, Volume 11, Issue 2, pp 324–333 | Cite as

Genetic Biomarkers in Epilepsy



The identification of valid biomarkers for outcome prediction of diseases and improvement of drug response, as well as avoidance of side effects is an emerging field of interest in medicine. The concept of individualized therapy is becoming increasingly important in the treatment of patients with epilepsy, as predictive markers for disease prognosis and treatment outcome are still limited. Currently, the clinical decision process for selection of an antiepileptic drug (AED) is predominately based on the patient’s epileptic syndrome and side effect profiles of the AEDs, but not on effectiveness data. Although standard dosages of AEDs are used, supplemented, in part, by therapeutic monitoring, the response of an individual patient to a specific AED is generally unpredictable, and the standard care of patients in antiepileptic treatment is more or less based on trial and error. Therefore, there is an urgent need for valid predictive biomarkers to guide patient-tailored individualized treatment strategies in epilepsy, a research area that is still in its infancy. This review focuses on genomic factors as part of an individual concept for AED therapy summarizing examples that influence the prognosis of the disease and the response to AEDs, including side effects.


HLA Sodium channels Side effect Prognosis Pharmaco-resistance Pharmaco-response 

Supplementary material

13311_2014_262_MOESM1_ESM.pdf (511 kb)
ESM 1(PDF 511 kb)


  1. 1.
    Larson H, Chan E, Sudarsanam S, Johnson DE. Biomarkers. Methods Mol Biol 2013;930:253-273.PubMedCrossRefGoogle Scholar
  2. 2.
    Engel J Jr, Pitkänen A, Loeb JA, et al. Epilepsy biomarkers. Epilepsia 2013;54:61-69.PubMedCrossRefGoogle Scholar
  3. 3.
    Weber YG, Lerche H. Genetic mechanism in epilepsy. Develop Med Child Neurol 2008;50:648-654.PubMedCrossRefGoogle Scholar
  4. 4.
    Biervert C, Schroeder BC, Kubisch C, et al. A potassium channel mutation in neonatal human epilepsy. Science 1998;279:403-406.PubMedCrossRefGoogle Scholar
  5. 5.
    Charlier C, Singh NA, Ryan SG, et al. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 1998;18:53-55.PubMedCrossRefGoogle Scholar
  6. 6.
    Singh NA, Charlier C, Stauffer D, et al. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 1998;18:25-29.PubMedCrossRefGoogle Scholar
  7. 7.
    Maljevic S, Wuttke TV, Seebohm G, Lerche H. KV7 channelopathies. Pflugers Arch 2010;460:277-288.PubMedCrossRefGoogle Scholar
  8. 8.
    Delmas P, Brown DA. Pathways modulating neural KCNQ/M (Kv7) potassium channels. Nat Rev Neurosci 2005;6:850-862.PubMedCrossRefGoogle Scholar
  9. 9.
    Borgatti R, Zucca C, Cavallini A, et al. A novel mutation in KCNQ2 associated with BFNC, drug resistant epilepsy, and mental retardation. Neurol 2004;63:57-65.CrossRefGoogle Scholar
  10. 10.
    Steinlein OK, Conrad C, Weidner B. Benign familial neonatal convulsions: always benign? Epilepsy Res 2007;73:245-249.PubMedCrossRefGoogle Scholar
  11. 11.
    Weckhuysen S, Mandelstam S, Suls A, et al. KCNQ2 encephalopathy: emerging phenotype of a neonatal epileptic encephalopathy. Ann Neurol 2012;7:15-25.CrossRefGoogle Scholar
  12. 12.
    Orhan G, Bock M, Schepers D, et al. Dominant-negative effects of KCNQ2 mutations are associated with epileptic encephalopathy. Ann Neurol 2013 Dec 7 [Epub ahead of print].Google Scholar
  13. 13.
    Heron SE, Crossland KM, Andermann E, et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 2002;360:851-852.PubMedCrossRefGoogle Scholar
  14. 14.
    Scalmani P, Rusconi R, Armatura E, et al. Effects in neocortical neurons of mutations of the Na(v)1.2 Na + channel causing benign familial neonatal-infantile seizures. J Neurosci 2006;26:10100-10109.PubMedCrossRefGoogle Scholar
  15. 15.
    Liao Y, Deprez L, Maljevic S, et al. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 2010;133:1043-1014.CrossRefGoogle Scholar
  16. 16.
    Liao Y, Anttonen AK, Liukkonen E, et al. SCN2A mutation associated with neonatal epilepsy, late-onset episodic ataxia, myoclonus, and pain. Neurology 2010;75:14554-14558.CrossRefGoogle Scholar
  17. 17.
    Ogiwara I, Ito K, Sawaishi Y, et al. De novo mutations of voltage-gated sodium channel alphaII gene SCN2A in intractable epilepsies. Neurology 2009;73:1046-1053.PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Chen WJ, Lin Y, Xiong ZQ, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet 2011;43:1252-1255.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee HY, Huang Y, Bruneau N, et al. Mutations in the novel protein PRRT2 cause paroxysmal kinesigenic dyskinesia with infantile convulsions. Cell Rep 2012;26:2-12.CrossRefGoogle Scholar
  20. 20.
    Heron SE, Grinton BE, Kivity S, et al. PRRT2 mutations cause benign familial infantile epilepsy and infantile convulsions with choreoathetosis syndrome. Am J Hum Genet 2012;90:152-160.PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Schubert S, Paravidino R, Becker F, et al. PRRT2 mutations are the major cause of benign familial infantile seizures (BFIS). Hum Mutat 2012;33:1439-1443.PubMedCrossRefGoogle Scholar
  22. 22.
    Becker F, Schubert J, Striano P, et al. PRRT2-related disorders: Further PKD and ICCA cases and review of the literature. J Neurol 2013;260:1234-1244.PubMedCrossRefGoogle Scholar
  23. 23.
    Heron SE, Ong YS, Yendle SC, et al. Mutations in PRRT2 are not a common cause of infantile epileptic encephalopathies. Epilepsia 2013;54:e86-89.PubMedCrossRefGoogle Scholar
  24. 24.
    Labate A, Tarantino P, Viri M, et al. Homozygous c.649dupC mutation in PRRT2 worsens the BFIS/PKD phenotype with mental retardation, episodic ataxia, and absences. Epilepsia 2012;53:e196-199.PubMedCrossRefGoogle Scholar
  25. 25.
    Najmabadi H Hu H, Garshasbi M, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature 2011;479:57-63.CrossRefGoogle Scholar
  26. 26.
    Covanis A. Epileptic encephalopathies (including severe epilepsy syndromes). Epilepsia 2012;53(Suppl. 4):114-126.PubMedCrossRefGoogle Scholar
  27. 27.
    von Spiczak S. Genetische Ursachen epileptischer Enzephalopathien. Z Epileptol 2011;24:108-113.CrossRefGoogle Scholar
  28. 28.
    Claes L, Del-Favero J, Ceulemans B, Lagae L, Van Broeckhoven C, De Jonghe P. De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001;68:1327-1332.PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Harkin LA, McMahon JM, Iona X, et al. The spectrum of SCN1A-related infantile epileptic encephalopathies. Brain 2007;30: 843-852.CrossRefGoogle Scholar
  30. 30.
    Gambardella A, Marini C. Clinical spectrum of SCN1A mutations. Epilepsia 2009;50(Suppl. 5):20-23.PubMedCrossRefGoogle Scholar
  31. 31.
    Chiron C, Marchand MC, Tran A, et al. Stiripentol in severe myoclonic epilepsy in infancy: a randomised placebo-controlled syndrome-dedicated trial. STICLO study group. Lancet 2000;356:1638-1642.PubMedCrossRefGoogle Scholar
  32. 32.
    Guerrini R, Dravet C, Genton P, Belmonte A, Kaminska A, Dulac O. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998;39:508-512.PubMedCrossRefGoogle Scholar
  33. 33.
    Lerche H, Shah M, Beck H, Noebels JL, Johnston D, Vincent A. Ion channels in genetic and acquired forms of epilepsy. J Physiol 2013;591:753-764.PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effevtiveness of valproate, lamtrigine, or topiramate for generalised and unclassifiable epilepsy: an unblended randomised controlled trial. Lancet 2007;369:1012-1026.Google Scholar
  35. 35.
    Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effevtiveness carbamazepine, gabapentin, lamotrigin, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled study. Lancet 2007;369:1000-1015.PubMedCentralPubMedCrossRefGoogle Scholar
  36. 36.
    Glauser TA, Cnaan A, Shinnar S, et al. Childhood Absence Epilepsy Study Group. Ethosuximide, valproic acid, and lamotrigine in childhood absence epilepsy. N Engl J Med 2010;632:790-799.CrossRefGoogle Scholar
  37. 37.
    Klamer S, Singh A, Gil-Nagel A, et al. Current recommendations, guidelines, and expert views of practical anticonvulsant therapy. In: Lerche H, Potschka H (eds) Therapeutic targets and perspectives in the pharmacological treatment of epilepsy. Germany, UNI-MED Verlag AG, 2013, pp. 26–36.Google Scholar
  38. 38.
    Kwan P, Arzimanoglou A, Berg AT, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 2010;51:1069-1077.PubMedCrossRefGoogle Scholar
  39. 39.
    Callaghan BC, Anand K, Hesdorffer D, Hauser WA, French JA. Likelihood of seizure remission in an adult population with refractory epilepsy. Ann Neurol 2007;62:382-389.PubMedCrossRefGoogle Scholar
  40. 40.
    Luciano AL, Shorvon SD. Results of treatment changes in patients with apparently drug-resistant chronic epilepsy. Ann Neurol 2007;62:375-381.PubMedCrossRefGoogle Scholar
  41. 41.
    Rundfeldt C, Netzer R. The novel anticonvulsant retigabine activates M-currents in Chinese hamster ovary-cells tranfected with human KCNQ2/3 subunits. Neurosci Lett 2000;282:73-76.PubMedCrossRefGoogle Scholar
  42. 42.
    Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H. The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol 2005;67:1009-1017.PubMedCrossRefGoogle Scholar
  43. 43.
    Seidner G, Alvarez MG, Yeh JI, et al. GLUT-1 deficiency syndrome caused by haploinsufficiency of the blood-brain barrier hexose carrier. Nat Genet 1998;18:188-191.PubMedCrossRefGoogle Scholar
  44. 44.
    Weber YG, Storch A, Wuttke TV, et al. GLUT1 mutations are a cause of paroxysmal exercise-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest 2008,118:2157-2168.PubMedCentralPubMedGoogle Scholar
  45. 45.
    Suls A, Dedeken P, Goffin K, et al. Paroxysmal exercise-induced dyskinesia and epilepsy is due to mutations in SLC2A1, encoding the glucose transporter GLUT1. Brain 2008;131:1831-1844.PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Suls A, Mullen SA, Weber YG, et al. Early-onset absence epilepsy caused by mutations in the glucose transporter GLUT1. Ann Neurol 2009;66:415-419.PubMedCrossRefGoogle Scholar
  47. 47.
    Striano P, Weber YG, Toliat MR, et al. GLUT1-mutations are a rare cause of familial idiopathic generalized epilepsy. Neurology 2012;78:557-562.PubMedCrossRefGoogle Scholar
  48. 48.
    Arsov T, Mullen SA, Rogers S, et al. Glucose transporter 1 deficiency in the idiopathic generalized epilepsies. Ann Neurol 2012;72:807-815.PubMedCrossRefGoogle Scholar
  49. 49.
    Tate SK, Depondt C, Sisodiya SM, et al. Genetic predictors of the maximum doses patients receive during clinical use of the anti-epileptic drugs carbamazepine and phenytoin. Proc Natl Acad Sci U S A 2005;102:5507-5512.PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Zimprich F, Stogmann E, Bonelli SB, et al. A functional polymorphism in the SCN1A gene is not associated with carbamazepine dosages in Austrian patients with epilepsy. Epilepsia 2008;49:1108-1109.PubMedCrossRefGoogle Scholar
  51. 51.
    EPICURE Consortium; EMINet Consortium, Steffens M, et al. Genome-wide association analysis of genetic generalized epilepsies implicates susceptibility loci at 1q43, 2p16.1, 2q22.3 and 17q21.32. Hum Mol Genet 2012;21:5359-5372.PubMedCrossRefGoogle Scholar
  52. 52.
    Kasperaviciute D, Catarino CB, Matarin M, et al. Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain 2013;136:3140-3150.PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Remy S, Gabriel S, Urban BW, et al. A novel mechanism underlying drug resistance in chronic epilepsy. Ann Neurol 2003;53:469-479.PubMedCrossRefGoogle Scholar
  54. 54.
    Uebachs M, Opitz T, Royeck M, Dickhof G, Horstmann MT, Isom LL, Beck H. Efficacy loss of the anticonvulsant carbamazepine in mice lacking sodium channel beta subunits via paradoxical effects on persistent sodium currents. J Neurosci 2010;30:8489-8501.PubMedCrossRefGoogle Scholar
  55. 55.
    Meyer UA, Zanger UM, Schwab M. Omics and drug response. Annu Rev Pharmacol Toxicol 2013;53:475-502.PubMedCrossRefGoogle Scholar
  56. 56.
    Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013;138:103-141.PubMedCrossRefGoogle Scholar
  57. 57.
    Nies AT, Schwab M, Keppler D. Interplay of conjugating enzymes with OATP uptake transporters and ABCC/MRP efflux pumps in the elimination of drugs. Expert Opin Drug Metab Toxicol 2008;4:545-568.PubMedCrossRefGoogle Scholar
  58. 58.
    Giacomini KM, Huang SM, Tweedie DJ, et al. Membrane transporters in drug development. Nat Rev Drug Discov 2010;9:215-236.PubMedCrossRefGoogle Scholar
  59. 59.
    Kell DB, Dobson PD, Oliver SG. Pharmaceutical drug transport: the issues and the implications that it is essentially carrier-mediated only. Drug Discov Today 2011;16:704-714.PubMedCrossRefGoogle Scholar
  60. 60.
    DeGorter MK, Xia CQ, Yang JJ, Kim RB. Drug transporters in drug efficacy and toxicity. Annu Rev Pharmacol Toxicol 2012;52:249-273.PubMedCrossRefGoogle Scholar
  61. 61.
    Potschka H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev 2012;64:943-952.PubMedCrossRefGoogle Scholar
  62. 62.
    Löscher W, Klotz U, Zimprich F, Schmidt D. The clinical impact of pharmacogenetics on the treatment of epilepsy. Epilepsia 2009;50:1-23.PubMedCrossRefGoogle Scholar
  63. 63.
    Stępień KM, Tomaszewski M, Tomaszewska J, Czuczwar SJ. The multidrug transporter P-glycoprotein in pharmacoresistance to antiepileptic drugs. Pharmacol Rep 2012;64:1011-1019.PubMedGoogle Scholar
  64. 64.
    Ebid AH, Ahmed MM, Mohammed SA. Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients: a gene polymorphism perspective study. Ther Drug Monit 2007;29:305-312.PubMedCrossRefGoogle Scholar
  65. 65.
    Simon C, Stieger B, Kullak-Ublick GA, et al. Intestinal expression of cytochrome P450 enzymes and ABC transporters and carbamazepine and phenytoin disposition. Acta Neurol Scand 2007;115:232-242.PubMedCrossRefGoogle Scholar
  66. 66.
    Lovrić M, Božina N, Hajnšek S, et al. Association between lamotrigine concentrations and ABCB1 polymorphisms in patients Ther Drug Monit 2012;34:518-525.PubMedCrossRefGoogle Scholar
  67. 67.
    Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis 2010;37:13-25.PubMedCrossRefGoogle Scholar
  68. 68.
    Aronica E, Sisodiya SM, Gorter JA. Cerebral expression of drug transporters in epilepsy. Adv Drug Deliv Rev 2012;64:919-929.PubMedCrossRefGoogle Scholar
  69. 69.
    Nakanishi H, Yonezawa A, Matsubara K, Yano I. Impact of P-glycoprotein and breast cancer resistance protein on the brain distribution of antiepileptic drugs in knockout mouse models. Eur J Pharmacol 2013;710:20-28.PubMedCrossRefGoogle Scholar
  70. 70.
    Dombrowski SM, Desai SY, Marroni M, et al. Overexpression ofmultiple drug resistance genes in endothelial cells from patients with refractory epilepsy. Epilepsia 2001;42:1501-1506.PubMedCrossRefGoogle Scholar
  71. 71.
    van Vliet E, Redeker S, Aronica E, et al. Expression of multidrug transporters MRP1, MRP2, and BCRP shortly after status epilepticus, during the latent period, and in chronic epileptic rats. Epilepsia 2005;46:1569-1580.PubMedCrossRefGoogle Scholar
  72. 72.
    Basic S, Hajnsek S, Bozina N, Filipcic I, Sporis D, Mislov D, Posavec A. The influence of C3435T polymorphism of ABCB1 gene on penetration of phenobarbital across the blood-brain barrier in patients with generalized epilepsy. Seizure 2008;17:524-530.PubMedCrossRefGoogle Scholar
  73. 73.
    Siddiqui A, Kerb R, Weale ME, et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. N Engl J Med 2003;348:1442-1448.PubMedCrossRefGoogle Scholar
  74. 74.
    Bournissen FG, Moretti ME, Juurlink DN, Koren G, Walker M, Finkelstein Y. Polymorphism of the MDR1/ABCB1 C3435T drug-transporter and resistance to anticonvulsant drugs: a meta-analysis. Epilepsia 2009;50:898-903.PubMedCrossRefGoogle Scholar
  75. 75.
    Haerian BS, Roslan H, Raymond AA, et al. ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis. Seizure 2010;19:339-346.PubMedCrossRefGoogle Scholar
  76. 76.
    Feldmann M, Asselin MC, Liu J, et al. P-glycoprotein expression and function in patients with temporal lobe epilepsy: a case-control study. Lancet Neurol 2013;12:777-785.PubMedCrossRefGoogle Scholar
  77. 77.
    Hung CC, Huang HC, Gao YH, et al. Effects of polymorphisms in six candidate genes on phenytoin maintenance therapy in Han Chinese patients. Pharmacogenomics 2012;13:1339-1349.PubMedCrossRefGoogle Scholar
  78. 78.
    Twardowschy CA, Werneck LC, Scola RH, Borgio JG, De Paola L, Silvado C. The role of CYP2C9 polymorphisms in phenytoin-related cerebellar atrophy. Seizure 2013;22:194-197.PubMedCrossRefGoogle Scholar
  79. 79.
    Kerb R, Aynacioglu AS, Brockmöller J, et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for phenytoin plasma levels. Pharmacogenomics J 2001;1:204-210.PubMedCrossRefGoogle Scholar
  80. 80.
    Brodie MJ, Mintzer S, Pack AM, Gidal BE, Vecht CJ, Schmidt D. Enzyme induction with antiepileptic drugs: cause for concern? Epilepsia 2013;54:11-27.PubMedCrossRefGoogle Scholar
  81. 81.
    Rieger JK, Klein K, Winter S, Zanger UM. Expression variability of absorption, distribution, metabolism, excretion-related microRNAs in human liver: influence of nongenetic factors and association with gene expression. Drug Metab Dispos 2013;41:1752-1762.PubMedCrossRefGoogle Scholar
  82. 82.
    Schaeffeler E, Hellerbrand C, Nies AT, et al. DNA methylation is associated with downregulation of the organic cation transporter OCT1 (SLC22A1) in human hepatocellular carcinoma. Genome Med 2011;3:82.PubMedCentralPubMedCrossRefGoogle Scholar
  83. 83.
    Urban TJ, Brown C, Castro RA, et al. Effects of genetic variation in the novel organic cation transporter, OCTN1, on the renal clearance of gabapentin. Clin Pharmacol Ther 2008;83:416-421.PubMedCrossRefGoogle Scholar
  84. 84.
    Chaudhry AS, Urban TJ, Lamba JK, et al. CYP2C9*1B promoter polymorphisms, in linkage with CYP2C19*2, affect phenytoin autoinduction of clearance and maintenance dose. J Pharmacol Exp Ther 2010;332:599-611.PubMedCentralPubMedCrossRefGoogle Scholar
  85. 85.
    Makmor-Bakry M, Sills GJ, Hitiris N, Butler E, Wilson EA, Brodie MJ. Genetic variants in microsomal epoxide hydrolase influence carbamazepine dosing. Clin Neuropharmacol. 2009;32:205-212.PubMedCrossRefGoogle Scholar
  86. 86.
    Kwan P, Brodie MJ. Epilepsy after the first drug fails: substitution or add-on? Seizure 2000;9:464-468.PubMedCrossRefGoogle Scholar
  87. 87.
    Brodie MJ, Barry SJ, Bamagous GA, Norrie JD, Kwan P. Patterns of treatment response in newly diagnosed epilepsy. Neurology 2012;78:1548-1554.PubMedCentralPubMedCrossRefGoogle Scholar
  88. 88.
    Perucca P, Gilliam FG. Adverse effects of antiepileptic drugs. Lancet Neurol 2012;11:792-802.PubMedCrossRefGoogle Scholar
  89. 89.
    Hung SI, Chung WH, Jee SH, et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006;16:297-306.PubMedCrossRefGoogle Scholar
  90. 90.
    Kim SH, Lee KW, Song WJ, et al. Carbamazepine-induced severe cutaneous adverse reactions and HLA genotypes in Koreans. Epilepsy Res 2011;97:190-197.PubMedCrossRefGoogle Scholar
  91. 91.
    Kaniwa N, Saito Y, Aihara M, et al. HLA-B*1511 is a risk factor for carbamazepine-induced Stevens-Johnson syndrome and toxic epidermal necrolysis in Japanese patients. Epilepsia 2010 ;51:2461-2465.PubMedCrossRefGoogle Scholar
  92. 92.
    Chen P, Lin JJ, Lu CS, et al. Taiwan SJS Consortium, Carbamazine-induced toxic effects and HLA-B*1502 screenin gin Taiwan, N Engl J Med 2011;346:1126-1133.CrossRefGoogle Scholar
  93. 93.
    Cheung YK, Cheng SH, Chan EJ, Lo SV, Ng MH, Kwan P. HLA-B alleles associated with severe cutaneous reactions to antiepileptic drugs in Han Chinese. Epilepsia 2013;54:1307-1314.PubMedCrossRefGoogle Scholar
  94. 94.
    An DM, Wu XT, Hu FY, Yan B, Stefan H, Zhou D. Association study of lamotrigine-induced cutaneous adverse reactions and HLA-B*1502 in a Han Chinese population. Epilepsy Res 2010;92:226-230.PubMedCrossRefGoogle Scholar
  95. 95.
    McCormack M, Alfirevic A, Bourgeois S, et al. HLA-A*3101 and carbamazepine-induced hypersensitivity reactions in Europeans. N Engl J Med 2011;364:1134-1143.PubMedCentralPubMedCrossRefGoogle Scholar
  96. 96.
    McCormack M, Urban TJ, Shianna KV, et al. Genome-wide mapping for clinically relevant predictors of lamotrigine- and phenytoin-induced hypersensitivity reactions. Pharmacogenomics 2012;13:399-405.PubMedCentralPubMedCrossRefGoogle Scholar
  97. 97.
    Ozeki T, Mushiroda T, Yowang A, et al. Genome-wide association study identifies HLA-A*3101 allele as a genetic risk factor for carbamazepine-induced cutaneous adverse drug reactions in Japanese population. Hum Mol Genet 2011;20:1034-1041.PubMedCrossRefGoogle Scholar
  98. 98.
    Schwab M, Schaeffeler E. Pharmacogenomics: a key component of personalized therapy. Genome Med 2012;4:93.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2014

Authors and Affiliations

  1. 1.Department of Neurology and Epileptology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
  2. 2.Dr. Margarete Fischer-Bosch Institute of Clinical PharmacologyStuttgartGermany
  3. 3.Department of Clinical PharmacologyUniversity HospitalTübingenGermany

Personalised recommendations