar 

  53. Manzoni GC, Torelli P. Epidemiology of typical and atypical craniofacial neuralgias. Neurol Sci. 2005;26(Suppl. 2):s65-s67.

    Article  PubMed  Google Scholar 

  54. Haines SJ, Jannetta PJ, Zorub DS. Microvascular relations of the trigeminal nerve. An anatomical study with clinical correlation. J Neurosurg. 1980;52:381-386.

    Article  CAS  PubMed  Google Scholar 

  55. Alahmadi H, Zadeh G, Laperriere N, et al. Trigeminal nerve integrated dose and pain outcome after gamma knife radiosurgery for trigeminal neuralgia. J Radiosurg SBRT. 2012;1:295-301.

    Google Scholar 

  56. Monteith SJ, Medel R, Kassell NF, et al. Transcranial magnetic resonance-guided focused ultrasound surgery for trigeminal neuralgia: a cadaveric and laboratory feasibility study. J Neurosurg. 2013;118:319-328.

    Article  PubMed  Google Scholar 

  57. McDannold N, Clement GT, Black P, Jolesz F, Hynynen K. Transcranial magnetic resonance imaging- guided focused ultrasound surgery of brain tumors: initial findings in 3 patients. Neurosurgery. 2010;66:323-332.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Colen RR, Jolesz F, eds. MR-guided focused ultrasound of the brain. Berlin: Springer-Verlag; 2012.

    Google Scholar 

  59. Kinoshita M. Targeted drug delivery to the brain using focused ultrasound. Top Magn Reson Imaging. 2006;17:209-215.

    Article  PubMed  Google Scholar 

  60. Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Noninvasive localized delivery of Herceptin to the mouse brain by MRI-guided focused ultrasound-induced blood-brain barrier disruption. Proc Natl Acad Sci U S A. 2006;103:11719-11723.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Burgess A, Huang Y, Waspe AC, Ganguly M, Goertz DE, Hynynen K. High-intensity focused ultrasound (HIFU) for dissolution of clots in a rabbit model of embolic stroke. PLoS One. 2012;7:e42311.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Alkins R, Burgess A, Ganguly M, et al. Focused ultrasound delivers targeted immune cells to metastatic brain tumors. Cancer Res. 2013;73:1892-1899.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Cho EE, Drazic J, Ganguly M, Stefanovic B, Hynynen K. Two-photon fluorescence microscopy study of cerebrovascular dynamics in ultrasound-induced blood-brain barrier opening. J Cereb Blood Flow Metab. 2011;31:1852-1862.

    Article  PubMed Central  PubMed  Google Scholar 

  64. Samiotaki G, Konofagou EE. Dependence of the reversibility of focused- ultrasound-induced blood-brain barrier opening on pressure and pulse length in vivo. IEEE Trans Ultrason Ferroelectr Freq Control. 2013;60:2257-2265.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Jolesz F, McDannold N, Clement G, Kinoshita M, Fennessy F, Tempany C, eds. MRI-guided FUS and its clinical applications. Berlin: Springer Science + Business Media; 2008.

    Google Scholar 

  66. Wei KC, Chu PC, Wang HY, et al. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PLoS One. 2013;8:e58995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol. 2012;38:1716-1725.

    Article  PubMed Central  PubMed  Google Scholar 

  68. de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neurol. 2006;5:525-535.

    Article  PubMed  Google Scholar 

  69. Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. 2013;77:406-424.

    Article  CAS  PubMed  Google Scholar 

  70. Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Targeted delivery of antibodies through the blood-brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun. 2006;340:1085-1090.

    Article  CAS  PubMed  Google Scholar 

  71. Banks WA, Terrell B, Farr SA, Robinson SM, Nonaka N, Morley JE. Passage of amyloid beta protein antibody across the blood-brain barrier in a mouse model of Alzheimer's disease. Peptides. 2002;23:2223-2226.

    Article  CAS  PubMed  Google Scholar 

  72. Burgess A, Ayala-Grosso CA, Ganguly M, Jordao JF, Aubert I, Hynynen K. Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS One. 2011;6:e27877.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Thevenot E, Jordao JF, O'Reilly MA, et al. Targeted delivery of self-complementary adeno-associated virus serotype 9 to the brain, using magnetic resonance imaging-guided focused ultrasound. Hum Gene Ther. 2012;23:1144-1155.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Mendelow AD, Gregson BA, Rowan EN, Murray GD, Gholkar A, Mitchell PM. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial lobar intracerebral haematomas (STICH II): a randomised trial. Lancet. 2013;382:397-408.

    Article  PubMed Central  PubMed  Google Scholar 

  75. Monteith SJ, Kassell NF, Goren O, Harnof S. Transcranial MR-guided focused ultrasound sonothrombolysis in the treatment of intracerebral hemorrhage. Neurosurg Focus. 2013;34:E14.

    Article  PubMed  Google Scholar 

  76. Holscher T, Ahadi G, Fisher D, Zadicario E, Voie A. MR-guided focused ultrasound for acute stroke: a rabbit model. Stroke. 2013;44(6 Suppl. 1):S58-S60.

    Article  PubMed  Google Scholar 

  77. Wright C, Hynynen K, Goertz D. In vitro and in vivo high-intensity focused ultrasound thrombolysis. Investig Radiol. 2012;47:217-225.

    Article  Google Scholar 

  78. Freeman W, Watts JW. Prefrontal lobotomy: The surgical relief of mental pain. Bull NY Acad Med. 1942;18:794-812.

    CAS  Google Scholar 

  79. Freeman W, Watts JW. Prefrontal lobotomy; survey of 331 cases. Am J Med Sci. 1946;211:1-8.

    Article  CAS  PubMed  Google Scholar 

  80. Freeman W, Watts JW. Psychosurgery. Prog Neurol Psychiatry. 1946;1:649-661.

    CAS  PubMed  Google Scholar 

  81. Lipsman N, Sankar T, Downar J, Kennedy SH, Lozano AM, Giacobbe P. Neuromodulation for treatment-refractory major depressive disorder. CMAJ. 2014;186:33-39.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Dougherty DD, Baer L, Cosgrove GR, et al. Prospective long-term follow-up of 44 patients who received cingulotomy for treatment-refractory obsessive-compulsive disorder. Am J Psychiatry. 2002;159:269-275.

    Article  PubMed  Google Scholar 

  83. Dougherty DD, Weiss AP, Cosgrove GR, et al. Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J Neurosurg. 2003;99:1010-1017.

    Article  PubMed  Google Scholar 

  84. Hurwitz TA, Honey CR, Allen J, et al. Bilateral anterior capsulotomy for intractable depression. J Neuropsychiatry Clin Neurosci. 2012;24:176-182.

    Article  PubMed  Google Scholar 

  85. Kondziolka D, Ong JG, Lee JY, Moore RY, Flickinger JC, Lunsford LD. Gamma knife thalamotomy for essential tremor. J Neurosurg. 2008;108:111-117.

    Article  PubMed  Google Scholar 

  86. Noren G. Long-term complications following gamma knife radiosurgery of vestibular schwannomas. Stereotact Funct Neurosurg. 1998;70(Suppl. 1):65-73.

    Article  PubMed  Google Scholar 

  87. Patel SR, Sheth SA, Mian MK, et al. Single-neuron responses in the human nucleus accumbens during a financial decision-making task. J Neurosci. 2012;32:7311-7315.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Lim SY, Hodaie M, Fallis M, Poon YY, Mazzella F, Moro E. Gamma knife thalamotomy for disabling tremor: a blinded evaluation. Arch Neurol. 2010;67:584-588.

    PubMed  Google Scholar 

  89. Legon W, Sato TF, Opitz A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17:322-329.

    Article  CAS  PubMed  Google Scholar 

  90. Scarcelli T, Jordao JF, O'Reilly MA, Ellens N, Hynynen K, Aubert I. Stimulation of hippocampal neurogenesis by transcranial focused ultrasound and microbubbles in adult mice. Brain Stimul. 2014;7:304-307.

    Article  PubMed  Google Scholar 

  91. Jordao JF, Thevenot E, Markham-Coultes K, et al. Amyloid-beta plaque reduction, endogenous antibody delivery and glial activation by brain-targeted, transcranial focused ultrasound. Exp Neurol. 2013;248:16-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Alkins R, Huang Y, Pajek D, Hynynen K. Cavitation-based third ventriculostomy using MRI-guided focused ultrasound. J Neurosurg. 2013;119:1520-1529.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Eyal Zadicario and Lynn Golumbic of InSightec for the images in shown in Figs 1 and 2. NL has nothing to declare. KH is an inventor of intellectual property related to trans-skull focused ultrasound treatments owned by Brigham and Women’s Hospital (Boston, MA, USA) and licensed to InSightec. AML, TGM and MLS are consultants to the Focused Ultrasound Foundation.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Lipsman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 1224 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipsman, N., Mainprize, T.G., Schwartz, M.L. et al. Intracranial Applications of Magnetic Resonance-guided Focused Ultrasound. Neurotherapeutics 11, 593–605 (2014). https://doi.org/10.1007/s13311-014-0281-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13311-014-0281-2

Keywords

Navigation