, Volume 10, Issue 4, pp 798–807

Novel Protective Effects of Histone Deacetylase Inhibition on Stroke and White Matter Ischemic Injury

  • Selva Baltan
  • Richard S. Morrison
  • Sean P. Murphy


Understanding how epigenetics influences the process and progress of a stroke could yield new targets and therapeutics for use in the clinic. Experimental evidence suggests that inhibitors of zinc-dependent histone deacetylases can protect neurons, axons, and associated glia from the devastating effects of oxygen and glucose deprivation. While the specific enzymes involved have yet to be clearly identified, there are hints from somewhat selective chemical inhibitors and also from the use of specific small hairpin RNAs to transiently knockdown protein expression. Neuroprotective mechanisms implicated thus far include the upregulation of extracellular glutamate clearance, inhibition of p53-mediated cell death, and maintenance of mitochondrial integrity. The histone deacetylases have distinct cellular and subcellular localizations, and discrete substrates. As a number of chemical inhibitors are already in clinical use for the treatment of cancer, repurposing for the stroke clinic should be expedited.


Cerebral ischemia Zn-dependent histone deacetylase infarct mitochondria p53 aging 

Supplementary material

13311_2013_201_MOESM1_ESM.pdf (511 kb)
ESM 1(PDF 510 kb)


  1. 1.
    Go AS, Mozaffarian D, Roger VL, et al. Heart disease and stroke statistics—2013 update. Circulation 2013;127:e6–e245.PubMedCrossRefGoogle Scholar
  2. 2.
    Sun J, Sun J, Ming G-l, Song H. Epigenetic regulation of neurogenesis in the adult mammalian brain. Europ J Neurosci 2011;33:1087–1093.CrossRefGoogle Scholar
  3. 3.
    Qureshi IA, Mehler MF. The emerging role of epigenetics in stroke. III Neural stem cell biology and regenerative medicine. Arch Neurol 2011;68:294–302.PubMedCrossRefGoogle Scholar
  4. 4.
    Rodríguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med 2011;17:330–339.PubMedCrossRefGoogle Scholar
  5. 5.
    Pearce WJ. Epigenetics: an expanding new piece of the stroke puzzle. Transl Stroke Res 2011;2:243–247.PubMedCrossRefGoogle Scholar
  6. 6.
    Qureshi IA, Mattick JS, Mehler MF. Long non-coding RNAs in nervous system function and disease. Brain Res 2010;1338:20–35.PubMedCrossRefGoogle Scholar
  7. 7.
    Dharap A, Nakka VP, Vemuganti R. Effect of focal ischemia on long noncoding RNAs. Stroke 2012;43:2800–2802.PubMedCrossRefGoogle Scholar
  8. 8.
    Kaur P, Liu F, Rong et al. Non-coding RNAs as potential neuroprotectants against ischemic brain injury. Brain Sci 2013;3:360–395.CrossRefGoogle Scholar
  9. 9.
    Qureshi IA, Mehler MF. The emerging role of epigenetics in stroke II. RNA regulatory circuitry. Arch Neurol 2010;67:1435–1441.PubMedCrossRefGoogle Scholar
  10. 10.
    Liu D-Z, Tian Y, Ander BP et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures J Cereb Blood Flow Metab 2010;30:92–101.PubMedCrossRefGoogle Scholar
  11. 11.
    Ouyang YB, Stary CM, Yang GY, Giffard R. MicroRNAs: Innovative targets for cerebral ischemia and stroke. Curr Drug Targets 2013;14:90–101.PubMedCrossRefGoogle Scholar
  12. 12.
    Wang Y, Wang Y, Yang G-Y. MicroRNAs in cerebral ischemia. Stroke Res Treat 2013 ID 276540.Google Scholar
  13. 13.
    Rink C, Khanna S. MicroRNA in ischemic stroke etiology and pathology. Physiol Genom 2011;43:521–528.CrossRefGoogle Scholar
  14. 14.
    Qureshi IA, Mehler MF. Emerging role of epigenetics in stroke. Part 1: DNA methylation and chromatin modifications. Arch Neurol 2010;67:1316–1322.PubMedCrossRefGoogle Scholar
  15. 15.
    Baltan S, Bachleda A, Morrison RS, Murphy SP. Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia. Trans Stroke Res 2011;2:411–423.CrossRefGoogle Scholar
  16. 16.
    Baltan S, Besancon EF, Mbow B, Ye, ZC, Hamner M, Ransom BR. White matter vulnerability to ischemic injury increases with age due to enhanced excitotoxicity. J Neurosci 2008;28:1479–1489.PubMedCrossRefGoogle Scholar
  17. 17.
    Gibson CL, Murphy SP. Benefits of histone deacetylase inhibitors for acute brain injury: a systematic review of animal studies. J Neurochem 2010;115:806–813.PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Z, Leng Y, Tsai L-K, Leeds P, Chuang D-M. Valproic acid attenuates blood–brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition. J Cereb Blood Flow Metab 2011:31;52–57.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang B, Zhu X, Kim YT, et al. HDAC inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Rad Biol Med 2012;52:928–936.PubMedCrossRefGoogle Scholar
  20. 20.
    He M, Zhang B, Wei X, Wang Z, Fan B, Du P, et al. HDAC4/5-HMGB1 signaling mediated by NADPH oxidase activity contributes to cerebral ischaemia/reperfusion injury. J Cell Mol Med 2013;17:531–542:PubMedCrossRefGoogle Scholar
  21. 21.
    Del Zoppo GJ. Why do all drugs work in animals but none in stroke patients? 1. Drugs promoting cerebral blood flow. J Intern Med 1995;237:79–88.PubMedCrossRefGoogle Scholar
  22. 22.
    Del Zoppo GJ. Clinical trials in acute stroke: why have they not been successful? Neurology 1998;51:S59–S61.PubMedCrossRefGoogle Scholar
  23. 23.
    Dirnagl U, Iadecola C, Moskowitz MA Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999;22:391–397.PubMedCrossRefGoogle Scholar
  24. 24.
    O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW. 1,026 experimental treatments in acute stroke. Ann Neurol 2006;59:467–477.PubMedCrossRefGoogle Scholar
  25. 25.
    Cavallotti C, Pacella E, Pescosolido N, Tranquilli-Leali FM, Feher J. Age-related changes in the human optic nerve. Can J Ophthalmol 2002;37:389–394.PubMedGoogle Scholar
  26. 26.
    Cavallotti C, Cavallotti D, Pescosolido N, Pacella E. Age-related changes in rat optic nerve:morphological studies. Anat Histol Embryol 2003;32:12–16.PubMedCrossRefGoogle Scholar
  27. 27.
    Baltan S, Murphy SP, Danilov AC, Bachleda A, Morrison R. Histone deacetylase inhibitors preserve white matter structure and function during ischemia by conserving ATP and reducing excitotoxicity. J Neurosci 2011;31:3990–3999.PubMedCrossRefGoogle Scholar
  28. 28.
    Baltan S. Histone deacetylase inhibitors preserve function in aging axons. J Neurochem 2012;123(Suppl. 2):108–115.PubMedCrossRefGoogle Scholar
  29. 29.
    Baltan S. Ischemic injury to white matter: An age-dependent process. Neuroscientist 2009;15:126–133.PubMedCrossRefGoogle Scholar
  30. 30.
    Tekkok SB, Ye ZC, Ransom BR. Excitotoxic mechanisms of ischemic injury in myelinated white matter. J Cereb Blood Flow Metab 2007;27:1540–1552.PubMedCrossRefGoogle Scholar
  31. 31.
    Rothstein JD, Dykes-Hoberg M, Pardo CA, et al. Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 1996;16:675–686.PubMedCrossRefGoogle Scholar
  32. 32.
    Acheson A, Conover JC, Fandl JP, et al. A BDNF autocrine loop in adult sensory neurons prevents cell death. Nature 1995;374:450–453.PubMedCrossRefGoogle Scholar
  33. 33.
    Huang EJ, Reichardt LF. Neurotrophins: Roles in neuronal development and function. Annu Rev Neurosci 2001;24:677–736.PubMedCrossRefGoogle Scholar
  34. 34.
    Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psych 2009;14:51–59.CrossRefGoogle Scholar
  35. 35.
    Liu XS, Chopp M, Kassis H, et al. Valproic acid increases white matter repair and neurogenesis after stroke. Neuroscience 2012;220:313–321.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang Z, Tsai LK, Munasinghe J, et al. Chronic valproate treatment enhances postischemic angiogenesis and promotes functional recovery in a rat model of ischemic stroke. Stroke 2012;43:2430–2436.PubMedCrossRefGoogle Scholar
  37. 37.
    Fass DM, Reis SA, et al. Crebinostat: a novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity. Neuropharmacology 2013;64:81–96.PubMedCrossRefGoogle Scholar
  38. 38.
    Chen SH, Wu HM, Ossola B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. Br J Pharmacol 2012;165:494–505.PubMedCrossRefGoogle Scholar
  39. 39.
    Martín-Montalvo A, Villalba JM, Navas P, de Cabo R. NRF2, cancer and calorie restriction. Oncogene 2011;30:505–520.PubMedCrossRefGoogle Scholar
  40. 40.
    Son TG, Camandola S, Arumugam TV, et al. Plumbagin, a novel Nrf2/ARE activator, protects against cerebral ischemia. J Neurochem 2010;112:1316–1326.PubMedCrossRefGoogle Scholar
  41. 41.
    Morrison R, Kinoshita Y, Johnson MD, Guo W, Garden GA. p53-dependent cell death signaling in neurons. Neurochem Res 2003;28:15–27.PubMedCrossRefGoogle Scholar
  42. 42.
    Uo T, Kinoshita Y, Morrison RS. Apoptotic actions of p53 require transcriptional activation of PUMA and do not involve a direct mitochondrial/cytoplasmic site of action in postnatal cortical neurons. J Neurosci 2007;27:12198–12210.PubMedCrossRefGoogle Scholar
  43. 43.
    Langley B, D’Annibale MA, Suh K, et al. Pulse inhibition of histone deacetylases induces complete resistance to oxidative death in cortical neurons without toxicity and reveals a role for cytoplasmic p21waf1/cip1 in cell cycle-independent neuroprotection. J Neurosci 2008;28:163–176.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 2010;5:e10848.PubMedCrossRefGoogle Scholar
  45. 45.
    Dompierre JP, Godin JD, Charrin BC, Cordelières FP, et al.Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 2007;27:3571–3583.PubMedCrossRefGoogle Scholar
  46. 46.
    Kim JY, Shen S, Dietz K, He Y, Reynolds R, Casaccia P. HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci 2010;13:180–189.PubMedCrossRefGoogle Scholar
  47. 47.
    Wang DB, Garden GA, Kinoshita C, et al. Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death. J Neurosci 2013;33:1357–1365.PubMedCrossRefGoogle Scholar
  48. 48.
    Uo T, Veenstra TD, Morrison RS. HDAC inhibitors prevent p53-dependent and -independent Bax-mediate neuronal apoptosis through two distinct mechanisms. J Neurosci 2009;29:2824–2832.PubMedCrossRefGoogle Scholar
  49. 49.
    Marinova Z, Ren M, Wendland JR, Leng Y, et al. Valproic acid induces functional heat-shock protein 70 via Class I histone deacetylase inhibition in cortical neurons: a potential role of Sp1 acetylation. J Neurochem 2009;111:976–987.PubMedCrossRefGoogle Scholar
  50. 50.
    Leng Y, Liang MH, Ren M, et al. Synergistic neuroprotective effects of lithium and valproic acid or other histone deacetylase inhibitors in neurons: roles of glycogen synthase kinase-3 inhibition. J Neurosci 2008;28:2576–2588.PubMedCrossRefGoogle Scholar
  51. 51.
    Bolger TA, Yao TP.Intracellular trafficking of histone deacetylase 4 regulates neuronal cell death. J Neurosci 2005;25:9544–9553.PubMedCrossRefGoogle Scholar
  52. 52.
    Yang Y, Qin X, Liu S, et al. Peroxisome proliferator-activated receptor γ is inhibited by histone deacetylase 4 in cortical neurons under oxidative stress. J Neurochem 2011;118:429–439.PubMedCrossRefGoogle Scholar
  53. 53.
    Kahle MP, Bix GJ. Neuronal restoration following ischemic stroke: influences, barriers, and therapeutic potential. Neurorehabil Neural Repair 2013;27:469–478.PubMedCrossRefGoogle Scholar
  54. 54.
    Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage FH Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA 2004;101:16659–16664.PubMedCrossRefGoogle Scholar
  55. 55.
    Balasubramaniyan V, Boddeke E, Bakels R Effects of HDAC inhibition on neuronal differentiation of embryonic mouse neural stem cells. Neuroscience 2006:143; 939–951.PubMedCrossRefGoogle Scholar
  56. 56.
    Dovey OM, Foster CT, Cowley SM. Histone deacetylase 1 (HDAC1), but not HDAC2, controls embryonic stem cell differentiation. Proc Natl Acad Sci U S A 2010;107:8242–8247.PubMedCrossRefGoogle Scholar
  57. 57.
    Lee S, Lee S-K. Crucial roles of histone-modifying enzymes in mediating neural cell-type specification. Curr Opin Neurobiol 2010;20:29–36.PubMedCrossRefGoogle Scholar
  58. 58.
    Montgomery RL, Hsieh J, Barbosa AC, Richardson JA, Olson EN. HDACs 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci U S A 2009;106:7876–7881.PubMedCrossRefGoogle Scholar
  59. 59.
    Humphrey GW, Wang Y-H, Hirai T, et al. Complementary roles for HDACs 1,2,and 3 in differentiation of pluripotent stem cells. Differentiation 2008;76:348–356.PubMedCrossRefGoogle Scholar
  60. 60.
    Kim H J, Rowe M, Ren M, Hong J-S, Chen P-S, Chuang D-M. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke: multiple mechanisms of action. J Pharmacol Exp Ther 2007;321:892–901.PubMedCrossRefGoogle Scholar
  61. 61.
    Guan J-S, Haggarty SJ, Giacometti E, et al. HDAC2 negatively regulates memory formation and synaptic plasticity. Nature 2009;459:55–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Nott A, Watson PM, Robinson JD, Crepaldi L, Riccio A. S-nitrosylation of HDAC2 induces chromatin remodeling in neurons. Nature 2008;455:411–415.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2013

Authors and Affiliations

  • Selva Baltan
    • 1
  • Richard S. Morrison
    • 2
  • Sean P. Murphy
    • 2
  1. 1.Department of Neurosciences, Lerner Research InstituteThe Cleveland Clinic FoundationClevelandUSA
  2. 2.Department of Neurological SurgeryUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations