Advertisement

International Journal of Steel Structures

, Volume 19, Issue 6, pp 1951–1968 | Cite as

Estimation of the Strength Coefficient and Strain Hardening Exponent from Monotonic Tensile Properties of Steels

  • Jing LiEmail author
  • Yuan-ying Qiu
  • Hai-dong Wang
  • Zhao-xi Wang
Article
  • 99 Downloads

Abstract

In order to derive a method for estimating the strength coefficient and strain hardening exponent of steel, the performance parameters of 86 kinds of steel taken from American Iron and Steel Institute (AISI) Bar Steel Fatigue Database were examined and equations that related the strength coefficient and strain hardening exponent to the ultimate tensile strength and yield strength were developed. Correlations from the literature among the strength coefficient, strain hardening exponent and other monotonic tensile properties were also examined and compared to the relationships proposed in this study using the data of 86 kinds of steel. The proposed method was shown to be better used to estimate the strength coefficient and strain hardening exponent.

Keywords

Strength coefficient Strain hardening exponent Steels Theoretical estimation Monotonic tensile properties 

Notes

Acknowledgement

The authors would like to thank Prof. Z.P. Zhang and Dr. C.W. Li for providing the program code of Zhang’s method. The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (No. 51601221), the Fundamental Research Funds for the Central Universities (No. JB180402), and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2019JQ-353).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alcala, J., Barone, A. C., & Anglada, M. (2000). The influence of plastic hardening on surface deformation modes around Vickers and spherical indents. Acta Metallurgica,48, 3451–3464.Google Scholar
  2. American Iron and Steel Institute (AISI). (2004). Bar steel fatigue database http://barsteelfatigue.autosteel.org/. Accessed 12 August 2017.
  3. Antoine, P., Vandeputte, S., & Vogt, J. B. (2006). Empirical model predicting the value of the strain hardening exponent of a Ti-IF steel grade. Materials Science and Engineering A,433, 55–63.CrossRefGoogle Scholar
  4. Antunes, R. A., & de Oliveria, M. C. L. (2014). Materials selection for hot stamped automotive body parts: An application of the Ashby approach based on the strain hardening exponent and stacking fault energy of materials. Materials and Design,63, 247–256.CrossRefGoogle Scholar
  5. ASTM Standard E646-93. (1997). Standard test method for tensile strain-hardening exponents (n-values) of metallic sheet materials. Annual Book of ASTM Standards (Vol. 03.01, pp. 550–556). West Conshohocken, PA: American Society for Testing and Materials.Google Scholar
  6. ASTM Standard E739-91. (1997). Standard practice for statistical analysis of linear or linearized stress-life (S-N) and strain life (ε-N) fatigue data. Annual Book of ASTM Standards (Vol. 03.01, pp. 615–621). West Conshohocken, PA: American Society for Testing and Materials.Google Scholar
  7. Bai, Y., & Wierzbicki, T. (2010). Application of extended Mohr–Coulomb criterion to ductile fracture. International Journal of Fracture,161, 1–20.CrossRefGoogle Scholar
  8. Bridgman, P. W. (1944). Stress distribution at the necking of tension specimen. Transactions of the American Society for Metals,32, 553–572.Google Scholar
  9. Hill, R., Storakers, B., & Zdunek, A. B. (1989). A theoretical study of the Brinell hardness test. Proceedings of the Royal Society of London,A423, 301–330.CrossRefGoogle Scholar
  10. Hortigon, B., Gallardo, J. M., Nieto-Garcia, E. J., & Lopez, J. A. (2019). Strain hardening exponent and strain at maximum stress: Steel rebar case. Construction and Building Materials,196, 175–184.CrossRefGoogle Scholar
  11. Huy, V. L., Gaspar, J., Paul, O., & Kamiya, S. (2012). Statistical characterization of fatigue lifetime of polysilicon thin films. Sensors and Actuators, A: Physical,179, 251–262.CrossRefGoogle Scholar
  12. Lesitha, G., & Thomas, P. Y. (2013). Estimation of the scale parameter of a log-logistic distribution. Metrika,76, 427–448.MathSciNetCrossRefGoogle Scholar
  13. Lopez, Z. (2012). “Correlations among tensile and cyclic deformation properties for steels and implications on fatigue life predictions.” M.S. thesis, The University of Toledo.Google Scholar
  14. Matthews, J. R. (1980). Indentation hardness and hot pressing. Acta Metallurgica,28, 311–318.CrossRefGoogle Scholar
  15. Meggiolaro, M. A., & Castro, J. T. P. (2004). Statistical evaluation of strain-life fatigue crack initiation predictions. International Journal of Fatigue,26, 463–476.CrossRefGoogle Scholar
  16. Mohr, D., & Marcadet, S. J. (2015). Micromechanically motivated phenomenological Hosford–Coulomb model for predicting ductile fracture initiation at low stress triaxialities. International Journal of Solids and Structures,67, 40–55.CrossRefGoogle Scholar
  17. Morrison, W. B. (1966). The effect of grain size on the stress-strain relationship in low-carbon steel. ASM Transactions Quarterly,59, 824–846.Google Scholar
  18. Qiu, H., Wang, L. N., Hanamura, T., & Torizuka, S. (2012). Prediction of the work hardening exponent for ultrafine-grained steels. Materials Science and Engineering A,536, 269–272.CrossRefGoogle Scholar
  19. Rajendran, R., Venkateshwarlu, M., Petley, V., & Verma, S. (2014). Strain hardening exponents and strength coefficients for aeroengine isotropic metallic materials—A reverse engineering approach. Journal of the Mechanical Behavior of Materials,23, 128–133.CrossRefGoogle Scholar
  20. Roessle, M. L., & Fatemi, A. (2000). Strain-controlled fatigue properties of steels and some simple approximations. International Journal of Fatigue,22, 495–511.CrossRefGoogle Scholar
  21. Sebek, F., Kubik, P., Hulka, J., & Petruska, J. (2016). Strain hardening exponent role in phenomenological ductile fracture criteria. European Journal of Mechanics A/Solids,57, 149–164.MathSciNetCrossRefGoogle Scholar
  22. Stephens, R. I., Fatemi, A., Stephens, R. R., & Fuch, H. O. (2000). Metal fatigue in engineering (2nd ed.). New York: Willey.Google Scholar
  23. Taljat, B., Zacharias, T., & Kosel, T. (1998). New analysis procedure to determine stress–strain curve from spherical indentation data. International Journal of Solids and Structures,35, 4411–4426.CrossRefGoogle Scholar
  24. Wierzbicki, T., Bao, Y., & Bai, Y. (2005). A new experimental technique for constructing a fracture envelope of metals under multiaxial loading. In Proceeding of the 2005 SEM annual conference and exposition on experimental and applied mechanics (pp. 1295–1303).Google Scholar
  25. Ye, D. Y., Matsuoka, S., Suzuki, N., & Maeda, Y. (2004). Further investigation of Neuber’s rule and the equivalent strain energy density (ESED) method. International Journal of Fatigue,26, 447–455.CrossRefGoogle Scholar
  26. Zeng, Z., & Fatemi, A. (2001). Elastic-plastic stress and strain behaviour at notch roots under monotonic and cyclic loadings. Journal of Strain Analysis,36, 287–300.CrossRefGoogle Scholar
  27. Zhang, F., Huang, M. Z., & Shi, D. K. (1989). The relationship between the strain hardening exponent n and the microstructure of metals. Materials Science and Engineering A,122, 211–213.CrossRefGoogle Scholar
  28. Zhang, Z. P., Li, C. W., Sun, Q., Qiao, Y. J., & Zhao, W. Z. (2006a). Formula relating fracture strength and fracture ductility with strength coefficient and strain hardening exponent. Journal of Materials Engineering and Performance,15, 618–621.CrossRefGoogle Scholar
  29. Zhang, Z. P., Sun, Q., Li, C. W., & Zhao, W. Z. (2006b). Theoretical calculation of the strain-hardening exponent and the strength coefficient of metallic materials. Journal of Materials Engineering and Performance,15, 19–22.CrossRefGoogle Scholar
  30. Zhang, Z. P., Wu, W. H., Chen, D. L., Sun, Q., & Zhao, W. Z. (2004). New formula relating the yield stress–strain with the strength coefficient and the strain hardening exponent. Journal of Materials Engineering and Performance,13, 509–512.CrossRefGoogle Scholar
  31. Zheng, X. L. (1994). Quantitative theory of metal fatigue. Xian: Publishing House of Northwestern Polytechnic University. (in Chinese).Google Scholar
  32. Zhu, X. K., & Leis, B. N. (2005). Influence of yield-to-tensile strength ratio on failure assessment of corroded pipelines. Journal of Pressure Vessel Technology,127, 436–442.CrossRefGoogle Scholar

Copyright information

© Korean Society of Steel Construction 2019

Authors and Affiliations

  1. 1.School of Mechatronic EngineeringXidian UniversityXi’anChina
  2. 2.Shanghai Spaceflight Precision Machinery Research InstituteShanghaiChina

Personalised recommendations