, Volume 10, Issue 2, pp 199–211 | Cite as

Mitochondrial Disease in Childhood: mtDNA Encoded

  • Russell P. SanetoEmail author
  • Margret M. Sedensky


Since the first description of a mitochondrial DNA (mtDNA)-associated disease in the late 1980s, there have been more than 275 mutations within the mtDNA genome described causing human disease. The phenotypic expression of these disorders is vast, as disturbances of the unique physiology of mitochondria can create a wide range of clinical heterogeneity. Features of heteroplasmy, threshold effect, genetic bottleneck, mtDNA depletion, mitotic segregation, and maternal inheritance have been identified and described as a result of novel biochemical and genetic controls of mitochondrial function. We hope that as we unfold this fascinating part of clinical medicine, the reader will see how alterations in the tapestry of mitochondrial biochemistry and genetics can give rise to human illness.


Mitochondrial DNA Maternal inheritance Mitochondrial physiology Genetic diseases Oxidative phosphorylation 



The authors wish to thank the many patients and their families that had allowed us to part of their medical care. This work was supported, in part, by NIH grant U54NS078059-01 (to RPS) and the Mitochondrial Research Guild at Seattle Children’s Hospital (to RPS and MMS).

Required Author Forms

Disclosure forms provided by the authors are available with the online version of this article.

Supplementary material

13311_2012_167_MOESM1_ESM.pdf (511 kb)
ESM 1 (PDF 510 kb)


  1. 1.
    Chinnery PF, Johnson MA, Wardell TM, et al. The epidemiology of pathogenic mitochondrial DNA mutations. Ann Neurol 2000;48:188-193.PubMedGoogle Scholar
  2. 2.
    Skladal D, Halliday J, Thorburn DR. Minimum birth prevalence of mitochondrial respiratory chain disorders in children. Brain 2003;126:1905-1912.PubMedGoogle Scholar
  3. 3.
    Benard G, Rossignol R. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics. Antioxid Redox Signal 2008;10:1313-1342.PubMedGoogle Scholar
  4. 4.
    Milone M, Benarroch EE. Mitochondrial dynamics: General concepts and clinical implications. Neurology 2012;78:1612-1619.PubMedGoogle Scholar
  5. 5.
    Saraste, M. Oxidative phosphorylation at the fin de siecle. Science 1999;283:579-587.Google Scholar
  6. 6.
    Nouws J, Nijtmans LGJ, Smeitink JA, Vogel RO. Assembly factors as a new class of disease genes for mitochondrial complex I deficiency: cause pathology and treatment options. Brain 2012;135:12-22.PubMedGoogle Scholar
  7. 7.
    Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature 1981;290:457-465.PubMedGoogle Scholar
  8. 8.
    Di Re M, Sembngi H, He J, et al. The accessory subunit of mitochondrial DNA polymerase gamma determines the DNA content of mitochondrial nucleoids in human cultured cells. Nucleic Acids Res 2009;37:5701-5713.PubMedGoogle Scholar
  9. 9.
    Holt IJ, He J, Mao CC, et al. Mammalian mitochondrial nucleoids: Organizing an independently minded genome. Mitochondrion 2007;7:311-321.PubMedGoogle Scholar
  10. 10.
    Wang Y, Bogenhagen DF. Human mitochondrial DNA nucleoids are linked to protein folding machinery and metabolic enzymes at the mitochondrial inner membrane. J Biol Chem 2006;281:25791-25802.PubMedGoogle Scholar
  11. 11.
    Iborra FJ,. Kimura H, Cook PR. The functional organization of mitochondrial genomes in human cells. BMC Biol 2004;2:9.PubMedGoogle Scholar
  12. 12.
    Bogenhagen D, Clayton DA. Mouse L cell mitochondrial DNA molecules are selected randomly for replication throughout the cell cycle. Cell 1977;11:719-727.PubMedGoogle Scholar
  13. 13.
    Taanman JW, Muddle JR, Muntau AC. Mitochondrial DNA depletion can be prevented by cGMP and dAMP supplementation in a resting culture of deoxyguanosine kinase-deficient fibroblasts. Hum Mol Genet 2003;12:1839-1845.PubMedGoogle Scholar
  14. 14.
    Graziewicz MA, Longley MJ, Copeland WC. DNA polymerase gamma in mitochondrial DNA replication and repair. Chem Rev 2006;106:383-405.PubMedGoogle Scholar
  15. 15.
    Carrodeguass JA, Theis K, Bogenhagen DF, Kisker C. Crystal structure and deletion analysis show that the accessory subunit of mammalian DNA polymerase gamma, Pol gamma B, functions as a homodimer. Mol Cell 2001;7:43-54.Google Scholar
  16. 16.
    Spelbrink JN, Tolvonen JM, Hakkaart GA, et al. In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem 2000;275:24818-24828.PubMedGoogle Scholar
  17. 17.
    Copeland WC. Inherited mitochondrial diseases of DNA replication. Ann Rev Med 2008;59:131-146.PubMedGoogle Scholar
  18. 18.
    Clayton DA. Replication of animal mitochondrial DNA. Cell 1982;28:693-705.PubMedGoogle Scholar
  19. 19.
    Yasukawa T, Reyes A, Cluett TJ, et al. Replication of vertebrate mitochondrial DNA entails transient ribonucleotide incorporation throughout the lagging strand. EMBO J 2006;25:5358-5371.PubMedGoogle Scholar
  20. 20.
    Holt IJ. Mitochondrial DNA replication and repair: all a flap. Trends Biochem Sci 2009;34:358-365.PubMedGoogle Scholar
  21. 21.
    Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981;290:470-474.PubMedGoogle Scholar
  22. 22.
    Clayton DA. Replication and transcription of vertebrate mitochondrial DNA. Annu Rev Cell Biol 1991:453-478.Google Scholar
  23. 23.
    Scarpulla RC. Transcriptional paradigms in mammalian mitochondrial biogenesis and function. Physiol Rev 2008;88:611-638.PubMedGoogle Scholar
  24. 24.
    Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Ann Rev Biochem 2007;76:679-699.PubMedGoogle Scholar
  25. 25.
    O’Brien TW. Properties of human mitochondrial ribosomes. IUBMB 2003;55:505-513.Google Scholar
  26. 26.
    Nagaike T, Suzuki T, Ureda. Polyadenylation in mammalian mitochondria; insights from recent studies. Biochim Biophys Acta 2008;1779:266-269.PubMedGoogle Scholar
  27. 27.
    Anderson S, de Brujn MH, Coulson AR, Eperon IC, Sanger F, Young IG. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 1982;156:683-717.PubMedGoogle Scholar
  28. 28.
    Sengupta S, Yang X, Higgs PG. The mechanisms of codon reassignments in mitochondrial genetic codes. J Mol Evol 2007;64:662-688.PubMedGoogle Scholar
  29. 29.
    Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature 1988;331:717-719.PubMedGoogle Scholar
  30. 30.
    Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science 1988;242:1427-1430.PubMedGoogle Scholar
  31. 31.
    MITOMAP: A Human Mitochondrial Genome Database: Available at: Accessed August 1, 2012.
  32. 32.
    Rossignol R, Faustin B, Rocher C, Malgat M, Mazat JP, Letellier T. Mitochondrial threshold effects. Biochem J 2003;370:751-762.PubMedGoogle Scholar
  33. 33.
    Sacconi S, Salviati L, Nishigaki Y, et al. A functionally dominant mitochondrial DNA mutation. Hum Mol Genet 2008;17:1814-1820.PubMedGoogle Scholar
  34. 34.
    Giles RE, Blanc H, Cann HM, Wallace DC. Maternal inheritance of human mitochondrial DNA. Proc Natl Acad Sci 1980;77:6715-6719.PubMedGoogle Scholar
  35. 35.
    Sato M, Sato K. Degradation of paternal mitochondria by fertilization-triggered autophagy in C. elegans embryos. Science 2011;334:1141-1144. PubMedGoogle Scholar
  36. 36.
    Al Rawi S, Louvet-Vallee S, Djeddi A, et al. Postfertilization autophagy of sperm organelles prevents paternal mitochondrial DNA transmission. Science 2011;334:1144-1147.PubMedGoogle Scholar
  37. 37.
    Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. New Engl J Med 2002;347:576-580.PubMedGoogle Scholar
  38. 38.
    Schwartz M, Vissing J. No evidence for paternal inheritance of mtDNA in patients with sporadic mtDNA mutations. J Neurol Sci 2004;218:99-101.PubMedGoogle Scholar
  39. 39.
    Filosto M, Mancuso M, Vives-Bauza C, et al. Lack of paternal inheritance of muscle mitochondrial DNA in sporadic mitochondrial myopathies. Ann Neurol 2003;54:524-526.PubMedGoogle Scholar
  40. 40.
    Taylor RW, McDonnell MT, Blakely EL, et al. Genotypes from patients indicates no paternal mitochondrial DNA contribution. Ann Neurol 2003;54:521-524.PubMedGoogle Scholar
  41. 41.
    Hauswirth WW, Paipis PJ. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc Natl Acad Sci U S A 1982;79:4686-4690.PubMedGoogle Scholar
  42. 42.
    Carling PJ, Cree LM, Chinnery PF. The implications of mitochondrial DNA copy number regulation during embryogenesis. Mitochondrion 2011;11:686-692.PubMedGoogle Scholar
  43. 43.
    Piko I, Matsummoto L. Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev Biol 1976;49:1-10.PubMedGoogle Scholar
  44. 44.
    Cao L, Shitara H, Sugimoto M, Hayashi J-I, Abe K, Yonekawa H. New evidence confirms that mitochondrial bottleneck is generated without reduction of mitochondrial DNA content in early primordial germ cells of mice. PLoS Genet 2009;5:e1000756. doi: 10.1371/journal.pgen.1000756.PubMedGoogle Scholar
  45. 45.
    Jenuth FP, Peterson AC, Fu K, Shoubridge EA. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 1996;14:146-151.PubMedGoogle Scholar
  46. 46.
    Wai T, Teoli D, Shoubridge EA. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 2008;40:1484-1488.PubMedGoogle Scholar
  47. 47.
    Rahman S, Poulton J, Marchington D, Suomalainen A. Decrease of 3243 A > G mtDNA mutation from blood in MELAS syndrome: a longitudinal study. Am J Hum genet 2001;68:238-240.PubMedGoogle Scholar
  48. 48.
    Schaefer AM, Taylor RW, Turnbull DM, Chinnery PF. The epidemiology of mitochondrial disorders-past, present and future. Biochim Biophys Acta 2004;1659:115-120.PubMedGoogle Scholar
  49. 49.
    Smeitink JA, Zeviani M, Turnbull DM, Jackobs HT. Mitochondrial medicine: a metabolic perspective on the pathology of oxidative phosphorylation disorders. Cell Metab 2006;3:1-13.Google Scholar
  50. 50.
    Elliott HR, Samuels DC, Eden JA, Reltoin CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 2008;83:254-260.PubMedGoogle Scholar
  51. 51.
    Schaefer AM, McFarland R, Blakely EL, et al. Prevalence of mitochondrial DNA disease in adults. Ann Neurol 2008;63:35-39.PubMedGoogle Scholar
  52. 52.
    Darin N, Oldfors A, Moslemi Ar, Holme E, Tulinius M. The incidence of mitochondrial encephalomyopathies in childhood: clinical features and morphological, biochemical and DNA abnormalities. Ann Neurol 2001;49:377-383.PubMedGoogle Scholar
  53. 53.
    Ferrari G, Lamantea E, Donati A, et al. Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA-polymerase-γ A. Brain 2005;128:723-731.PubMedGoogle Scholar
  54. 54.
    Debray F-G, Lambert M, Chevalier I, et al. Long-term outcome and clinical spectrum of 73 patients with mitochondrial disease. Pediatrics 2007;119:722-733.PubMedGoogle Scholar
  55. 55.
    Gibson K, Halliday JL, Kirby DM, Yaplito-Lee J, Thorburn DR. Mitochondrial oxidative phosphorylation disorders presenting in neonates: clinical manifestations and enzymatic and molecular diagnosis. Pediatrics 2008;122:1003-1008.PubMedGoogle Scholar
  56. 56.
    Rubio-Gozalbo ME, Dijkman KP, van den Heuvel LP, Sengers RC, Wendel U, Smeitink JA. Clinical differences in patients with mitochondriocytopathies due to nuclear versus mitochondrial DNA mutations. Hum Mutat 2000;15:522-532.PubMedGoogle Scholar
  57. 57.
    Sue CM, Bruno C, Andreu AL, et al. Infantile encephalopathy associated with the MELAS A3243G mutation. J Pediatr 1999;134:696-700.PubMedGoogle Scholar
  58. 58.
    McFarland R, Clark AA, Morris AA, et al. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nat Genet 2002;30:145-146.PubMedGoogle Scholar
  59. 59.
    Taylor RW, Giordano C, Davidson MM, et al. A homplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol 2003;41:1786-1796.PubMedGoogle Scholar
  60. 60.
    McFarland R, Schaefer AM, Gardner JL, et al. Familial myopathy: new insights into the T14709C mitochondrial tRNA mutation. Ann Neurol 2004;55:478-484.PubMedGoogle Scholar
  61. 61.
    Horvath R, Kemp JP, Tuppen HA, et al. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain 2009;132:3165-3174.PubMedGoogle Scholar
  62. 62.
    Mitchell AL, Elson JL, Howell N, Taylor RW, Turnbull DM. Sequence variation in mitochondrial complex I genes; mutation or polymorphism? J Med Genet 2006;43:175-179.PubMedGoogle Scholar
  63. 63.
    Swalwell H, Blakely EL, Sutton R, et al. A homoplasmic mtDNA variant can influence the phenotype of the pathogenic m7472CinsMTTSI mutation: are two mutations better than one? Eur J Hum Genet 2008;16:1265-1274.PubMedGoogle Scholar
  64. 64.
    Cai W, Fu Q, Zhou X, Qu J, Tong Y, Guan MX. Mitochondrial variants may influence the phenotype manifestation of Leber’s hereditary optic neuropathy-associated ND4 G11778A mutation. J Genet Genomics 2008;35:649-655.PubMedGoogle Scholar
  65. 65.
    Schon EA, Rizzuto R, Moraes CT, Nakase H, Zeviani M, DiMauro S. A direct repeat is a hotspot for large-scale deletion of human mitochondrial DNA. Science 1989;144:346-349.Google Scholar
  66. 66.
    Sadikovic B, Wang J, El-Hattab A, et al. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes. PLoS One 2010;5:e15687.doi: 101371/journal.pone.0015687.PubMedGoogle Scholar
  67. 67.
    Chen X, Prosser R, Simonetti S, Sadlock J, Jagiello G, Schon EA. Rearranged mitochondrial genomes are present in human oocytes. Am J Hum Genet 1995;57:239-247.PubMedGoogle Scholar
  68. 68.
    Shoffner FM, Lott MT, Voljavec AS, Soueidan SA, Costigan DA, Wallace DC. Spontaneous Kearns-Sayre/chronic external ophthalmoplegia plus syndrome associated with mitochondrial DNA deletion: a slip-replication model and metabolic therapy. Proc Natl Acad Sci U S A, 1989;86:7952-7956.PubMedGoogle Scholar
  69. 69.
    Krishnan KJ, Reeve AK, Samuels DC, et al. What causes mitochondrial DNA deletions in human cells? Nat Genet 2008;40:275-279.PubMedGoogle Scholar
  70. 70.
    Dunbar DR, Moonie PA, Swingler RJ, Davidson D, Roberts R, Holt IJ. Maternally transmitted partial direct tandem duplication of mitochondrial DNA associated with diabetes mellitus. Hum Molec Genet 1993;2:1619-1624.PubMedGoogle Scholar
  71. 71.
    Saneto RP, Naviaux RK. Polymerase gamma disease through the ages. Dev Disabil Res Rev 2010;16:163-174.PubMedGoogle Scholar
  72. 72.
    Spinazzola A, Zeviani M. Disorders of nuclear-mitochondrial intergenomic signaling. Gene 2005;354:162-168.PubMedGoogle Scholar
  73. 73.
    Koopman WJH, Willems PHGM, Smeitink JAM. Mongenic mitochondrial disorders. N Engl J Med 2012;366:1132-1141.Google Scholar
  74. 74.
    Garcia-Cazorla A, De Lonlay P, Nossogne MC, Rustin P, Touati G, Saudubray JM. Long-term follow-up of neonatal mitochondrial cytopathies: a study of 57 patients. Pediatrics 2005;116:1170-1177.PubMedGoogle Scholar
  75. 75.
    Papa S. Mitochondrial oxidative phosphorylation changes in the life span. Molecular aspects and physiopathological implications. Bichem Biophys Acta 1996;1276:87-105.Google Scholar
  76. 76.
    McFarland R, Clark KM, Morris AA, et al. Multiple neonatal deaths due to homoplasmic mitochondrial DNA mutation. Hum Genet 2002;30:145-146.Google Scholar
  77. 77.
    Finsterer J. Leigh and Leigh-like syndrome in children and adults. Pediatric Neurology 2008;39:223-235.PubMedGoogle Scholar
  78. 78.
    Leigh D. Subacute necrotizing encephalomyelopathy in an infant. J Neurol Neurosurg Psych 1951;14:216-221.Google Scholar
  79. 79.
    Saneto RP, Friedman SD, Shaw DWW. Neuroimaging of mitochondrial disease. Mitochondrion 2008;8:396-413.PubMedGoogle Scholar
  80. 80.
    Ostergaard E, Hansen FJ, Sorensen N, et al. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 2007;130:853-861.PubMedGoogle Scholar
  81. 81.
    Piao YS, Tang GC, Yand H, Lu DH. Clinico-neuropathological study of a Chinese case of familial adult Leigh syndrome. Neuropathology 2006;26:218-221.PubMedGoogle Scholar
  82. 82.
    Bugiani M, Tiranti V, Farina L, Uziel G, Zeviani M. Novel mutations in COX15 in a long surviving Leigh syndrome patient with cytochrome c oxidase deficiency. J Med Genet 2005:42:e28.PubMedGoogle Scholar
  83. 83.
    Martin E, Burger R, Wiestler OD, Caduff R, Boltshauser E, Boesch C. Brainstem lesion revealed by MRI in a case of Leigh’s disease with respiratory failure. Ped Radiol 1990;20:349-350.Google Scholar
  84. 84.
    Rahman S, Blok RB, Dahl HHM, et al. Leigh syndrome: clinical features and biochemical and DNA abnormalities. Ann Neurol 1996;39:343-351.PubMedGoogle Scholar
  85. 85.
    Pearson HA, Lobel JS, Kocoshis SA, et al. A new syndrome of refractory sideroblastic anemia with vacuolization of marrow precursors and exocrine pancreatic dysfunction. J Pediat 1979;95:976-984.PubMedGoogle Scholar
  86. 86.
    Rotig A, Cormier V, Blanche S, et al. Pearson’s marrow-pancrease syndrome: a multisystem mitochondrial disorder in infancy. J Clin Invest 1990;86:1601-1608.PubMedGoogle Scholar
  87. 87.
    Moraes CT, DiMauro S, Zeviani M, et al. Mitochondrial DNA deletions in progressive external ophthalmoplegia and Kearns-Sayre syndrome. N Engl J Med 1989;320:1293-1299.PubMedGoogle Scholar
  88. 88.
    DiMauro S, Nicholson JF, Hays AP, Eastwood AB, Koenigsberger R, DeVivo DC. Benign infantile mitochondrial myopathy due to reversible cytochrome c oxidase activity. Trans Am Neurol Assoc 1981;106:205-207.PubMedGoogle Scholar
  89. 89.
    Horvath R, Kemp JP, Tuppen HAL, et al. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain 2009;132:3165-3174.PubMedGoogle Scholar
  90. 90.
    Silvestri G, Santorelli FM, Shanske S, et al. A new mtDNA mutation in the tRNA (Leu(UUR)) gene associated with maternally inherited cardiomyopathy. Hum Mut 1994;3:37-43.PubMedGoogle Scholar
  91. 91.
    Skladal D, Sudmeier C, Konstantopoulou V, et al. The clinical spectrum of mitochondrial disease in 75 pediatric patients. Clin Pediatr 2001;42:703-710.Google Scholar
  92. 92.
    Scaglia F, Towgin JA, Craigen WJ, et al. Clinical spectrum, morbidity, and mortality in 113 pediatric patients with mitochondrial disease. Pediatrics 2004;114:925-931.PubMedGoogle Scholar
  93. 93.
    Hirano M, Pavlakis SG. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS): current concepts. J Child Neurol 1994;9:4-13.PubMedGoogle Scholar
  94. 94.
    Ribacoba R, Salas-Puig J, Gonzalez C, Astudillo A. Characteristics of status epilepticus in MELAS. Analysis of four cases. Neurology 2006;21:1-11.Google Scholar
  95. 95.
    Saneto RP, Bouldin A. A boy with muscle weakness, hypercarbia, and the mitochondrial DNA A3243G mutation. J Child Neurol 2006;21:77-79.PubMedGoogle Scholar
  96. 96.
    Groto Y, Nonaka I, Horai S. A mutation in tRNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalopathies. Nature 1990;348:651-653.Google Scholar
  97. 97.
    Groto Y, Nonaka I, Horai S. A new mtDNA mutation associated with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Biochim Biophys Acta 1991;1097:238-240.Google Scholar
  98. 98.
    Taylor RW, Chinnery PF, Haldane F, et al. MELAS associated with a mutation in the valine transfer RNA gene of mitochondrial DNA. Ann Neurol 1996;40:459-462.PubMedGoogle Scholar
  99. 99.
    Shanske S, Coku J, Lu J, et al. The G13513A mutation in the ND5 gene of mitochondrial DNA as a common cause of MELAS or Leigh syndrome: evidence from 12 cases. Arch Neurol 2008;65:368-372.PubMedGoogle Scholar
  100. 100.
    Liolitsa D, Rahman S, Benton S, Carr LJ, Hanna MG. Is the mitochondrial complex I ND5 gene a hot-spot for MELAS causing mutations? Ann Neurol 2003;53:128-132.PubMedGoogle Scholar
  101. 101.
    Manfredi G, Schon EA, Moraes CT, et al. A new mutation associated with MELAS is located in a mitochondrial DNA polypeptide-coding gene. Neuromuscul Disord 1995;5:391-398.PubMedGoogle Scholar
  102. 102.
    Maceluch JA, Niedziela M. The clinical diagnosis and molecular genetics of Kearns-Sayre syndrome: a complex mitochondrial encephalomyopathy. Pediatr Endocrinol Rev 2006;4:117-137.PubMedGoogle Scholar
  103. 103.
    Holt IJ, Harding AE, Petty RK, Morgan-Hughes JA. A new mitochondrial disease associated with mitochondrial DNA heteroplasmy. Am J Hum Genet 1990;46:428-433.PubMedGoogle Scholar
  104. 104.
    Sembrano E, Barthlen GM, Wallace S, Lamm C. Polysomnographic findings in a patient with the mitochondrial encephalomyopathy NARP. Neurology 1997;49:1714-1717.PubMedGoogle Scholar
  105. 105.
    Santorelli FM, Tanji K, Shanske S, DiMauro S. Heterogeneous clinical presentation of the mtDNA NARP/T8993G mutation. Neurology 1997;49:270-273.PubMedGoogle Scholar
  106. 106.
    Wong L-JC. Pathogeneic mitochondrial DNA mutations in protein-coding genes. Muscle Nerve 2007;36:279-293.PubMedGoogle Scholar
  107. 107.
    Riordan-Eva P, Sanders MD, Govan GG, Sweeney MG, Da Costa J, Harding AE. The clinical features of Leber’s hereditary optic neuropathy defined by the presence of a pathogenic mitochondrial DNA mutation. Brain 1995;118:319-337.PubMedGoogle Scholar
  108. 108.
    Wallace DC, Lott MT, Brown MD, Kerstann K. Mitochondria and neuro-ophthalmologic diseases. In: Scriver CR, Beaudet AL, Sly WA, Valle D (eds). The metabolic and molecular bases of inherited disease, 8th ed. Vol II. McGraw-Hill, New York, 2001, pp. 2425-2509.Google Scholar
  109. 109.
    Carelli V, Achilli A, Valentino ML, et al. Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of Leber hereditary optic neuropathy pedigrees. Am J Hum Genet 2006;78:564-574.PubMedGoogle Scholar
  110. 110.
    Kirkman MA, Yu-Wai-Man P, Korsten A, et al. Gene-environment interactions in Leber hereditary optic neuropathy. Brain 2009;132:2317-2326.PubMedGoogle Scholar
  111. 111.
    Giordano C, Monopoli M, Perli E, et al. Oestrogens ameliorate mitochondrial dysfunction in Leber’s hereditary optic neuropathy. Brain 2011;134:220-234.PubMedGoogle Scholar
  112. 112.
    Hirano M, DiMauro S. Clinical features of mitochondrial myopathies and encephalomyopathies. In: Lane RJM (ed.), Handbook of Muscle Disease, Vol 1. Marcel Dekker Inc., New York, pp. 479-504.Google Scholar
  113. 113.
    Shoffner JM, Lott MT, Lezza AM, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fibers (MERRF) is associated with mitochondrial DNA tRNA(lys) mutation. Cell 1990;61:931-937.PubMedGoogle Scholar
  114. 114.
    Yoneda M, Tanno Y, Horai S, Ozawa T, Miyatake T, Tsuji S. A common mitochondrial mutation DNA mutation in the tRNA(Lys) of patients with myoclonus epilepsy associated with ragged-red fibers. Biochem Int 1990;21:789-796.PubMedGoogle Scholar
  115. 115.
    DiMauro S, Hirano M. MERRF. In: Pagon RA, Bird TD, Dolan CR et al. (eds) GeneReviews [Internet]. University of Washington, Seattle, WA, 1993. Available at: http//
  116. 116.
    Haas RH, Parikh S, Falk MJ, et al. Mitochondrial disease: a practical approach for primary care physicians. Pediatrics 2007;120:1326-1333.PubMedGoogle Scholar
  117. 117.
    Hass RH, Parikh S, Falk JM, et al. The in-depth evaluation of suspected mitochondrial disease. Mol Genet and Metab 2008;94:16-37.Google Scholar
  118. 118.
    Frederiksen AL, Andersen PH, Kyvik KO, Jeppesen TD, Vissing J, Schwartz M. Tissue specific distribution of the 3243A- > G mtDNA mutation. J Med Genet 2006;43:671-677.PubMedGoogle Scholar
  119. 119.
    de Laat P, Koene S, van den Heuvel LPWJ, Rodenburg RJT, Jensen MCH, Smeitink JAM. Clinical features and heteroplasmy in blood, urine and saliva in 34 Dutch families carrying the m.3243A>:G mutation. J Inherit Metab Dis 2012 Mar 9 (Epub ahead of print).Google Scholar
  120. 120.
    Pfeffer G, Majamaa K, Turnbull DM, Thorburn D, Chinnery PF. Treatment for mitochondrial disorders. Cochrane Database Syst Rev 2012;4:CD004426.PubMedGoogle Scholar
  121. 121.
    Enns GM, Kinsman SL, Perlman SL, et al. Initial experience in the treatment of inherited mitochondrial disease with EPI-743. Mol Genet Metab 2012;105:91-102.Google Scholar
  122. 122.
    Taivassalo T, Gardner JL, Taylor RW, et al. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain 2006;129:3391-3401.PubMedGoogle Scholar
  123. 123.
    Taivassalo T, Haller RG. Exercise and training in mitochondrial myopathies. Med Sci Sports Exerc 2005;37:2094-2101.PubMedGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2012

Authors and Affiliations

  1. 1.Division of Pediatric NeurologySeattle Children’s Hospital/University of WashingtonSeattleUSA
  2. 2.Seattle Children’s Research InstituteSeattleUSA

Personalised recommendations