, Volume 10, Issue 4, pp 757–770 | Cite as

Epigenetics of Neural Repair Following Spinal Cord Injury



Spinal cord injury results from an insult inflicted on the spinal cord that usually encompasses its 4 major functions (motor, sensory, autonomic, and reflex). The type of deficits resulting from spinal cord injury arise from primary insult, but their long-term severity is due to a multitude of pathophysiological processes during the secondary phase of injury. The failure of the mammalian spinal cord to regenerate and repair is often attributed to the very feature that makes the central nervous system special—it becomes so highly specialized to perform higher functions that it cannot effectively reactivate developmental programs to re-build novel circuitry to restore function after injury. Added to this is an extensive gliotic and immune response that is essential for clearance of cellular debris, but also lays down many obstacles that are detrimental to regeneration. Here, we discuss how the mature chromatin state of different central nervous system cells (neural, glial, and immune) may contribute to secondary pathophysiology, and how restoring silenced developmental gene expression by altering histone acetylation could stall secondary damage and contribute to novel approaches to stimulate endogenous repair.


Inflammation Regeneration Neuroprotection Myelin repair Neuroglial progenitors 


Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2013_228_MOESM1_ESM.pdf (1.2 mb)
ESM 1(PDF 1224 kb)


  1. 1.
    Rowland JW, Hawryluk GW, Kwon B, Fehlings MG. Current status of acute spinal cord injury pathophysiology and emerging therapies: promise on the horizon. Neurosurg Focus 2008;25:E2.CrossRefPubMedGoogle Scholar
  2. 2.
    Dumont RJ, Okonkwo DO, Verma S, et al. Acute spinal cord injury, part I: pathophysiologic mechanisms. Clin Neuropharmacol 2001;24:254–264.CrossRefPubMedGoogle Scholar
  3. 3.
    Li J, Lepski G. Cell transplantation for spinal cord injury: a systematic review. Biomed Res Int 2013;2013:786475.PubMedGoogle Scholar
  4. 4.
    Tator CH. Update on the pathophysiology and pathology of acute spinal cord injury. Brain Pathol 1995;5:407–413.CrossRefPubMedGoogle Scholar
  5. 5.
    McDonald JW, Sadowsky C. Spinal-cord injury. Lancet 2002;359:417–425.CrossRefPubMedGoogle Scholar
  6. 6.
    Yip PK, Malaspina A. Spinal cord trauma and the molecular point of no return. Mol Neurodegener 2012;7:6.CrossRefPubMedGoogle Scholar
  7. 7.
    Norenberg MD, Smith J, Marcillo A. The pathology of human spinal cord injury: defining the problems. J Neurotrauma 2004;21:429–440.CrossRefPubMedGoogle Scholar
  8. 8.
    Su H, Wu Y, Yuan Q, Guo J, Zhang W, Wu W. Optimal time point for neuronal generation of transplanted neural progenitor cells in injured spinal cord following root avulsion. Cell Transplant 2011;20:167–176.CrossRefPubMedGoogle Scholar
  9. 9.
    Anderson DK HE. Pathophysiology of spinal cord trauma. Ann Emerg Med 1993;22:987–992.Google Scholar
  10. 10.
    Geisler FH, Dorsey FC, Coleman WP. Recovery of motor function after spinal-cord injury--a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 1991;324:1829–1838.CrossRefPubMedGoogle Scholar
  11. 11.
    Lapchak PA, Araujo DM, Song D, Zivin JA. Neuroprotection by the selective cyclooxygenase-2 inhibitor SC-236 results in improvements in behavioral deficits induced by reversible spinal cord ischemia. Stroke 2001;32:1220–1225.CrossRefPubMedGoogle Scholar
  12. 12.
    Blight AR, Young W. Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells. J Neurol Sci 1989;91:15–34.CrossRefPubMedGoogle Scholar
  13. 13.
    McIntosh TK, Juhler M, Wieloch T. Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 1998;15:731–69.CrossRefPubMedGoogle Scholar
  14. 14.
    Rhoney DH, Luer MS, Hughes M, Hatton J. New pharmacologic approaches to acute spinal cord injury. Pharmacotherapy 1996;16:382–392.PubMedGoogle Scholar
  15. 15.
    Tator CH. Pathophysiology and pathology of spinal cord injury. In Neurosurgery, Wilkins RH RS, editor. Baltimore: Williams & Wilkins, 1996, p. 2847–2859.Google Scholar
  16. 16.
    Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci 2006;7:628–643.CrossRefPubMedGoogle Scholar
  17. 17.
    Zhang N, Yin Y, Xu SJ, Wu YP, Chen WS. Inflammation & apoptosis in spinal cord injury. Indian J Med Res 2012;135:287–296.PubMedGoogle Scholar
  18. 18.
    Benowitz LI, Popovich PG. Inflammation and axon regeneration. Curr Opin Neurol 2011;24:577–583.CrossRefPubMedGoogle Scholar
  19. 19.
    David S, Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci 2011;12:388–399.CrossRefPubMedGoogle Scholar
  20. 20.
    Campbell SJ, Perry VH, Pitossi FJ, et al. Central nervous system injury triggers hepatic CC and CXC chemokine expression that is associated with leukocyte mobilization and recruitment to both the central nervous system and the liver. Am J Pathol 2005;166:1487–1497.CrossRefPubMedGoogle Scholar
  21. 21.
    Jaerve A, Muller HW. Chemokines in CNS injury and repair. Cell Tissue Res 2012;349:229–248.CrossRefPubMedGoogle Scholar
  22. 22.
    Kakulas BA. A review of the neuropathology of human spinal cord injury with emphasis on special features. J Spinal Cord Med 1999;22:119–1124.PubMedGoogle Scholar
  23. 23.
    Deumens R, Koopmans GC, Honig WM, et al. Chronically injured corticospinal axons do not cross large spinal lesion gaps after a multifactorial transplantation strategy using olfactory ensheathing cell/olfactory nerve fibroblast-biomatrix bridges. J Neurosci Res 2006;83:811–820.CrossRefPubMedGoogle Scholar
  24. 24.
    Failli V, Kopp MA, Gericke C, et al. Functional neurological recovery after spinal cord injury is impaired in patients with infections. Brain 2012;135:3238–3250.CrossRefPubMedGoogle Scholar
  25. 25.
    MacDonald JL, Roskams AJ. Epigenetic regulation of nervous system development by DNA methylation and histone deacetylation. Prog Neurobiol 2009;88:170–183.CrossRefPubMedGoogle Scholar
  26. 26.
    Day JJ, Sweatt JD. Epigenetic mechanisms in cognition. Neuron 2011;70:813–829.CrossRefPubMedGoogle Scholar
  27. 27.
    Ho L, Crabtree GR. Chromatin remodelling during development. Nature 2010;463:474–484.CrossRefPubMedGoogle Scholar
  28. 28.
    Maze I, Noh KM, Allis CD. Histone regulation in the CNS: basic principles of epigenetic plasticity. Neuropsychopharmacology 2013;38:3–22.CrossRefPubMedGoogle Scholar
  29. 29.
    Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell 2007;128:635–638.CrossRefPubMedGoogle Scholar
  30. 30.
    Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41–45.CrossRefPubMedGoogle Scholar
  31. 31.
    Turner BM. Histone acetylation and an epigenetic code. Bioessays 2000;22:836–845.CrossRefPubMedGoogle Scholar
  32. 32.
    Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074–1080.CrossRefPubMedGoogle Scholar
  33. 33.
    Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003;33:245–254.CrossRefPubMedGoogle Scholar
  34. 34.
    Spitale RC, Tsai MC, Chang HY. RNA templating the epigenome: long noncoding RNAs as molecular scaffolds. Epigenetics 2011;6:539–543.CrossRefPubMedGoogle Scholar
  35. 35.
    Bird A. The essentials of DNA methylation. Cell 1992;70:5–8.CrossRefPubMedGoogle Scholar
  36. 36.
    Goll MG, Bestor TH. Eukaryotic cytosine methyltransferases. Annu Rev Biochem 2005;74:481–514.CrossRefPubMedGoogle Scholar
  37. 37.
    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16:6–21.CrossRefPubMedGoogle Scholar
  38. 38.
    Ramsahoye BH, Biniszkiewicz D, Lyko F, Clark V, Bird AP, Jaenisch R. Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 2000;97:5237–5242.CrossRefPubMedGoogle Scholar
  39. 39.
    Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA methyltransferase gene results in embryonic lethality. Cell 1992;69:915–926.CrossRefPubMedGoogle Scholar
  40. 40.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247–257.CrossRefPubMedGoogle Scholar
  41. 41.
    Nan X, Cross S, Bird A. Gene silencing by methyl-CpG-binding proteins. Novartis Found Symp 1998;214:6–16.PubMedGoogle Scholar
  42. 42.
    Tanner KG, Trievel RC, Kuo MH, et al. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcriptional coactivator. J Biol Chem 1999;274:18157–18160.CrossRefPubMedGoogle Scholar
  43. 43.
    Tanner KG, Langer MR, Kim Y, Denu JM. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J Biol Chem 2000;275:22048–22055.CrossRefPubMedGoogle Scholar
  44. 44.
    Lau OD, Courtney AD, Vassilev A, et al. p300/CBP-associated factor histone acetyltransferase processing of a peptide substrate. Kinetic analysis of the catalytic mechanism. J Biol Chem 2000;275:21953–21959.CrossRefPubMedGoogle Scholar
  45. 45.
    Tanner KG, Langer MR, Denu JM. Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry 2000;39:15652.CrossRefPubMedGoogle Scholar
  46. 46.
    Marks PA, Richon VM, Breslow R, Rifkind RA. Histone deacetylase inhibitors as new cancer drugs. Curr Opin Oncol 2001;13:477–483.CrossRefPubMedGoogle Scholar
  47. 47.
    Villar-Garea A, Esteller M. Histone deacetylase inhibitors: understanding a new wave of anticancer agents. Int J Cancer 2004;112:171–178.CrossRefPubMedGoogle Scholar
  48. 48.
    de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 2003;370:737–749.CrossRefPubMedGoogle Scholar
  49. 49.
    Cai LL, Courtine G, Fong AJ, Burdick JW, Roy RR, Edgerton VR. Plasticity of functional connectivity in the adult spinal cord. Philos Trans R Soc Lond B Biol Sci 2006;361:1635–1646.CrossRefPubMedGoogle Scholar
  50. 50.
    Edgerton VR, Roy RR. A new age for rehabilitation. Eur J Phys Rehabil Med 2012;48:99–109.PubMedGoogle Scholar
  51. 51.
    Lorenz DJ, Datta S, Harkema SJ. Longitudinal patterns of functional recovery in patients with incomplete spinal cord injury receiving activity-based rehabilitation. Arch Phys Med Rehabil 2012;93:1541–1552.CrossRefPubMedGoogle Scholar
  52. 52.
    Furlan JC, Fehlings MG. The impact of age on mortality, impairment, and disability among adults with acute traumatic spinal cord injury. J Neurotrauma 2009;26:1707–1717.CrossRefPubMedGoogle Scholar
  53. 53.
    DeVivo MJ, Kartus PL, Stover SL, Fine PR. Benefits of early admission to an organised spinal cord injury care system. Paraplegia 1990;28:545–555.CrossRefPubMedGoogle Scholar
  54. 54.
    Krause JS, Crewe NM. Chronologic age, time since injury, and time of measurement: effect on adjustment after spinal cord injury. Arch Phys Med Rehabil 1991;72:91–100.PubMedGoogle Scholar
  55. 55.
    Scivoletto G, Mancini M, Fiorelli E, Morganti B, Molinari M. A prototype of an adjustable advanced reciprocating gait orthosis (ARGO) for spinal cord injury (SCI). Spinal Cord 2003;41:187–191.CrossRefPubMedGoogle Scholar
  56. 56.
    Leung PY, Wrathall JR. Local and distal responses to injury in the rapid functional recovery from spinal cord contusion in rat pups. Exp Neurol 2006;202:225–237.CrossRefPubMedGoogle Scholar
  57. 57.
    Siegenthaler MM, Berchtold NC, Cotman CW, Keirstead HS. Voluntary running attenuates age-related deficits following SCI. Exp Neurol 2008;210:207–216.CrossRefPubMedGoogle Scholar
  58. 58.
    Gwak YS, Hains BC, Johnson KM, Hulsebosch CE. Locomotor recovery and mechanical hyperalgesia following spinal cord injury depend on age at time of injury in rat. Neurosci Lett 2004;362:232–235.CrossRefPubMedGoogle Scholar
  59. 59.
    Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 2004;429:457–463.CrossRefPubMedGoogle Scholar
  60. 60.
    Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature 2007;447:433–440.CrossRefPubMedGoogle Scholar
  61. 61.
    Borrelli E, Nestler EJ, Allis CD, Sassone-Corsi P. Decoding the epigenetic language of neuronal plasticity. Neuron 2008;60:961–974.CrossRefPubMedGoogle Scholar
  62. 62.
    Sharma RP, Grayson DR, Guidotti A, Costa E. Chromatin, DNA methylation and neuron gene regulation—the purpose of the package. J Psychiatry Neurosci 2005;30:257–263.PubMedGoogle Scholar
  63. 63.
    Grayson DR, Jia X, Chen Y, et al. Reelin promoter hypermethylation in schizophrenia. Proc Natl Acad Sci U S A 2005;102:9341–9346.CrossRefPubMedGoogle Scholar
  64. 64.
    Veldic M, Caruncho HJ, Liu WS, et al. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A 2004;101:348–353.CrossRefPubMedGoogle Scholar
  65. 65.
    Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 2005;102:2152–2157.CrossRefPubMedGoogle Scholar
  66. 66.
    Yoo AS, Crabtree GR. ATP-dependent chromatin remodeling in neural development. Curr Opin Neurobiol 2009;19:120–126.CrossRefPubMedGoogle Scholar
  67. 67.
    Siegmund KD, Connor CM, Campan M, et al. DNA methylation in the human cerebral cortex is dynamically regulated throughout the life span and involves differentiated neurons. PLoS One 2007;2:e895.CrossRefPubMedGoogle Scholar
  68. 68.
    Ladd-Acosta C, Pevsner J, Sabunciyan S, et al. DNA methylation signatures within the human brain. Am J Hum Genet 2007;81:1304–1315.CrossRefPubMedGoogle Scholar
  69. 69.
    Sweatt JD. Experience-dependent epigenetic modifications in the central nervous system. Biol Psychiatry 2009;65:191–197.CrossRefPubMedGoogle Scholar
  70. 70.
    Sng J, Meaney MJ. Environmental regulation of the neural epigenome. Epigenomics 2009;1:131–151.CrossRefPubMedGoogle Scholar
  71. 71.
    Hsieh J, Gage FH. Chromatin remodeling in neural development and plasticity. Curr Opin Cell Biol 2005;17:664–671.CrossRefPubMedGoogle Scholar
  72. 72.
    Foti SB, Chou A, Moll AD, Roskams AJ. HDAC inhibitors dysregulate neural stem cell activity in the postnatal mouse brain. Int J Dev Neurosci 2013;31(6):437–447.Google Scholar
  73. 73.
    Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci 2005;6:108–118.CrossRefPubMedGoogle Scholar
  74. 74.
    Dulac C. Brain function and chromatin plasticity. Nature 2010;465:728–735.CrossRefPubMedGoogle Scholar
  75. 75.
    Maze I, Nestler EJ. The epigenetic landscape of addiction. Ann N Y Acad Sci 2011;1216:99–113.CrossRefPubMedGoogle Scholar
  76. 76.
    Swank MW, Sweatt JD. Increased histone acetyltransferase and lysine acetyltransferase activity and biphasic activation of the ERK/RSK cascade in insular cortex during novel taste learning. J Neurosci 2001;21:3383–3391.PubMedGoogle Scholar
  77. 77.
    Chwang WB, O'Riordan KJ, Levenson JM, Sweatt JD. ERK/MAPK regulates hippocampal histone phosphorylation following contextual fear conditioning. Learn Mem 2006;13:322–328.CrossRefPubMedGoogle Scholar
  78. 78.
    Brami-Cherrier K, Valjent E, Herve D, et al. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 2005;25:11444–11454.CrossRefPubMedGoogle Scholar
  79. 79.
    Chwang WB, Arthur JS, Schumacher A, Sweatt JD. The nuclear kinase mitogen- and stress-activated protein kinase 1 regulates hippocampal chromatin remodeling in memory formation. J Neurosci 2007;27:12732–12742.CrossRefPubMedGoogle Scholar
  80. 80.
    Ghasemlou N, Lopez-Vales R, Lachance C, et al. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. J Neurosci 2010;30:13750–13759.CrossRefPubMedGoogle Scholar
  81. 81.
    Lubin FD, Sweatt JD. The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron 2007;55:942–957.CrossRefPubMedGoogle Scholar
  82. 82.
    Yeh SH, Lin CH, Gean PW. Acetylation of nuclear factor-kappaB in rat amygdala improves long-term but not short-term retention of fear memory. Mol Pharmacol 2004;65:1286–1292.CrossRefPubMedGoogle Scholar
  83. 83.
    Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002;111:709–720.CrossRefPubMedGoogle Scholar
  84. 84.
    Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001;293:1653–1657.CrossRefGoogle Scholar
  85. 85.
    Oliveira AM, Wood MA, McDonough CB, Abel T. Transgenic mice expressing an inhibitory truncated form of p300 exhibit long-term memory deficits. Learn Mem 2007;14:564–572.CrossRefPubMedGoogle Scholar
  86. 86.
    Kim SY, Levenson JM, Korsmeyer S, Sweatt JD, Schumacher A. Developmental regulation of Eed complex composition governs a switch in global histone modification in brain. J Biol Chem 2007;282:9962–9972.CrossRefPubMedGoogle Scholar
  87. 87.
    Chandramohan Y, Droste SK, Reul JM. Novelty stress induces phospho-acetylation of histone H3 in rat dentate gyrus granule neurons through coincident signalling via the N-methyl-D-aspartate receptor and the glucocorticoid receptor: relevance for c-fos induction. J Neurochem 2007;101:815–828.CrossRefPubMedGoogle Scholar
  88. 88.
    Wu SC, Zhang Y. Minireview: role of protein methylation and demethylation in nuclear hormone signaling. Mol Endocrinol 2009;23:1323–1334.CrossRefPubMedGoogle Scholar
  89. 89.
    Georgieff MK. Nutrition and the developing brain: nutrient priorities and measurement. Am J Clin Nutr 2007;85:614S-620S.PubMedGoogle Scholar
  90. 90.
    Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol 2011;93:182–203.CrossRefPubMedGoogle Scholar
  91. 91.
    Stangl D, Thuret S. Impact of diet on adult hippocampal neurogenesis. Genes Nutr 2009;4:271–282.CrossRefPubMedGoogle Scholar
  92. 92.
    Lillycrop KA, Slater-Jefferies JL, Hanson MA, Godfrey KM, Jackson AA, Burdge GC. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 2007;97:1064–1073.CrossRefPubMedGoogle Scholar
  93. 93.
    Duan W, Ladenheim B, Cutler RG, Kruman, II, Cadet JL, Mattson MP. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson's disease. J Neurochem 2002;80:101–110.CrossRefPubMedGoogle Scholar
  94. 94.
    Kruman, II, Kumaravel TS, Lohani A, et al. Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer's disease. J Neurosci 2002;22:1752–1762.PubMedGoogle Scholar
  95. 95.
    Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. N Engl J Med 2002;346:476–483.CrossRefPubMedGoogle Scholar
  96. 96.
    Shea TB, Lyons-Weiler J, Rogers E. Homocysteine, folate deprivation and Alzheimer neuropathology. J Alzheimers Dis 2002;4:261–267.PubMedGoogle Scholar
  97. 97.
    Kaelin WG, Jr, McKnight SL. Influence of metabolism on epigenetics and disease. Cell 2013;153:56–69.CrossRefPubMedGoogle Scholar
  98. 98.
    Jeong MA, Plunet W, Streijger F, et al. Intermittent fasting improves functional recovery after rat thoracic contusion spinal cord injury. J Neurotrauma 2011;28:479–492.CrossRefPubMedGoogle Scholar
  99. 99.
    Streijger F, Plunet WT, Plemel JR, Lam CK, Liu J, Tetzlaff W. Intermittent fasting in mice does not improve hindlimb motor performance after spinal cord injury. J Neurotrauma 2011;28:1051–1061.CrossRefPubMedGoogle Scholar
  100. 100.
    Guan JS, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009;459:55–60.CrossRefPubMedGoogle Scholar
  101. 101.
    Vogel-Ciernia A, Matheos DP, Barrett RM, et al. The neuron-specific chromatin regulatory subunit BAF53b is necessary for synaptic plasticity and memory. Nat Neurosci 2013;16:552–561.CrossRefPubMedGoogle Scholar
  102. 102.
    Rouaux C, Jokic N, Mbebi C, Boutillier S, Loeffler JP, Boutillier AL. Critical loss of CBP/p300 histone acetylase activity by caspase-6 during neurodegeneration. EMBO J 2003;22:6537–4659.CrossRefPubMedGoogle Scholar
  103. 103.
    Boutillier AL, Trinh E, Loeffler JP. Selective E2F-dependent gene transcription is controlled by histone deacetylase activity during neuronal apoptosis. J Neurochem 2003;84:814–828.CrossRefPubMedGoogle Scholar
  104. 104.
    Hou ST, Jiang SX, Smith RA. Permissive and repulsive cues and signalling pathways of axonal outgrowth and regeneration. Int Rev Cell Mol Biol 2008;267:125–181.CrossRefPubMedGoogle Scholar
  105. 105.
    Doucet G, Petit A. Seeking axon guidance molecules in the adult rat CNS. Prog Brain Res 2002;137:453–465.CrossRefPubMedGoogle Scholar
  106. 106.
    Gaillard S, Nasarre C, Gonthier B, Bagnard D. [The cellular and molecular basis of axonal growth]. Rev Neurol (Paris) 2005;161:153–172.Google Scholar
  107. 107.
    Huber AB, Kolodkin AL, Ginty DD, Cloutier JF. Signaling at the growth cone: ligand-receptor complexes and the control of axon growth and guidance. Annu Rev Neurosci 2003;26:509–563.CrossRefPubMedGoogle Scholar
  108. 108.
    Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996;274:1123–1133.CrossRefPubMedGoogle Scholar
  109. 109.
    DeBellard ME, Tang S, Mukhopadhyay G, Shen YJ, Filbin MT. Myelin-associated glycoprotein inhibits axonal regeneration from a variety of neurons via interaction with a sialoglycoprotein. Mol Cell Neurosci 1996;7:89–101.CrossRefPubMedGoogle Scholar
  110. 110.
    Moore DL, Goldberg JL. Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 2011;71:1186–1211.Google Scholar
  111. 111.
    Muramatsu R, Ueno M, Yamashita T. Intrinsic regenerative mechanisms of central nervous system neurons. Biosci Trends 2009;3:179–183.PubMedGoogle Scholar
  112. 112.
    Liu K, Tedeschi A, Park KK, He Z. Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci 2011;34:131–152.Google Scholar
  113. 113.
    Trakhtenberg EF, Goldberg JL. Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci 2012;5:24.Google Scholar
  114. 114.
    Macdonald JL, Verster A, Berndt A, Roskams AJ. MBD2 and MeCP2 regulate distinct transitions in the stage-specific differentiation of olfactory receptor neurons. Mol Cell Neurosci 2010;44:55–67.CrossRefPubMedGoogle Scholar
  115. 115.
    Smrt RD, Eaves-Egenes J, Barkho BZ, et al. Mecp2 deficiency leads to delayed maturation and altered gene expression in hippocampal neurons. Neurobiol Dis 2007;27:77–89.CrossRefPubMedGoogle Scholar
  116. 116.
    Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 2010;17:1392–1408.CrossRefPubMedGoogle Scholar
  117. 117.
    Li S, Overman JJ, Katsman D, et al. An age-related sprouting transcriptome provides molecular control of axonal sprouting after stroke. Nat Neurosci 2010;13:1496–1504.CrossRefPubMedGoogle Scholar
  118. 118.
    Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002;417:455–458.CrossRefPubMedGoogle Scholar
  119. 119.
    Rivieccio MA, Brochier C, Willis DE, et al. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci U S A 2009;106:19599–19604.CrossRefPubMedGoogle Scholar
  120. 120.
    Kim JY, Shen S, Dietz K, et al. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 2010;13:180–189.CrossRefPubMedGoogle Scholar
  121. 121.
    Tapia M, Wandosell F, Garrido JJ. Impaired function of HDAC6 slows down axonal growth and interferes with axon initial segment development. PLoS One 2010;5:e12908.CrossRefPubMedGoogle Scholar
  122. 122.
    Langley B, Gensert JM, Beal MF, Ratan RR. Remodeling chromatin and stress resistance in the central nervous system: histone deacetylase inhibitors as novel and broadly effective neuroprotective agents. Curr Drug Targets CNS Neurol Disord 2005;4:41–50.CrossRefPubMedGoogle Scholar
  123. 123.
    Carmichael ST. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr Opin Neurol 2003;16:699–704.CrossRefPubMedGoogle Scholar
  124. 124.
    Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009;29:13435–13444.CrossRefPubMedGoogle Scholar
  125. 125.
    Halili MA, Andrews MR, Sweet MJ, Fairlie DP. Histone deacetylase inhibitors in inflammatory disease. Curr Top Med Chem 2009;9:309–319.CrossRefPubMedGoogle Scholar
  126. 126.
    Mullican SE, Gaddis CA, Alenghat T, et al. Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev 2011;25:2480–2488.CrossRefPubMedGoogle Scholar
  127. 127.
    Takeuch O, Akira S. Epigenetic control of macrophage polarization. Eur J Immunol 2011;41:2490–2493.CrossRefPubMedGoogle Scholar
  128. 128.
    Schomberg D, Olson JK. Immune responses of microglia in the spinal cord: contribution to pain states. Exp Neurol 2012;234:262–270.CrossRefPubMedGoogle Scholar
  129. 129.
    Zhang ZY, Zhang Z, Fauser U, Schluesener HJ. Global hypomethylation defines a sub-population of reactive microglia/macrophages in experimental traumatic brain injury. Neurosci Lett 2007;429:1–6.CrossRefPubMedGoogle Scholar
  130. 130.
    Zhang ZY, Zhang Z, Schluesener HJ. MS-275, an histone deacetylase inhibitor, reduces the inflammatory reaction in rat experimental autoimmune neuritis. Neuroscience 2010;169:370–377.CrossRefPubMedGoogle Scholar
  131. 131.
    Pekny M, Nilsson M. Astrocyte activation and reactive gliosis. Glia 2005;50:427–434.CrossRefPubMedGoogle Scholar
  132. 132.
    Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist 2005;11:400–407.CrossRefPubMedGoogle Scholar
  133. 133.
    Hamby ME, Sofroniew MV. Reactive astrocytes as therapeutic targets for CNS disorders. Neurotherapeutics 2010;7:494–506.CrossRefPubMedGoogle Scholar
  134. 134.
    Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA. Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 2008;105:108–120.CrossRefPubMedGoogle Scholar
  135. 135.
    Nakashima K, Yanagisawa M, Arakawa H, et al. Synergistic signaling in fetal brain by STAT3-Smad1 complex bridged by p300. Science 1999;284:479–482.CrossRefPubMedGoogle Scholar
  136. 136.
    Liu A, Han YR, Li J, et al. The glial or neuronal fate choice of oligodendrocyte progenitors is modulated by their ability to acquire an epigenetic memory. J Neurosci 2007;27:7339–7343.CrossRefPubMedGoogle Scholar
  137. 137.
    Sardi SP, Murtie J, Koirala S, Patten BA, Corfas G. Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell 2006;127:185–197.CrossRefPubMedGoogle Scholar
  138. 138.
    Hermanson O, Jepsen K, Rosenfeld MG. N-CoR controls differentiation of neural stem cells into astrocytes. Nature 2002;419:934–939.CrossRefPubMedGoogle Scholar
  139. 139.
    Suh HS, Choi S, Khattar P, Choi N, Lee SC. Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes. J Neuroimmune Pharmacol 2010;5:521–532.CrossRefPubMedGoogle Scholar
  140. 140.
    Taniura S, Kamitani H, Watanabe T, Eling TE. Transcriptional regulation of cyclooxygenase-1 by histone deacetylase inhibitors in normal human astrocyte cells. J Biol Chem 2002;277:16823–16830.CrossRefPubMedGoogle Scholar
  141. 141.
    Tong X, Yin L, Giardina C. Butyrate suppresses Cox-2 activation in colon cancer cells through HDAC inhibition. Biochem Biophys Res Commun 2004;317:463–471.CrossRefPubMedGoogle Scholar
  142. 142.
    Faraco G, Pittelli M, Cavone L, et al. Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis 2009;36:269–279.CrossRefPubMedGoogle Scholar
  143. 143.
    Qi X, Hosoi T, Okuma Y, Kaneko M, Nomura Y. Sodium 4-phenylbutyrate protects against cerebral ischemic injury. Mol Pharmacol 2004;66:899–908.CrossRefPubMedGoogle Scholar
  144. 144.
    Huuskonen J, Suuronen T, Nuutinen T, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by sodium butyrate and short-chain fatty acids. Br J Pharmacol 2004;141:874–880.CrossRefPubMedGoogle Scholar
  145. 145.
    Suuronen T, Huuskonen J, Pihlaja R, Kyrylenko S, Salminen A. Regulation of microglial inflammatory response by histone deacetylase inhibitors. J Neurochem 2003;87:407–416.CrossRefPubMedGoogle Scholar
  146. 146.
    Correa F, Mallard C, Nilsson M, Sandberg M. Activated microglia decrease histone acetylation and Nrf2-inducible anti-oxidant defence in astrocytes: restoring effects of inhibitors of HDACs, p38 MAPK and GSK3beta. Neurobiol Dis 2011;44:142–151.PubMedGoogle Scholar
  147. 147.
    Meshorer E. Chromatin in embryonic stem cell neuronal differentiation. Histol Histopathol 2007;22:311–319.PubMedGoogle Scholar
  148. 148.
    Lee S, Lee SK. Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 2010;20:29–36.CrossRefPubMedGoogle Scholar
  149. 149.
    Juliandi B, Abematsu M, Nakashima K. Epigenetic regulation in neural stem cell differentiation. Dev Growth Differ 2010;52:493–504.Google Scholar
  150. 150.
    Petit A, Sanders AD, Kennedy TE, et al. Adult spinal cord radial glia display a unique progenitor phenotype. PLoS One 2011;6:e24538.CrossRefPubMedGoogle Scholar
  151. 151.
    Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 2009;106:7876–7881.CrossRefPubMedGoogle Scholar
  152. 152.
    Asklund T, Appelskog IB, Ammerpohl O, Ekstrom TJ, Almqvist PM. Histone deacetylase inhibitor 4-phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur J Cancer 2004;40:1073–1081.CrossRefPubMedGoogle Scholar
  153. 153.
    Song MR, Ghosh A. FGF2-induced chromatin remodeling regulates CNTF-mediated gene expression and astrocyte differentiation. Nat Neurosci 2004;7:229–235.CrossRefPubMedGoogle Scholar
  154. 154.
    Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004;101:16659–16664.CrossRefPubMedGoogle Scholar
  155. 155.
    Lyssiotis CA, Walker J, Wu C, Kondo T, Schultz PG, Wu X. Inhibition of histone deacetylase activity induces developmental plasticity in oligodendrocyte precursor cells. Proc Natl Acad Sci U S A 2007;104:14982–14987.CrossRefPubMedGoogle Scholar
  156. 156.
    Laeng P, Pitts RL, Lemire AL, et al. The mood stabilizer valproic acid stimulates GABA neurogenesis from rat forebrain stem cells. J Neurochem 2004;91:238–251.CrossRefPubMedGoogle Scholar
  157. 157.
    Siebzehnrubl FA, Buslei R, Eyupoglu IY, Seufert S, Hahnen E, Blumcke I. Histone deacetylase inhibitors increase neuronal differentiation in adult forebrain precursor cells. Exp Brain Res 2007;176:672–678.CrossRefPubMedGoogle Scholar
  158. 158.
    Shen S, Li J, Casaccia-Bonnefil P. Histone modifications affect timing of oligodendrocyte progenitor differentiation in the developing rat brain. J Cell Biol 2005;169:577–589.CrossRefPubMedGoogle Scholar
  159. 159.
    Chaudhry N, Filbin MT. Myelin-associated inhibitory signaling and strategies to overcome inhibition. J Cereb Blood Flow Metab 2007;27:1096–1107.CrossRefPubMedGoogle Scholar
  160. 160.
    Giger RJ, Venkatesh K, Chivatakarn O, et al. Mechanisms of CNS myelin inhibition: evidence for distinct and neuronal cell type specific receptor systems. Restor Neurol Neurosci 2008;26:97–115.PubMedGoogle Scholar
  161. 161.
    Liu J, Casaccia P. Epigenetic regulation of oligodendrocyte identity. Trends Neurosci 2010;33:193–201.CrossRefPubMedGoogle Scholar
  162. 162.
    Rosenzweig I, Vukadinovic Z, Turner AJ, Catani M. Neuroconnectivity and valproic acid: the myelin hypothesis. Neurosci Biobehav Rev 2012;36:1848–1856.CrossRefPubMedGoogle Scholar
  163. 163.
    Roth TL, Sweatt JD. Annual research review: Epigenetic mechanisms and environmental shaping of the brain during sensitive periods of development. J Child Psychol Psychiatry 2011;52:398–408.CrossRefPubMedGoogle Scholar
  164. 164.
    Abel T, Zukin RS. Epigenetic targets of HDAC inhibition in neurodegenerative and psychiatric disorders. Curr Opin Pharmacol 2008;8:57–64.CrossRefPubMedGoogle Scholar
  165. 165.
    Lu WH, Wang CY, Chen PS, et al. Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res 2013;91:694–705.CrossRefPubMedGoogle Scholar
  166. 166.
    Abdanipour A, Schluesener HJ, Tiraihi T. Effects of valproic acid, a histone deacetylase inhibitor, on improvement of locomotor function in rat spinal cord injury based on epigenetic science. Iran Biomed J 2012;16:90–100.PubMedGoogle Scholar
  167. 167.
    Lv L, Sun Y, Han X, Xu CC, Tang YP, Dong Q. Valproic acid improves outcome after rodent spinal cord injury: potential roles of histone deacetylase inhibition. Brain Res 2011;1396:60–68.CrossRefPubMedGoogle Scholar
  168. 168.
    Abematsu M, Tsujimura K, Yamano M, et al. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest 2010;120:3255–3266.CrossRefPubMedGoogle Scholar
  169. 169.
    Bai G, Wei D, Zou S, Ren K, Dubner R. Inhibition of class II histone deacetylases in the spinal cord attenuates inflammatory hyperalgesia. Mol Pain 2010;6:51.CrossRefPubMedGoogle Scholar
  170. 170.
    Shen S, Sandoval J, Swiss VA, et al. Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci 2008;11:1024–1034.CrossRefPubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2013

Authors and Affiliations

  • Elisa M. York
    • 1
  • Audrey Petit
    • 1
  • A. Jane Roskams
    • 1
  1. 1.Department of Zoology (Life Sciences Institute), Brain Research Institute and International Collaboration on Repair Discoveries (iCORD)University of British ColumbiaVancouverCanada

Personalised recommendations