Advertisement

Neurotherapeutics

, Volume 10, Issue 4, pp 771–781 | Cite as

Epigenetic Regulation of Axon Outgrowth and Regeneration in CNS Injury: The First Steps Forward

  • Ricco Lindner
  • Radhika Puttagunta
  • Simone Di GiovanniEmail author
Review

Abstract

Inadequate axonal sprouting and lack of regeneration limit functional recovery following neurologic injury, such as stroke, brain, and traumatic spinal cord injury. Recently, the enhancement of the neuronal regenerative program has led to promising improvements in axonal sprouting and regeneration in animal models of axonal injury. However, precise knowledge of the essential molecular determinants of this regenerative program remains elusive, thus limiting the choice of fully effective therapeutic strategies. Given that molecular regulation of axonal outgrowth and regeneration requires carefully orchestrated waves of gene expression, both temporally and spatially, epigenetic changes may be an ideal regulatory mechanism to address this unique need. While recent evidence suggests that epigenetic modifications could contribute to the regulation of axonal outgrowth and regeneration following axonal injury in models of stroke, and spinal cord and optic nerve injury, a number of unanswered questions remain. Such questions require systematic investigation of the epigenetic landscape between regenerative and non-regenerative conditions for the potential translation of this knowledge into regenerative strategies in human spinal and brain injury, as well as stroke.

Keywords

Epigenetics Axonal regeneration Histone modifications DNA methylation Spinal cord injury Optic nerve crush 

Notes

Acknowledgments

We would like to acknowledge the Hertie Foundation, the DFG (grant DI140731), and Wings for Life for their financial support.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2013_203_MOESM1_ESM.pdf (2.4 mb)
ESM 1 (PDF 2411 kb)

References

  1. 1.
    Yiu G, He Z. Glial inhibition of CNS axon regeneration. Nat Rev Neurosci 2006;7: 617-627.PubMedCrossRefGoogle Scholar
  2. 2.
    Di Giovanni S. Molecular targets for axon regeneration: focus on the intrinsic pathways. Expert Opin Ther Targets 2009;13:1387-1398.PubMedCrossRefGoogle Scholar
  3. 3.
    Neumann S, Woolf CJ Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron 2999;23:83-91.CrossRefGoogle Scholar
  4. 4.
    Teng FY, Tang BL. Axonal regeneration in adult CNS neurons—signaling molecules and pathways. J Neurochem 2006;96:1501-1508.PubMedCrossRefGoogle Scholar
  5. 5.
    Merkler D, Lindner R, Puttagunta R, Di Giovanni S. Locomotor recovery in spinal cord-injured rats treated with an antibody neutralizing the myelin-associated neurite growth inhibitor Nogo-A. J Neurosci 2001;21:3665-3673.Google Scholar
  6. 6.
    Fernandes KJ, Fan DP, Tsui BJ, Cassar SL, Tetzlaff W. Influence of the axotomy to cell body distance in rat rubrospinal and spinal motoneurons: differential regulation of GAP-43, tubulins, and neurofilament-M. J Comp Neurol 1999;414:495-510.PubMedCrossRefGoogle Scholar
  7. 7.
    Saruhashi Y, Young W, Perkins R. The recovery of 5-HT immunoreactivity in lumbosacral spinal cord and locomotor function after thoracic hemisection. Exp Neurol 1996;139:203-213.PubMedCrossRefGoogle Scholar
  8. 8.
    Camand E, Morel MP, Faissner A, Sotelo C, Dusart I. Long-term changes in the molecular composition of the glial scar and progressive increase of serotoninergic fibre sprouting after hemisection of the mouse spinal cord. Eur J Neurosci 2004;20:1161-1176.PubMedCrossRefGoogle Scholar
  9. 9.
    Tetzlaff W, Zwiers H, Lederis K, Cassar L, Bisby MA. Axonal transport and localization of B-50/GAP-43-like immunoreactivity in regenerating sciatic and facial nerves of the rat. J Neurosci 1989;9:1303-1313.PubMedGoogle Scholar
  10. 10.
    Kim JE, Li S, GrandPre T, Qiu D, Strittmatter SM. Axon regeneration in young adult mice lacking Nogo-A/B. Neuron 2003;38:187-199.PubMedCrossRefGoogle Scholar
  11. 11.
    Gris P, Murphy S, Jacob JE, Atkinson I, Brown A. Differential gene expression profiles in embryonic, adult-injured and adult-uninjured rat spinal cords. Mol Cell Neurosci 2003;24:555-567.PubMedCrossRefGoogle Scholar
  12. 12.
    Tetzlaff W, Lindner R, Puttagunta R, Di Giovanni S. Response of rubrospinal and corticospinal neurons to injury and neurotrophins. Prog Brain Res 1994;103:271-286.Google Scholar
  13. 13.
    Hendriks WT, Lindner R, Puttagunta R, Di Giovanni S. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat. J Neurotrauma 2006;23:18-35.Google Scholar
  14. 14.
    Jin Y, Fischer I, Tessler A, Houle JD. Transplants of fibroblasts genetically modified to express BDNF promote axonal regeneration from supraspinal neurons following chronic spinal cord injury. Exp Neurol 2002;177:265-275.Google Scholar
  15. 15.
    Tobias CA, Lindner R, Puttagunta R, Di Giovanni S. Delayed grafting of BDNF and NT-3 producing fibroblasts into the injured spinal cord stimulates sprouting, partially rescues axotomized red nucleus neurons from loss and atrophy, and provides limited regeneration. Exp Neurol 2003;184:97-113.Google Scholar
  16. 16.
    Tetzlaff W, Alexander SW, Miller FD, Bisby MA. Response of facial and rubrospinal neurons to axotomy: changes in mRNA expression for cytoskeletal proteins and GAP-43. J Neurosci 1991;11:2528-2544.PubMedGoogle Scholar
  17. 17.
    Miller FD, Tetzlaff W, Bisby MA, Fawcett JW, Milner RJ. Rapid induction of the major embryonic alpha-tubulin mRNA, T alpha 1, during nerve regeneration in adult rats. J Neurosci 1989;9:1452-1463.PubMedGoogle Scholar
  18. 18.
    McGraw J, Lindner R, Puttagunta R, Di Giovanni S. Galectin-1 expression correlates with the regenerative potential of rubrospinal and spinal motoneurons. Neuroscience 2004;128:713-719.Google Scholar
  19. 19.
    Jenkins R, Tetzlaff W, Hunt SP. Differential expression of immediate early genes in rubrospinal neurons following axotomy in rat. Eur J Neurosci 1993;5:203-209.PubMedCrossRefGoogle Scholar
  20. 20.
    Alonso G, Ridet JL, Oestreicher AB, Gispen WH, Privat A. B-50 (GAP-43) immunoreactivity is rarely detected within intact catecholaminergic and serotonergic axons innervating the brain and spinal cord of the adult rat, but is associated with these axons following lesion. Exp Neurol 1995;134:35-48.PubMedCrossRefGoogle Scholar
  21. 21.
    Storer PD, Houle JD. betaII-tubulin and GAP 43 mRNA expression in chronically injured neurons of the red nucleus after a second spinal cord injury. Exp Neurol 2003;183:537-547.PubMedCrossRefGoogle Scholar
  22. 22.
    Storer PD, Dolbeare D, Houle JD. Treatment of chronically injured spinal cord with neurotrophic factors stimulates betaII-tubulin and GAP-43 expression in rubrospinal tract neurons. J Neurosci Res 2003;74:502-511.PubMedCrossRefGoogle Scholar
  23. 23.
    Wong LF, Lindner R, Puttagunta R, Di Giovanni S. Retinoic acid receptor beta2 promotes functional regeneration of sensory axons in the spinal cord. Nat Neurosci 2006;9:243-250.Google Scholar
  24. 24.
    Liu K, Lindner R, Puttagunta R, Di Giovanni S. PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 2010;13:1075-1081.Google Scholar
  25. 25.
    Imamura T, Lindner R, Puttagunta R, Di Giovanni S. Non-coding RNA directed DNA demethylation of Sphk1 CpG island. Biochem Biophys Res Commun 2004;322:593-600.Google Scholar
  26. 26.
    Mattick JS, Makunin IV. Non-coding RNA. Hum Mol Genet 2006;15:R17-29.PubMedCrossRefGoogle Scholar
  27. 27.
    Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res 2010;1338: 20-35.PubMedCrossRefGoogle Scholar
  28. 28.
    Ma DK, Lindner R, Puttagunta R, Di Giovanni S. Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 2010;13:1338-1344.Google Scholar
  29. 29.
    Kunej T, Lindner R, Puttagunta R, Di Giovanni S. Epigenetic regulation of microRNAs in cancer: an integrated review of literature. Mutat Res 2011;717:77-84.Google Scholar
  30. 30.
    Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693-705.PubMedCrossRefGoogle Scholar
  31. 31.
    Berger SL. The complex language of chromatin regulation during transcription. Nature 2007;447:407-412.PubMedCrossRefGoogle Scholar
  32. 32.
    Kiefer JC. Epigenetics in development. Dev Dyn 2007;236:1144-1156.PubMedCrossRefGoogle Scholar
  33. 33.
    Murr R. Interplay between different epigenetic modifications and mechanisms. Adv Genet 2010;70:101-141.PubMedCrossRefGoogle Scholar
  34. 34.
    Tucker KL. Methylated cytosine and the brain: a new base for neuroscience. Neuron 2001;30:649-652.PubMedCrossRefGoogle Scholar
  35. 35.
    Feng J, Fan G. The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 2009;89:67-84.PubMedCrossRefGoogle Scholar
  36. 36.
    Day JJ, Sweatt JD. DNA methylation and memory formation. Nat Neurosci 2010;13:1319-1323.PubMedCrossRefGoogle Scholar
  37. 37.
    Sharma RP, Grayson DR, Guidotti A, Costa E. Chromatin, DNA methylation and neuron gene regulation—the purpose of the package. J Psychiatry Neurosci 2005;30:257-263.PubMedGoogle Scholar
  38. 38.
    Gaub P, Lindner R, Puttagunta R, Di Giovanni S. HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ 2010;17:1392-1408.Google Scholar
  39. 39.
    Gaub P, Lindner R, Puttagunta R, Di Giovanni S. The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain 2011;134:2134-2148.Google Scholar
  40. 40.
    Iskandar BJ, Lindner R, Puttagunta R, Di Giovanni S. Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J Clin Invest 2010;120:1603-1616.Google Scholar
  41. 41.
    Kiryu-Seo S, Kiyama H. The nuclear events guiding successful nerve regeneration. Front Mol Neurosci 2011;4:53.PubMedCrossRefGoogle Scholar
  42. 42.
    Trakhtenberg EF, Goldberg JL. Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci 2012;5:24.PubMedCrossRefGoogle Scholar
  43. 43.
    Mellor, J. Dynamic nucleosomes and gene transcription. Trends Genet 2006;22:320-329.PubMedCrossRefGoogle Scholar
  44. 44.
    Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 2007;26:5310-5318.PubMedCrossRefGoogle Scholar
  45. 45.
    Jenuwein T. The epigenetic magic of histone lysine methylation. FEBS J 2006;273:3121-3135.PubMedCrossRefGoogle Scholar
  46. 46.
    Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007;447:425-432.PubMedCrossRefGoogle Scholar
  47. 47.
    Laurent L, Lindner R, Puttagunta R, Di Giovanni S. Dynamic changes in the human methylome during differentiation. Genome Res 2010;20:320-331.Google Scholar
  48. 48.
    Wu SC, Zhang Y. Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 2010;11:607-620.PubMedCrossRefGoogle Scholar
  49. 49.
    Lister R, Lindner R, Puttagunta R, Di Giovanni S. Human DNA methylomes at base resolution show widespread epigenomic differences. Nature 2009;462:315-322.Google Scholar
  50. 50.
    Larsen F, Gundersen G, Lopez R, Prydz H. CpG islands as gene markers in the human genome. Genomics 1992;13:1095-1107.PubMedCrossRefGoogle Scholar
  51. 51.
    Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16:6-21.PubMedCrossRefGoogle Scholar
  52. 52.
    Illingworth R, Lindner R, Puttagunta R, Di Giovanni S. A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 2008;6: e22.Google Scholar
  53. 53.
    Illingworth RS, Lindner R, Puttagunta R, Di Giovanni S. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet 2010;6:e1001134.Google Scholar
  54. 54.
    Maunakea AK, Lindner R, Puttagunta R, Di Giovanni S. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 2010;466:253-257.Google Scholar
  55. 55.
    Antequera F, Bird A. Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci U S A 1993;90:11995-11999.PubMedCrossRefGoogle Scholar
  56. 56.
    Saxonov S, Berg P, Brutlag DL. A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 2006;103:1412-1417.PubMedCrossRefGoogle Scholar
  57. 57.
    Weber M, Lindner R, Puttagunta R, Di Giovanni S. Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007;39:457-466.Google Scholar
  58. 58.
    Lewis JD, Lindner R, Puttagunta R, Di Giovanni S. Purification, sequence, and cellular localization of a novel chromosomal protein that binds to methylated DNA. Cell 1992;69:905-914.Google Scholar
  59. 59.
    Amir RE, Lindner R, Puttagunta R, Di Giovanni S. Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999;23:185-188.Google Scholar
  60. 60.
    Bogdanovic O, Veenstra GJ. DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 2009;118:549-565.PubMedCrossRefGoogle Scholar
  61. 61.
    Nan X, Lindner R, Puttagunta R, Di Giovanni S. Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998;393:386-389.Google Scholar
  62. 62.
    Boeke J, Ammerpohl O, Kegel S, Moehren U, Renkawitz R. The minimal repression domain of MBD2b overlaps with the methyl-CpG-binding domain and binds directly to Sin3A. J Biol Chem 2000;275:34963-34967.PubMedCrossRefGoogle Scholar
  63. 63.
    Fournier A, Sasai N, Nakao M, Defossez PA. The role of methyl-binding proteins in chromatin organization and epigenome maintenance. Brief Funct Genomics 2012;11:251-264.PubMedCrossRefGoogle Scholar
  64. 64.
    Watson P, Lindner R, Puttagunta R, Di Giovanni S. Angelman syndrome phenotype associated with mutations in MECP2, a gene encoding a methyl CpG binding protein. J Med Genet 2001;38:224-228.Google Scholar
  65. 65.
    Chahrour M, Lindner R, Puttagunta R, Di Giovanni S. MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008;320:1224-1229.Google Scholar
  66. 66.
    Diaz de Leon-Guerrero S, Pedraza-Alva G, Perez-Martinez L. In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. Eur J Neurosci 2011;33:1563-1574.CrossRefGoogle Scholar
  67. 67.
    Samaco RC, Neul JL. Complexities of Rett Syndrome and MeCP2. J Neurosci 2011;31:7951-7959.PubMedCrossRefGoogle Scholar
  68. 68.
    McGraw CM, Samaco RC, Zoghbi HY. Adult neural function requires MeCP2. Science 2011;333:186.PubMedCrossRefGoogle Scholar
  69. 69.
    Shahbazian MD, Antalffy B, Armstrong DL, Zoghbi HY. Insight into Rett syndrome: MeCP2 levels display tissue- and cell-specific differences and correlate with neuronal maturation. Hum Mol Genet 2002;11:115-124.PubMedCrossRefGoogle Scholar
  70. 70.
    Nagai K, Miyake K, Kubota T. A transcriptional repressor MeCP2 causing Rett syndrome is expressed in embryonic non-neuronal cells and controls their growth. Brain Res Dev Brain Res 2005;157:103-106.PubMedCrossRefGoogle Scholar
  71. 71.
    Maezawa I, Swanberg S, Harvey D, LaSalle JM, Jin LW. Rett syndrome astrocytes are abnormal and spread MeCP2 deficiency through gap junctions. J Neurosci 2009;29:5051-5061.PubMedCrossRefGoogle Scholar
  72. 72.
    Tochiki KK, Cunningham J, Hunt SP, Geranton SM. The expression of spinal methyl-CpG-binding protein 2, DNA methyltransferases and histone deacetylases is modulated in persistent pain states. Mol Pain 2012;8:14.PubMedCrossRefGoogle Scholar
  73. 73.
    Li W, Calfa G, Larimore J, Pozzo-Miller L. Activity-dependent BDNF release and TRPC signaling is impaired in hippocampal neurons of Mecp2 mutant mice. Proc Natl Acad Sci U S A 2012;109:17087-17092.PubMedCrossRefGoogle Scholar
  74. 74.
    Martinowich K, Lindner R, Puttagunta R, Di Giovanni S. DNA methylation-related chromatin remodeling in activity-dependent BDNF gene regulation. Science 2003;302:890-893.Google Scholar
  75. 75.
    Zocchi L, Sassone-Corsi P. SIRT1-mediated deacetylation of MeCP2 contributes to BDNF expression. Epigenetics 2012;7:695-700.PubMedCrossRefGoogle Scholar
  76. 76.
    Khoshnan A, Patterson PH. Elevated IKKalpha accelerates the differentiation of human neuronal progenitor cells and induces MeCP2-dependent BDNF expression. PLoS One 2012;7:e41794.PubMedCrossRefGoogle Scholar
  77. 77.
    Chen WG, Lindner R, Puttagunta R, Di Giovanni S. Derepression of BDNF transcription involves calcium-dependent phosphorylation of MeCP2. Science 2003;302:885-889.Google Scholar
  78. 78.
    Lubin FD, Roth TL, Sweatt JD. Epigenetic regulation of BDNF gene transcription in the consolidation of fear memory. J Neurosci 2008;28:10576-10586.PubMedCrossRefGoogle Scholar
  79. 79.
    Gao Y, Lindner R, Puttagunta R, Di Giovanni S. Activated CREB is sufficient to overcome inhibitors in myelin and promote spinal axon regeneration in vivo. Neuron 2004;44:609-621.Google Scholar
  80. 80.
    Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 2008;209:321-332.PubMedCrossRefGoogle Scholar
  81. 81.
    Kishi N, Macklis JD. MECP2 is progressively expressed in post-migratory neurons and is involved in neuronal maturation rather than cell fate decisions. Mol Cell Neurosci 2004;27:306-321.PubMedCrossRefGoogle Scholar
  82. 82.
    Hong EJ, West AE, Greenberg ME. Transcriptional control of cognitive development. Curr Opin Neurobiol 2005;15:21-28.PubMedCrossRefGoogle Scholar
  83. 83.
    Gonzales ML, LaSalle JM. The role of MeCP2 in brain development and neurodevelopmental disorders. Curr Psychiatry Rep 2010;12:127-134.PubMedCrossRefGoogle Scholar
  84. 84.
    Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999;99:247-257.PubMedCrossRefGoogle Scholar
  85. 85.
    Watanabe D, Uchiyama K, Hanaoka K. Transition of mouse de novo methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor cell development. Neuroscience 2006;142:727-737.PubMedCrossRefGoogle Scholar
  86. 86.
    Endres M, Lindner R, Puttagunta R, Di Giovanni S. DNA methyltransferase contributes to delayed ischemic brain injury. J Neurosci 2000;20:3175-3181.Google Scholar
  87. 87.
    Feng J, Chang H, Li E, Fan G. Dynamic expression of de novo DNA methyltransferases Dnmt3a and Dnmt3b in the central nervous system. J Neurosci Res 2005;79:734-746.PubMedCrossRefGoogle Scholar
  88. 88.
    Chestnut BA, Lindner R, Puttagunta R, Di Giovanni S. Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 2011;31:16619-16636.Google Scholar
  89. 89.
    Tawa R, Ono T, Kurishita A, Okada S, Hirose S. Changes of DNA methylation level during pre- and postnatal periods in mice. Differentiation 1990;45:44-48.PubMedCrossRefGoogle Scholar
  90. 90.
    Goto K, Lindner R, Puttagunta R, Di Giovanni S. Expression of DNA methyltransferase gene in mature and immature neurons as well as proliferating cells in mice. Differentiation 1994;56:39-44.Google Scholar
  91. 91.
    Brooks PJ, Marietta C, Goldman D. DNA mismatch repair and DNA methylation in adult brain neurons. J Neurosci 1996;16:939-945.PubMedGoogle Scholar
  92. 92.
    Miller CA, Sweatt JD. Covalent modification of DNA regulates memory formation. Neuron 2007;53:857-869.PubMedCrossRefGoogle Scholar
  93. 93.
    Meaney MJ, Ferguson-Smith AC. Epigenetic regulation of the neural transcriptome: the meaning of the marks. Nat Neurosci 2010;13:1313-1318.PubMedCrossRefGoogle Scholar
  94. 94.
    Dulac C. Brain function and chromatin plasticity. Nature 2010;465:728-735.PubMedCrossRefGoogle Scholar
  95. 95.
    Yu NK, Baek SH, Kaang BK. DNA methylation-mediated control of learning and memory. Mol Brain 2011;4:5.PubMedCrossRefGoogle Scholar
  96. 96.
    Kronenberg G, Colla M, Endres M. Folic acid, neurodegenerative and neuropsychiatric disease. Curr Mol Med 2009;9:315-323.PubMedCrossRefGoogle Scholar
  97. 97.
    Barreto G, Lindner R, Puttagunta R, Di Giovanni S. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 2007;445:671-675.Google Scholar
  98. 98.
    Befort K, Karchewski L, Lanoue C, Woolf CJ. Selective up-regulation of the growth arrest DNA damage-inducible gene Gadd45 alpha in sensory and motor neurons after peripheral nerve injury. Eur J Neurosci 2003;18:911-922.PubMedCrossRefGoogle Scholar
  99. 99.
    Wang Z, Lindner R, Puttagunta R, Di Giovanni S. Combinatorial patterns of histone acetylations and methylations in the human genome. Nat Genet 2008;40:897-903.Google Scholar
  100. 100.
    Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011;21:381-395.PubMedCrossRefGoogle Scholar
  101. 101.
    Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev 2000;64:435-459.PubMedCrossRefGoogle Scholar
  102. 102.
    Bernstein BE, Meissner A, Lander ES. The mammalian epigenome. Cell 2007;128:669-681.PubMedCrossRefGoogle Scholar
  103. 103.
    Hodawadekar SC, Marmorstein R. Chemistry of acetyl transfer by histone modifying enzymes: structure, mechanism and implications for effector design. Oncogene 2007;26:5528-5540.PubMedCrossRefGoogle Scholar
  104. 104.
    Jenuwein T, Allis CD. Translating the histone code. Science 2001;293:1074-1080.PubMedCrossRefGoogle Scholar
  105. 105.
    Xu W, Edmondson DG, Roth SY. Mammalian GCN5 and P/CAF acetyltransferases have homologous amino-terminal domains important for recognition of nucleosomal substrates. Mol Cell Biol 1998;18:5659-5669.PubMedGoogle Scholar
  106. 106.
    Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y. The transcriptional coactivators p300 and CBP are histone acetyltransferases. Cell 1996;87:953-959.PubMedCrossRefGoogle Scholar
  107. 107.
    Wallberg AE, Pedersen K, Lendahl U, Roeder RG. p300 and PCAF act cooperatively to mediate transcriptional activation from chromatin templates by notch intracellular domains in vitro. Mol Cell Biol 2002;22:7812-7819.PubMedCrossRefGoogle Scholar
  108. 108.
    Jin Q, Lindner R, Puttagunta R, Di Giovanni S. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J 2011;30:249-262.Google Scholar
  109. 109.
    Maurice T, Lindner R, Puttagunta R, Di Giovanni S. Altered memory capacities and response to stress in p300/CBP-associated factor (PCAF) histone acetylase knockout mice. Neuropsychopharmacology 2008;33:1584-1602.Google Scholar
  110. 110.
    Wong K, Lindner R, Puttagunta R, Di Giovanni S. Nerve growth factor receptor signaling induces histone acetyltransferase domain-dependent nuclear translocation of p300/CREB-binding protein-associated factor and hGCN5 acetyltransferases. J Biol Chem 2004;279:55667-55674.Google Scholar
  111. 111.
    Xenaki G, Lindner R, Puttagunta R, Di Giovanni S. PCAF is an HIF-1alpha cofactor that regulates p53 transcriptional activity in hypoxia. Oncogene 2008;27:5785-5796.Google Scholar
  112. 112.
    Herdegen T, Skene P, Bahr M. The c-Jun transcription factor—bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 1997;20:227-231.PubMedCrossRefGoogle Scholar
  113. 113.
    Di Giovanni S, Lindner R, Puttagunta R. The tumor suppressor protein p53 is required for neurite outgrowth and axon regeneration. EMBO J 2006;25:4084-4096.Google Scholar
  114. 114.
    Song CZ, Keller K, Chen Y, Stamatoyannopoulos G. Functional interplay between CBP and PCAF in acetylation and regulation of transcription factor KLF13 activity. J Mol Biol 2003;329:207-215.PubMedCrossRefGoogle Scholar
  115. 115.
    Sharma A, Lindner R, Puttagunta R, Di Giovanni S. The NeuroD1/BETA2 sequences essential for insulin gene transcription colocalize with those necessary for neurogenesis and p300/CREB binding protein binding. Mol Cell Biol 1999;19:704-713.Google Scholar
  116. 116.
    Guan Z, Lindner R, Puttagunta R, Di Giovanni S. Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure. Cell 2002;111:483-493.Google Scholar
  117. 117.
    Buschmann T, Lindner R, Puttagunta R, Di Giovanni S. Expression of Jun, Fos, and ATF-2 proteins in axotomized explanted and cultured adult rat dorsal root ganglia. Neuroscience 1998;84:163-176.Google Scholar
  118. 118.
    Li MY, Lindner R, Puttagunta R, Di Giovanni S. Dramatic co-activation of WWOX/WOX1 with CREB and NF-kappaB in delayed loss of small dorsal root ganglion neurons upon sciatic nerve transection in rats. PLoS One 2009;4:e7820.Google Scholar
  119. 119.
    Laherty CD, Lindner R, Puttagunta R, Di Giovanni S. Histone deacetylases associated with the mSin3 corepressor mediate mad transcriptional repression. Cell 1997;89:349-356.Google Scholar
  120. 120.
    Ahringer J. NuRD and SIN3 histone deacetylase complexes in development. Trends Genet 2000;16:351-356.PubMedCrossRefGoogle Scholar
  121. 121.
    McDonel P, Costello I, Hendrich B. Keeping things quiet: roles of NuRD and Sin3 co-repressor complexes during mammalian development. Int J Biochem Cell Biol 2009;41:108-116.PubMedCrossRefGoogle Scholar
  122. 122.
    Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH. Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci U S A 2004;101:16659-16664.PubMedCrossRefGoogle Scholar
  123. 123.
    Soriano FX, Hardingham GE. In cortical neurons HDAC3 activity suppresses RD4-dependent SMRT export. PLoS One 2011;6:e21056.PubMedCrossRefGoogle Scholar
  124. 124.
    Puttagunta R, Lindner R, Puttagunta R, Di Giovanni S. RA-RAR-{beta} counteracts myelin-dependent inhibition of neurite outgrowth via Lingo-1 repression. J Cell Biol 2011;193:1147-1156.Google Scholar
  125. 125.
    Chen Y, Lindner R, Puttagunta R, Di Giovanni S. HDAC-mediated deacetylation of NF-kappaB is critical for Schwann cell myelination. Nat Neurosci 2011;14:437-441.Google Scholar
  126. 126.
    Rivieccio MA, Lindner R, Puttagunta R, Di Giovanni S. HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci U S A 2009;106:19599-19604.Google Scholar
  127. 127.
    Mehler MF. Epigenetic principles and mechanisms underlying nervous system functions in health and disease. Prog Neurobiol 2008;86:305-341.PubMedCrossRefGoogle Scholar
  128. 128.
    Lockett GA, Wilkes F, Maleszka R. Brain plasticity, memory and neurological disorders: an epigenetic perspective. Neuroreport 2010;21:909-913.PubMedCrossRefGoogle Scholar
  129. 129.
    Tsankova NM, Lindner R, Puttagunta R, Di Giovanni S. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006;9:519-525.Google Scholar
  130. 130.
    Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S. A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ 2009;16:543-554.PubMedCrossRefGoogle Scholar
  131. 131.
    Floriddia EM, Lindner R, Puttagunta R, Di Giovanni S. p53 Regulates the neuronal intrinsic and extrinsic responses affecting the recovery of motor function following spinal cord injury. J Neurosci 2012;32:13956-13970.Google Scholar
  132. 132.
    Tedeschi A, Lindner R, Puttagunta R, Di Giovanni S. The tumor suppressor p53 transcriptionally regulates cGKI expression during neuronal maturation and is required for cGMP-dependent growth cone collapse. J Neurosci 2009;29:15155-15160.Google Scholar
  133. 133.
    Rishal I, Fainzilber M. Retrograde signaling in axonal regeneration. Exp Neurol 2009;223:5-10.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2013

Authors and Affiliations

  • Ricco Lindner
    • 1
  • Radhika Puttagunta
    • 1
  • Simone Di Giovanni
    • 1
    Email author
  1. 1.Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TuebingenTuebingenGermany

Personalised recommendations