, Volume 10, Issue 3, pp 429–439 | Cite as

Natural Compounds May Open New Routes to Treatment of Amyloid Diseases



Protein misfolding disorders, such as Alzheimer's disease and Parkinson's disease, have in common that a protein accumulates in an insoluble form in the affected tissue. The process of aggregation follows a mechanism of seeded polymerization. Although the toxic species is still not well defined, the process, rather than the end product, of fibril formation is likely the main culprit in amyloid toxicity. These findings suggest that therapeutic strategies directed against the protein misfolding cascade should focus on depleting aggregation intermediates rather than on large fibrillar aggregates. Recent studies involving natural compounds have suggested new intervention strategies. The polyphenol epi-gallocatechine-3-gallate (EGCG), the main polyphenol in Camilla sinensis, binds directly to a large number of proteins that are involved in protein misfolding diseases and inhibits their fibrillization. Instead, it promotes the formation of stable, spherical aggregates. These spherical aggregates are not cytotoxic, have a lower β-sheet content than fibrils, and do not catalyze fibril formation. Correspondingly, epi-gallocatechine-3-gallate remodels amyloid fibrils into aggregates with the same properties. Derivatives of Orcein, which is a phenoxazine dye that can be isolated from the lichen Roccella tinctoria, form a second promising class of natural compounds. They accelerate fibril formation of the Alzheimer’s disease-related amyloid-beta peptide. At the same time these compounds deplete oligomeric and protofibrillar forms of the peptide. These compounds may serve as proof-of-principle for the strategies of promoting and redirecting fibril formation. Both may emerge as two promising new therapeutic approaches to intervening into protein misfolding processes.


Amyloid Mechanism Therapy Polyphenol EGCG Orcein Alzheimer Parkinson 



The two main substances, EGCG and O4, that were discussed in this review were initially characterized by Dagmar Ehrnhöfer and Martin Herbst, respectively, in the laboratory of Professor Erich Wanker at the Max Delbrück Center for Molecular Medicine. I gratefully acknowledge his support, encouragement, and guidance in elucidating their underlying mechanisms of action. I would like to dedicate this work to the memory of Professor Werner Hunstein (1928–2012), who, in turning personal tragedy into research fervor, demonstrated that, through persistence and enthusiasm, the path from the bench to the bedside can be found.

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2013_192_MOESM1_ESM.pdf (511 kb)
ESM 1 (PDF 510 kb)


  1. 1.
    Dobson CM. Protein folding and misfolding. Nature 2003;426:884-90.PubMedCrossRefGoogle Scholar
  2. 2.
    Uversky VN. Intrinsic disorder in proteins associated with neurodegenerative diseases. Front Biosci 2009;14:5188-238.PubMedCrossRefGoogle Scholar
  3. 3.
    Greenwald J, Riek R. Biology of amyloid: structure, function, and regulation. Structure 2010;18:1244-60.PubMedCrossRefGoogle Scholar
  4. 4.
    Astbury WT, Dickinson S. The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem J 1935;29:2351-60 1.PubMedGoogle Scholar
  5. 5.
    Alzheimer A. Über eine eigenartige Erkrankung der Hirnrinde. Allg Z Psychiat Psych-Gerichtl Med 1907;64:146-8.Google Scholar
  6. 6.
    Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. Lancet 2011;377:1019-31.PubMedCrossRefGoogle Scholar
  7. 7.
    Selkoe DJ, Yamazaki T, Citron M, et al. The role of APP processing and trafficking pathways in the formation of amyloid beta-protein. Ann N Y Acad Sci 1996;777:57-64.PubMedCrossRefGoogle Scholar
  8. 8.
    Gravina SA, Ho L, Eckman CB, et al. Amyloid beta protein (A beta) in Alzheimer's disease brain. Biochemical and immunocytochemical analysis with antibodies specific for forms ending at A beta 40 or A beta 42(43). J Biol Chem 1995;270:7013-6.PubMedCrossRefGoogle Scholar
  9. 9.
    Hardy J. Amyloid, the presenilins and Alzheimer's disease. Trends Neurosci 1997;20:154-9.PubMedCrossRefGoogle Scholar
  10. 10.
    Taylor JP, Hardy J, Fischbeck KH. Toxic proteins in neurodegenerative disease. Science 2002;296:1991-5.PubMedCrossRefGoogle Scholar
  11. 11.
    Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease. Neuron 1989;3:519-26.PubMedCrossRefGoogle Scholar
  12. 12.
    Vulliet R, Halloran SM, Braun RK, Smith AJ, Lee G. Proline-directed phosphorylation of human Tau protein. J Biol Chem 1992;267:22570-4.PubMedGoogle Scholar
  13. 13.
    Campion D, Dumanchin C, Hannequin D, et al. Early-onset autosomal dominant Alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum. Am J Hum Genet 1999;65:664-70.PubMedCrossRefGoogle Scholar
  14. 14.
    Olanow CW, Tatton WG. Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 1999;22:123-44.PubMedCrossRefGoogle Scholar
  15. 15.
    Riess O, Kuhn W, Kruger R. Genetic influence on the development of Parkinson's disease. J Neurol 2000;247 Suppl 2:II69-74.PubMedCrossRefGoogle Scholar
  16. 16.
    Jarrett JT, Lansbury PT, Jr. Seeding "one-dimensional crystallization" of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 1993;73:1055-8.PubMedCrossRefGoogle Scholar
  17. 17.
    Oosawa F, Asakura S. Thermodynamics of the Polymerization of Protein. London: Academic Press; 1975.Google Scholar
  18. 18.
    Ferrone F. Analysis of protein aggregation kinetics. Methods Enzymol 1999;309:256-74.PubMedCrossRefGoogle Scholar
  19. 19.
    Powers ET, Powers DL. The kinetics of nucleated polymerizations at high concentrations: amyloid fibril formation near and above the "supercritical concentration". Biophys J 2006;91:122-32.PubMedCrossRefGoogle Scholar
  20. 20.
    Thakur AK, Jayaraman M, Mishra R, et al. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism. Nat Struct Mol Biol 2009;16:380-9.PubMedCrossRefGoogle Scholar
  21. 21.
    Knowles TP, Waudby CA, Devlin GL, et al. An analytical solution to the kinetics of breakable filament assembly. Science 2009;326:1533-7.PubMedCrossRefGoogle Scholar
  22. 22.
    Harper JD, Lansbury PT, Jr. Models of amyloid seeding in Alzheimer's disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 1997;66:385-407.PubMedCrossRefGoogle Scholar
  23. 23.
    Saborio GP, Permanne B, Soto C. Sensitive detection of pathological prion protein by cyclic amplification of protein misfolding. Nature 2001;411:810-3.PubMedCrossRefGoogle Scholar
  24. 24.
    Bieschke J, Weber P, Sarafoff N, Beekes M, Giese A, Kretzschmar H. Autocatalytic self-propagation of misfolded prion protein. Proc Natl Acad Sci U S A 2004;101:12207-11.PubMedCrossRefGoogle Scholar
  25. 25.
    Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 2010;11:301-7.PubMedCrossRefGoogle Scholar
  26. 26.
    Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 2010;11:155-9.PubMedGoogle Scholar
  27. 27.
    Meyer-Luehmann M, Coomaraswamy J, Bolmont T, et al. Exogenous induction of cerebral beta-amyloidogenesis is governed by agent and host. Science 2006;313:1781-4.PubMedCrossRefGoogle Scholar
  28. 28.
    Frost B, Diamond MI. The expanding realm of prion phenomena in neurodegenerative disease. Prion 2009;3:74-7.PubMedCrossRefGoogle Scholar
  29. 29.
    Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI. Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem 2012;287:19440-51.PubMedCrossRefGoogle Scholar
  30. 30.
    Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 2008;319:916-9.PubMedCrossRefGoogle Scholar
  31. 31.
    Jan A, Adolfsson O, Allaman I, et al. Abeta42 neurotoxicity is mediated by ongoing nucleated polymerization process rather than by discrete Abeta42 species. J Biol Chem 2011;286:8585-96.PubMedCrossRefGoogle Scholar
  32. 32.
    Walsh DM, Klyubin I, Fadeeva JV, et al. Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 2002;416:535-9.PubMedCrossRefGoogle Scholar
  33. 33.
    Benilova I, Karran E, De Strooper B. The toxic Abeta oligomer and Alzheimer's disease: an emperor in need of clothes. Nat Neurosci 2012;15:349-57.PubMedCrossRefGoogle Scholar
  34. 34.
    Bernstein SL, Dupuis NF, Lazo ND, et al. Amyloid-beta protein oligomerization and the importance of tetramers and dodecamers in the aetiology of Alzheimer's disease. Nat Chem 2009;1:326-31.PubMedCrossRefGoogle Scholar
  35. 35.
    Brouillette J, Caillierez R, Zommer N, et al. Neurotoxicity and memory deficits induced by soluble low-molecular-weight amyloid-beta1-42 oligomers are revealed in vivo by using a novel animal model. J Neurosci 2012;32:7852-61.PubMedCrossRefGoogle Scholar
  36. 36.
    Ono K, Condron MM, Teplow DB. Structure-neurotoxicity relationships of amyloid beta-protein oligomers. Proc Natl Acad Sci U S A 2009;106:14745-50.PubMedCrossRefGoogle Scholar
  37. 37.
    Glabe C. Intracellular mechanisms of amyloid accumulation and pathogenesis in Alzheimer's disease. J Mol Neurosci 2001;17:137-45.PubMedCrossRefGoogle Scholar
  38. 38.
    Meda L, Cassatella MA, Szendrei GI, et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 1995;374:647-50.PubMedCrossRefGoogle Scholar
  39. 39.
    Wentworth P, Jr., Nieva J, Takeuchi C, et al. Evidence for ozone formation in human atherosclerotic arteries. Science 2003;302:1053-6.PubMedCrossRefGoogle Scholar
  40. 40.
    Hung YH, Bush AI, Cherny RA. Copper in the brain and Alzheimer's disease. J Biol Inorg Chem 2009;15:61-76.PubMedCrossRefGoogle Scholar
  41. 41.
    Jomova K, Vondrakova D, Lawson M, Valko M. Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 2010;345:91-104.PubMedCrossRefGoogle Scholar
  42. 42.
    Rajendran R, Minqin R, Ynsa MD, et al. A novel approach to the identification and quantitative elemental analysis of amyloid deposits--insights into the pathology of Alzheimer's disease. Biochem Biophys Res Commun 2009;382:91-5.PubMedCrossRefGoogle Scholar
  43. 43.
    Glenner GG, Keiser HR, Bladen HA, et al. Amyloid. VI. A comparison of two morphologic components of human amyloid deposits. J Histochem Cytochem 1968;16:633-44.PubMedCrossRefGoogle Scholar
  44. 44.
    Dyrks T, Dyrks E, Masters CL, Beyreuther K. Amyloidogenicity of rodent and human beta A4 sequences. FEBS Lett 1993;324:231-6.PubMedCrossRefGoogle Scholar
  45. 45.
    Bitan G, Tarus B, Vollers SS, et al. A molecular switch in amyloid assembly: Met35 and amyloid beta-protein oligomerization. J Am Chem Soc 2003;125:15359-65.PubMedCrossRefGoogle Scholar
  46. 46.
    Haass C, Selkoe DJ. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid beta-peptide. Nat Rev Mol Cell Biol 2007;8:101-12.PubMedCrossRefGoogle Scholar
  47. 47.
    Dasilva KA, McLaurin J. New therapeutic approaches for Alzheimer's disease. Discov Med 2004;4:384-9.PubMedGoogle Scholar
  48. 48.
    Jakob-Roetne R, Jacobsen H. Alzheimer's disease: from pathology to therapeutic approaches. Angew Chem Int Ed Engl 2009;48:3030-59.PubMedCrossRefGoogle Scholar
  49. 49.
    Mandel SA, Amit T, Kalfon L, Reznichenko L, Weinreb O, Youdim MB. Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: special reference to epigallocatechin gallate (EGCG). J Alzheimers Dis 2008;15:211-22.PubMedGoogle Scholar
  50. 50.
    Zhao B. Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease. Neurochem Res 2009;34:630-8.PubMedCrossRefGoogle Scholar
  51. 51.
    Shankar GM, Li S, Mehta TH, et al. Amyloid-beta protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory. Nat Med 2008;14:837-42.PubMedCrossRefGoogle Scholar
  52. 52.
    Haass C, Koo EH, Mellon A, Hung AY, Selkoe DJ. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature 1992;357:500-3.PubMedCrossRefGoogle Scholar
  53. 53.
    Vassar R. The beta-secretase, BACE: a prime drug target for Alzheimer's disease. J Mol Neurosci 2001;17:157-70.PubMedCrossRefGoogle Scholar
  54. 54.
    Cohen FE, Kelly JW. Therapeutic approaches to protein-misfolding diseases. Nature 2003;426:905-9.PubMedCrossRefGoogle Scholar
  55. 55.
    Sipe JD, Cohen AS. Review: history of the amyloid fibril. J Struct Biol 2000;130:88-98.PubMedCrossRefGoogle Scholar
  56. 56.
    Feng BY, Toyama BH, Wille H, et al. Small-molecule aggregates inhibit amyloid polymerization. Nat Chem Biol 2008;4:197-9.PubMedCrossRefGoogle Scholar
  57. 57.
    Alavez S, Vantipalli MC, Zucker DJ, Klang IM, Lithgow GJ. Amyloid-binding compounds maintain protein homeostasis during ageing and extend lifespan. Nature 2011;472:226-9.PubMedCrossRefGoogle Scholar
  58. 58.
    Wischik CM, Edwards PC, Lai RY, Roth M, Harrington CR. Selective inhibition of Alzheimer disease-like tau aggregation by phenothiazines. Proc Natl Acad Sci U S A 1996;93:11213-8.PubMedCrossRefGoogle Scholar
  59. 59.
    Necula M, Kayed R, Milton S, Glabe CG. Small molecule inhibitors of aggregation indicate that amyloid beta oligomerization and fibrillization pathways are independent and distinct. J Biol Chem 2007;282:10311-24.PubMedCrossRefGoogle Scholar
  60. 60.
    Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL. A potential role of the curry spice curcumin in Alzheimer's disease. Curr Alzheimer Res 2005;2:131-6.PubMedCrossRefGoogle Scholar
  61. 61.
    Bieschke J, Herbst M, Wiglenda T, et al. Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils. Nat Chem Biol 2011;8:93-101.Google Scholar
  62. 62.
    Ladiwala AR, Lin JC, Bale SS, et al. Resveratrol selectively remodels soluble oligomers and fibrils of amyloid Abeta into off-pathway conformers. J Biol Chem 2010;285:24228-37.PubMedCrossRefGoogle Scholar
  63. 63.
    Mazzulli JR, Mishizen AJ, Giasson BI, et al. Cytosolic catechols inhibit alpha-synuclein aggregation and facilitate the formation of intracellular soluble oligomeric intermediates. J Neurosci 2006;26:10068-78.PubMedCrossRefGoogle Scholar
  64. 64.
    Graham HN. Green tea composition, consumption, and polyphenol chemistry. Prev Med 1992;21:334-50.PubMedCrossRefGoogle Scholar
  65. 65.
    Zaveri NT. Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 2006;78:2073-80.PubMedCrossRefGoogle Scholar
  66. 66.
    Choi YT, Jung CH, Lee SR, et al. The green tea polyphenol (-)-epigallocatechin gallate attenuates beta-amyloid-induced neurotoxicity in cultured hippocampal neurons. Life Sci 2001;70:603-14.PubMedCrossRefGoogle Scholar
  67. 67.
    Li MH, Jang JH, Sun B, Surh YJ. Protective effects of oligomers of grape seed polyphenols against beta-amyloid-induced oxidative cell death. Ann N Y Acad Sci 2004;1030:317-29.PubMedCrossRefGoogle Scholar
  68. 68.
    Rezai-Zadeh K, Shytle D, Sun N, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 2005;25:8807-14.PubMedCrossRefGoogle Scholar
  69. 69.
    Rezai-Zadeh K, Arendash GW, Hou H, et al. Green tea epigallocatechin-3-gallate (EGCG) reduces beta-amyloid mediated cognitive impairment and modulates tau pathology in Alzheimer transgenic mice. Brain Res 2008;1214:177-87.PubMedCrossRefGoogle Scholar
  70. 70.
    Wang J, Ho L, Zhao W, et al. Grape-derived polyphenolics prevent Abeta oligomerization and attenuate cognitive deterioration in a mouse model of Alzheimer's disease. J Neurosci 2008;28:6388-92.PubMedCrossRefGoogle Scholar
  71. 71.
    Haque AM, Hashimoto M, Katakura M, Hara Y, Shido O. Green tea catechins prevent cognitive deficits caused by Abeta1-40 in rats. J Nutr Biochem 2008;19:619-26.PubMedCrossRefGoogle Scholar
  72. 72.
    Levites Y, Weinreb O, Maor G, Youdim MB, Mandel S. Green tea polyphenol (-)-epigallocatechin-3-gallate prevents N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced dopaminergic neurodegeneration. J Neurochem 2001;78:1073-82.PubMedCrossRefGoogle Scholar
  73. 73.
    Kuriyama S, Hozawa A, Ohmori K, et al. Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. Am J Clin Nutr 2006;83:355-61.PubMedGoogle Scholar
  74. 74.
    Zhang ZX, Roman GC. Worldwide occurrence of Parkinson's disease: an updated review. Neuroepidemiology 1993;12:195-208.PubMedCrossRefGoogle Scholar
  75. 75.
    Mereles D, Buss SJ, Hardt SE, Hunstein W, Katus HA. Effects of the main green tea polyphenol epigallocatechin-3-gallate on cardiac involvement in patients with AL amyloidosis. Clin Res Cardiol 2010;99:483-90.PubMedCrossRefGoogle Scholar
  76. 76.
    Hunstein W. Epigallocathechin-3-gallate in AL amyloidosis: a new therapeutic option? Blood 2007;110:2216.PubMedCrossRefGoogle Scholar
  77. 77.
    Fernandez JW, Rezai-Zadeh K, Obregon D, Tan J. EGCG functions through estrogen receptor-mediated activation of ADAM10 in the promotion of non-amyloidogenic processing of APP. FEBS Lett 2010;584:4259-67.PubMedCrossRefGoogle Scholar
  78. 78.
    Lee JW, Lee YK, Ban JO, et al. Green tea (-)-epigallocatechin-3-gallate inhibits beta-amyloid-induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF-kappaB pathways in mice. J Nutr 2009;139:1987-93.PubMedCrossRefGoogle Scholar
  79. 79.
    Jeon SY, Bae K, Seong YH, Song KS. Green tea catechins as a BACE1 (beta-secretase) inhibitor. Bioorg Med Chem Lett 2003;13:3905-8.PubMedCrossRefGoogle Scholar
  80. 80.
    Ehrnhoefer DE, Duennwald M, Markovic P, et al. Green tea (-)-epigallocatechin-gallate modulates early events in huntingtin misfolding and reduces toxicity in Huntington's disease models. Hum Mol Genet 2006;15:2743-51.PubMedCrossRefGoogle Scholar
  81. 81.
    Bae SY, Kim S, Hwang H, et al. Amyloid formation and disaggregation of alpha-synuclein and its tandem repeat (alpha-TR). Biochem Biophys Res Commun 2010;400:531-6.PubMedCrossRefGoogle Scholar
  82. 82.
    Ehrnhoefer DE, Bieschke J, Boeddrich A, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 2008;15:558-66.PubMedCrossRefGoogle Scholar
  83. 83.
    Ferreira N, Cardoso I, Domingues MR, et al. Binding of epigallocatechin-3-gallate to transthyretin modulates its amyloidogenicity. FEBS Lett 2009;583:3569-76.PubMedCrossRefGoogle Scholar
  84. 84.
    He M, Zhao L, Wei MJ, Yao WF, Zhao HS, Chen FJ. Neuroprotective effects of (-)-epigallocatechin-3-gallate on aging mice induced by D-galactose. Biol Pharm Bull 2009;32:55-60.PubMedCrossRefGoogle Scholar
  85. 85.
    Rambold AS, Miesbauer M, Olschewski D, et al. Green tea extracts interfere with the stress-protective activity of PrP and the formation of PrP. J Neurochem 2008;107:218-29.PubMedCrossRefGoogle Scholar
  86. 86.
    Roberts BE, Duennwald ML, Wang H, et al. A synergistic small-molecule combination directly eradicates diverse prion strain structures. Nat Chem Biol 2009;5:936-46.PubMedCrossRefGoogle Scholar
  87. 87.
    Wang SH, Liu FF, Dong XY, Sun Y. Thermodynamic analysis of the molecular interactions between amyloid beta-peptide 42 and (-)-epigallocatechin-3-gallate. J Phys Chem B 2010;114:11576-83.PubMedCrossRefGoogle Scholar
  88. 88.
    Lopez del Amo JM, Fink U, Dasari M, et al. Structural properties of EGCG-induced, nontoxic Alzheimer's disease Abeta oligomers. J Mol Biol 2012;421:517-24.PubMedCrossRefGoogle Scholar
  89. 89.
    Grelle G, Albrecht O, Mario L, Frank RR, Wanker EE, Bieschke J. Black tea theaflavins inhibit formation of toxic amyloid-beta and alpha-synuclein fibrils. Biochemistry 2011:in press.Google Scholar
  90. 90.
    Lopez Del Amo JM, Fink U, Dasari M, et al. Structural Properties of EGCG-Induced, Nontoxic Alzheimer's Disease Abeta Oligomers. J Mol Biol 2012.Google Scholar
  91. 91.
    Kim W, Hecht MH. Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer's Abeta42 peptide. Proc Natl Acad Sci U S A 2006;103:15824-9.PubMedCrossRefGoogle Scholar
  92. 92.
    Maiti TK, Ghosh KS, Dasgupta S. Interaction of (-)-epigallocatechin-3-gallate with human serum albumin: fluorescence, fourier transform infrared, circular dichroism, and docking studies. Proteins 2006;64:355-62.PubMedCrossRefGoogle Scholar
  93. 93.
    Miyata M, Sato T, Kugimiya M, et al. The crystal structure of the green tea polyphenol (-)-epigallocatechin gallate-transthyretin complex reveals a novel binding site distinct from the thyroxine binding site. Biochemistry 2010;49:6104-14.PubMedCrossRefGoogle Scholar
  94. 94.
    Ishii T, Ichikawa T, Minoda K, et al. Human serum albumin as an antioxidant in the oxidation of (-)-epigallocatechin gallate: participation of reversible covalent binding for interaction and stabilization. Biosci Biotechnol Biochem 2011;75:100-6.PubMedCrossRefGoogle Scholar
  95. 95.
    He J, Xing YF, Huang B, Zhang YZ, Zeng CM. Tea catechins induce the conversion of preformed lysozyme amyloid fibrils to amorphous aggregates. J Agric Food Chem 2009;57:11391-6.PubMedCrossRefGoogle Scholar
  96. 96.
    Ferreira N, Saraiva MJ, Almeida MR. Natural polyphenols inhibit different steps of the process of transthyretin (TTR) amyloid fibril formation. FEBS Lett 2011;585:2424-30.PubMedCrossRefGoogle Scholar
  97. 97.
    Ecroyd H, Koudelka T, Thorn DC, et al. Dissociation from the oligomeric state is the rate-limiting step in fibril formation by kappa-casein. J Biol Chem 2008;283:9012-22.PubMedCrossRefGoogle Scholar
  98. 98.
    Hudson SA, Ecroyd H, Dehle FC, Musgrave IF, Carver JA. (-)-epigallocatechin-3-gallate (EGCG) maintains kappa-casein in its pre-fibrillar state without redirecting its aggregation pathway. J Mol Biol 2009;392:689-700.PubMedCrossRefGoogle Scholar
  99. 99.
    Luhrs T, Ritter C, Adrian M, et al. 3D structure of Alzheimer's amyloid-beta(1-42) fibrils. Proc Natl Acad Sci U S A 2005;102:17342-7.PubMedCrossRefGoogle Scholar
  100. 100.
    Mastrangelo IA, Ahmed M, Sato T, et al. High-resolution atomic force microscopy of soluble Abeta42 oligomers. J Mol Biol 2006;358:106-19.PubMedCrossRefGoogle Scholar
  101. 101.
    Hauber I, Hohenberg H, Holstermann B, Hunstein W, Hauber J. The main green tea polyphenol epigallocatechin-3-gallate counteracts semen-mediated enhancement of HIV infection. Proc Natl Acad Sci U S A 2009;106:9033-8.PubMedCrossRefGoogle Scholar
  102. 102.
    Munch J, Rucker E, Standker L, et al. Semen-derived amyloid fibrils drastically enhance HIV infection. Cell 2007;131:1059-71.PubMedCrossRefGoogle Scholar
  103. 103.
    Chandrashekaran IR, Adda CG, Macraild CA, Anders RF, Norton RS. EGCG disaggregates amyloid-like fibrils formed by Plasmodium falciparum merozoite surface protein 2. Arch Biochem Biophys 2011;513:153-7.PubMedCrossRefGoogle Scholar
  104. 104.
    Bieschke J, Russ J, Friedrich RP, et al. EGCG remodels mature alpha-synuclein and amyloid-beta fibrils and reduces cellular toxicity. Proc Natl Acad Sci U S A 2010;107:7710-5.PubMedCrossRefGoogle Scholar
  105. 105.
    Lambert JD, Hong J, Kim DH, Mishin VM, Yang CS. Piperine enhances the bioavailability of the tea polyphenol (-)-epigallocatechin-3-gallate in mice. J Nutr 2004;134:1948-52.PubMedGoogle Scholar
  106. 106.
    Lee MJ, Wang ZY, Li H, et al. Analysis of plasma and urinary tea polyphenols in human subjects. Cancer Epidemiol Biomarkers Prev 1995;4:393-9.PubMedGoogle Scholar
  107. 107.
    Yang CS, Chen L, Lee MJ, Balentine D, Kuo MC, Schantz SP. Blood and urine levels of tea catechins after ingestion of different amounts of green tea by human volunteers. Cancer Epidemiol Biomarkers Prev 1998;7:351-4.PubMedGoogle Scholar
  108. 108.
    Mereles D, Hunstein W. Epigallocatechin-3-gallate (EGCG) for Clinical Trials: More Pitfalls than Promises? Int J Mol Sci 2011;12:5592-603.PubMedCrossRefGoogle Scholar
  109. 109.
    Lambert JD, Kennett MJ, Sang S, Reuhl KR, Ju J, Yang CS. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice. Food Chem Toxicol 2010;48:409-16.PubMedCrossRefGoogle Scholar
  110. 110.
    Mazzanti G, Menniti-Ippolito F, Moro PA, et al. Hepatotoxicity from green tea: a review of the literature and two unpublished cases. Eur J Clin Pharmacol 2009;65:331-41.PubMedCrossRefGoogle Scholar
  111. 111.
    Clinical trial Sunphenon EGCg (Epigallocatechin-Gallate) in the Early Stage of Alzheimer´s Disease (SUN-AK). 2013. (Accessed at
  112. 112.
    Singh BN, Shankar S, Srivastava RK. Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem Pharmacol 2011.Google Scholar
  113. 113.
    Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer's disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 2008;56:4855-73.PubMedCrossRefGoogle Scholar
  114. 114.
    Dube A, Nicolazzo JA, Larson I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (-)-epigallocatechin gallate. Eur J Pharm Sci 2010;41:219-25.PubMedCrossRefGoogle Scholar
  115. 115.
    Siddiqui IA, Adhami VM, Ahmad N, Mukhtar H. Nanochemoprevention: sustained release of bioactive food components for cancer prevention. Nutr Cancer 2010;62:883-90.PubMedCrossRefGoogle Scholar
  116. 116.
    Peters CM, Green RJ, Janle EM, Ferruzzi MG. Formulation with ascorbic acid and sucrose modulates catechin bioavailability from green tea. Food Res Int 2010;43:95-102.PubMedCrossRefGoogle Scholar
  117. 117.
    Giunta B, Hou H, Zhu Y, et al. Fish oil enhances anti-amyloidogenic properties of green tea EGCG in Tg2576 mice. Neurosci Lett 2010;471:134-8.PubMedCrossRefGoogle Scholar
  118. 118.
    Singh M, Bhatnagar P, Srivastava AK, Kumar P, Shukla Y, Gupta KC. Enhancement of cancer chemosensitization potential of cisplatin by tea polyphenols poly(lactide-co-glycolide) nanoparticles. J Biomed Nanotechnol 2011;7:202.PubMedCrossRefGoogle Scholar
  119. 119.
    Smith A, Giunta B, Bickford PC, Fountain M, Tan J, Shytle RD. Nanolipidic particles improve the bioavailability and alpha-secretase inducing ability of epigallocatechin-3-gallate (EGCG) for the treatment of Alzheimer's disease. Int J Pharm 2010;389:207-12.PubMedCrossRefGoogle Scholar
  120. 120.
    Sommer AP, Zhu D, Scharnweber T. Laser modulated transmembrane convection: Implementation in cancer chemotherapy. J Control Release 2010;148:131-4.PubMedCrossRefGoogle Scholar
  121. 121.
    Eells JT, Henry MM, Summerfelt P, et al. Therapeutic photobiomodulation for methanol-induced retinal toxicity. Proc Natl Acad Sci U S A 2003;100:3439-44.PubMedCrossRefGoogle Scholar
  122. 122.
    Sommer A, Bieschke J, Friedrich R, Wanker EE, Zhu D, Hunstein W. 670 nm Laser Light and EGCG Complementarily Reduce Amyloid-beta Aggregates in Human Neuroblastoma Cells. Photomedicine and Laser Surgery 2011:in press.Google Scholar
  123. 123.
    Goedert M, Spillantini MG. A century of Alzheimer's disease. Science 2006;314:777-81.PubMedCrossRefGoogle Scholar
  124. 124.
    Cohen E, Bieschke J, Perciavalle RM, Kelly JW, Dillin A. Opposing activities protect against age-onset proteotoxicity. Science 2006;313:1604-10.PubMedCrossRefGoogle Scholar
  125. 125.
    Beecken H, Gottschalk, E.-M. v. Gizycki, U. Kramer, H., Maassen, D., Matthies, H. G., Musso, H., Rathjen, C., Zahorsky, U.I. Orcein und Lackmus. Angewandte Chemie 1967;73:665 -88.CrossRefGoogle Scholar
  126. 126.
    Henwood A. Current applications of orcein in histochemistry. A brief review with some new observations concerning influence of dye batch variation and aging of dye solutions on staining. Biotech Histochem 2003;78:303-8.PubMedCrossRefGoogle Scholar
  127. 127.
    Wanker EE, Scherzinger E, Heiser V, Sittler A, Eickhoff H, Lehrach H. Membrane filter assay for detection of amyloid-like polyglutamine-containing protein aggregates. Methods Enzymol 1999;309:375-86.PubMedCrossRefGoogle Scholar
  128. 128.
    Fowler DM, Koulov AV, Alory-Jost C, Marks MS, Balch WE, Kelly JW. Functional amyloid formation within mammalian tissue. PLoS Biol 2006;4:e6.PubMedCrossRefGoogle Scholar
  129. 129.
    Bieschke J, Herbst M, Wiglenda T, et al. Small-molecule conversion of toxic oligomers to nontoxic beta-sheet-rich amyloid fibrils. Nat Chem Biol 2012;8:93-101.CrossRefGoogle Scholar
  130. 130.
    Hyman BT, Phelps CH, Beach TG, et al. National Institute on Aging-Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease. Alzheimers Dement 2012;8:1-13.PubMedCrossRefGoogle Scholar
  131. 131.
    Zerr I, Kallenberg K, Summers DM, et al. Updated clinical diagnostic criteria for sporadic Creutzfeldt-Jakob disease. Brain 2009;132:2659-68.PubMedCrossRefGoogle Scholar
  132. 132.
    Yang DS, Yip CM, Huang TH, Chakrabartty A, Fraser PE. Manipulating the amyloid-beta aggregation pathway with chemical chaperones. J Biol Chem 1999;274:32970-4.PubMedCrossRefGoogle Scholar
  133. 133.
    Ghanta J, Shen CL, Kiessling LL, Murphy RM. A strategy for designing inhibitors of beta-amyloid toxicity. J Biol Chem 1996;271:29525-8.PubMedCrossRefGoogle Scholar
  134. 134.
    McLaurin J, Golomb R, Jurewicz A, Antel JP, Fraser PE. Inositol stereoisomers stabilize an oligomeric aggregate of Alzheimer amyloid beta peptide and inhibit abeta -induced toxicity. J Biol Chem 2000;275:18495-502.PubMedCrossRefGoogle Scholar
  135. 135.
    Schirmer RH, Adler H, Pickhardt M, Mandelkow E. "Lest we forget you--methylene blue…". Neurobiol Aging 2011;32:2325 e7-16.CrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2013

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations