Advertisement

International Journal of Steel Structures

, Volume 19, Issue 2, pp 381–397 | Cite as

Buckling Uncertainty Analysis for Steel Pipelines Buried in Elastic Soil Using FOSM and MCS Methods

  • Allaeddine AthmaniEmail author
  • Asma Khemis
  • Abdelmadjid Hacene Chaouche
  • Kong Fah Tee
  • Tiago Miguel Ferreira
  • Romeu Vicente
Article

Abstract

Generally, buried steel pipes are designed for good transverse behavior by neglecting soil–structure interaction effect. Steel pipelines are also usually designed to prevent from the important failure mode of buckling. However, the design of this type of structures does not normally consider the uncertainties in soil and structural properties. To address the above issues, the paper estimates the uncertainties in terms of the coefficient of variation of critical buckling displacement, CVw using subgrade reaction theory (Winkler model) and first-order second-moment (FOSM) method. Two cases of boundary conditions have been considered in this study. In the first case, CVw is calculated within an infinitely thick soil as a function of uncertainty of subgrade reaction modulus (Ks). In the second case, CVw is calculated in a thick soil cylinder as a function of the uncertainty of the effective subgrade reaction modulus (\(K_{S}^{{\prime }}\)). Furthermore, the uncertainty of pipe flexibility (Sf) is also taken into account in the two cases. Uncertainty calculations by the FOSM method are then validated with those obtained from traditional Monte Carlo simulations.

Keywords

Soil–structure interaction Buried steel pipes Buckling Critical displacement Uncertainty Subgrade reaction modulus Pipe flexibility Global uncertainty 

References

  1. Abdel-Sayed, G. (1978). Stability of flexible conduits embedded in soil. Canadian Journal of Civil Engineering, 5(3), 324–333.  https://doi.org/10.1139/l78-037.CrossRefGoogle Scholar
  2. Alani, A. M., Faramarzi, A., Mahmoodian, M., & Tee, K. (2014). Prediction of sulphide build-up in filled sewer pipes. Environmental Technology, 35(14), 1721–1728.  https://doi.org/10.1080/09593330.2014.881403.CrossRefGoogle Scholar
  3. Annales. (1985). Institut technique du bâtiment et des travaux publiques. No 439, France.Google Scholar
  4. Babu, G. L. S., & Rao, R. S. (2005). Reliability measures for buried flexible pipes. Canadian Geotechnical Journal, 42(2), 541–549.  https://doi.org/10.1139/t04-116.CrossRefGoogle Scholar
  5. Chelapati, C. V., & Allgood, J. R. (1972). Buckling of cylinders in a confining medium. In 51st Annual meeting of the highway research board, Highway Research Record, Washington.Google Scholar
  6. Cheney, J. A. (1963). Bending and buckling of thin-walled open-section rings. Journal of the Engineering Mechanics Division, 89(5), 17–44.Google Scholar
  7. Cheney, J. A. (1971). Buckling of soil-surrounded tubes. Journal of the Engineering Mechanics Division, 97(4), 1121–1132.Google Scholar
  8. Ditlevsen, O., & Madsen, H. (1996). Structural reliability methods. London: Wiley.Google Scholar
  9. Duncan, J. (2000). Factors of safety and reliability in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 126(4), 307–316.  https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307).CrossRefGoogle Scholar
  10. Harr, M. E. (1977). Mechanics of particulate media: A probabilistic approach. New York: McGraw-Hill.Google Scholar
  11. Harr, M. E. (1987). Reliability-based design in civil engineering. Mcgraw-Hill (Tx), Dover Publications Inc.Google Scholar
  12. Imanzadeh, S. (2013). Effects of uncertainties and spatial variation of soil and structure properties on geotechnical design, cases of continuous spread footings and buried pipes Ph.D Thesis, L’universite Bordeaux 1, Bordeaux, France.Google Scholar
  13. Imanzadeh, S., Denis, A., & Marache, A. (2011). Estimation de la variabilité du module de réaction pour l’étude du comportement des semelles filantes sur sol élastique. Application à partir des modèles existants. In: XXIX e Rencontres Universitaires de Génie Civil, Tlemcen, Algérie, 2011/05//2011, pp. 145–154.Google Scholar
  14. Imanzadeh, S., Denis, A., & Marache, A. (2013). Effect of uncertainty in soil and structure parameters for buried pipes. In T. F. Group (Ed.) Geotechnical and geophysical site characterization 4 – Coutinho & Mayne (eds), Université de Bordeaux—UMR 5295—I2 M, Environmental Civil Engineering Department, Avenue des Facultés, Talence Cedex, France, 2013, Geotechnical and Geophysical Site Characterization 4 – Coutinho & Mayne (eds), pp. 1847–1853Google Scholar
  15. Imanzadeh, S., Denis, A., & Marache, A. (2013b). Simplified uncertainties analysis of continuous buried steel pipes on an elastic foundation in the presence of low stiffness zones. Computers and Geotechnics, 48, 62–71.CrossRefGoogle Scholar
  16. Kerr, A. (1965). A study of a new foundation model. Acta Mechanica, 1(2), 135–147.  https://doi.org/10.1007/BF01174308.CrossRefGoogle Scholar
  17. Khemis, A., Chaouche, A. H., Athmani, A., & Tee, K. F. (2016). Uncertainty effects of soil and structural properties on the buckling of flexible pipes shallowly buried in Winkler foundation. Structural Engineering and Mechanics, 59(4), 739–759.  https://doi.org/10.12989/sem.2016.59.4.739.CrossRefGoogle Scholar
  18. Kloppel, K., & Glock, D. (1970). Theoretische und Experimentelle Untersuchungen zu den Traglastproblem biegeweichen, in die Erde eingebetter Rohre. Germany: Institutes ftir Statik und Stahlbau der Technischen Hochschule Darmstadt.Google Scholar
  19. Kovara, K., Leijnseb, A., Uffinka, G. J. M., Pastoorsa, M. J. H., Mülschlegela, J. H. C., & Zaadnoordijkc, W. J. (2005). Reliability of travel times to groundwater abstraction wells: Application of the Netherlands groundwater model. Bilthoven: LGM.Google Scholar
  20. Kulhawy, F. (1992). On the evaluation of static soil properties. In Stability and performance of slopes and embankments II, 1992. ASCE, pp. 95–115.Google Scholar
  21. Kulhawy, F., Roth, M., & Grigoriu, M. (1991). Some statistical evaluation of geotechnical properties. In Proceedings of 6th international conference on applications of statistics and probability in civil engineering, Mexico City.Google Scholar
  22. Lacasse, S., & Nadim, F. (1966). Uncertainties in characterising soil properties. In Uncertainty in the geologic environment: From theory to practice. ASCE, Geotechnical Special Publication, pp. 49–75.Google Scholar
  23. Lacasse, S., & Nadim, F. (1997). Uncertainties in characterizing soil properties. Oslo, Norway: Norwegian Geotechnical Institute.Google Scholar
  24. Lacasse, S., & Nadim, F. (2007). Probabilistic geotechnical analyses for offshore facilities. Georisk: Assessment and management of risk for engineered systems and geohazards, 1(1), 21–42.  https://doi.org/10.1080/17499510701204224.Google Scholar
  25. Leonards, G. A., & Stetkar R. E. (1978). Performance of buried flexible conduits: Interim report, publication FHWA/IN/JHRP-78/24. Joint Highway Research Project, Department of Transportation and Purdue University, West Lafayette, Indiana, West Lafayette, IN.  https://doi.org/10.5703/1288284313984.
  26. Luscher, U. (1966). Buckling of soil-surrounded tubes. Soil Mechanics and Foundations, Division, 92(SM6), 211–228.Google Scholar
  27. Melchers, R. E. (1999). Structural reliability analysis and prediction (2nd ed.). Chichester: Wiley.Google Scholar
  28. Meyerhof, G. G. (1968). Some problems in the design of shallow-buried steel structures. In Canadian structural engineering conference, Toronto.Google Scholar
  29. Meyerhof, G. G., Baikie, L. D. (1963). Strength of steel culvert sheets bearing against compacted sand backfill. Highway Research Record.Google Scholar
  30. Moore, I. (1989). Elastic buckling of buried flexible tubes: A review of theory and experiment. Journal of Geotechnical Engineering, 115(3), 340–358.  https://doi.org/10.1061/(ASCE)0733-9410(1989)115:3(340).CrossRefGoogle Scholar
  31. Okeagu, B., & Abdel-Sayed, G. (1984). Coefficients of soil reaction for buried flexible conduits. Journal of Geotechnical Engineering, 110(7), 908–922.  https://doi.org/10.1061/(ASCE)0733-9410(1984)110:7(908).CrossRefGoogle Scholar
  32. Pasternak, P. L. (1954). On a new method of analysis of an elastic foundation by means of two foundation constants. Moscow: Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture. (in Russian).Google Scholar
  33. Phoon, K. K., & Kulhawy, F. H. (1999a). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612–624.  https://doi.org/10.1139/t99-038.CrossRefGoogle Scholar
  34. Phoon, K. K., & Kulhawy, F. H. (1999b). Evaluation of geotechnical property variability. Canadian Geotechnical Journal, 36(4), 625–639.  https://doi.org/10.1139/t99-039.CrossRefGoogle Scholar
  35. Phoon, K. K., & Kulhawy, F. H. (2005). Characterisation of model uncertainties for laterally loaded rigid drilled shafts. Géotechnique, 55, 45–54.CrossRefGoogle Scholar
  36. Rubinstein, R. Y., & Kroese, D. P. (2008). Simulation and the Monte Carlo method (2nd ed.). Wiley: London.zbMATHGoogle Scholar
  37. Sadrekarimi, J., & Akbarzad, M. (2009). Comparative study of methods of determination of coefficient of subgrade reaction. Electronic Journal of Geotechnical Engineering, 14 (Bundle. E).Google Scholar
  38. Selvadurai, A. P. S. (1985). APS soil-pipeline interaction during ground movement. In Civil engineering in the arctic offshore. San Francisco. ASCE, pp. 763–773.Google Scholar
  39. Sivakumar Babu, G., Srinivasa Murthy, B., & Seshagiri Rao, R. (2006). Reliability analysis of deflection of buried flexible pipes. Journal of Transportation Engineering, 132(10), 829–836.  https://doi.org/10.1061/(ASCE)0733-947X(2006)132:10(829).CrossRefGoogle Scholar
  40. Tee, K. F., Khan, L. R., & Chen, H. P. (2013). Probabilistic failure analysis of underground flexible pipes. Structural Engineering and Mechanics, 47(2), 167–183.  https://doi.org/10.12989/sem.2013.47.2.167.CrossRefGoogle Scholar
  41. Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability (2nd ed.). New York, USA: McGraw-Hill.Google Scholar
  42. Uzielli, M., Nadim, F., Lacasse, S., & Kaynia, A. M. (2008). A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology, 102(3–4), 251–256.  https://doi.org/10.1016/j.enggeo.2008.03.011.CrossRefGoogle Scholar
  43. Vlassov, V. Z., and Leontiev, N N. (1966) Beams, plates and shells on elastic foundations. Translated from Russian, Israel Program for Scientific Translations. JerusalemGoogle Scholar
  44. Watkins, R. K., & Anderson, L. R. (1999). Structural mechanics of buried pipes. New York: CRC Press.CrossRefGoogle Scholar
  45. Winkler, E. (1867). Die lehre von der elasticitaet und festigkeit. Prag: Dominicus.Google Scholar

Copyright information

© Korean Society of Steel Construction 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of Badji Mokhtar - AnnabaAnnabaAlgeria
  2. 2.Department of Civil Engineering, Laboratory of Materials, Geomaterials and EnvironmentUniversity of Badji Mokhtar - AnnabaAnnabaAlgeria
  3. 3.Department of Engineering ScienceUniversity of Greenwich, Central Avenue, Chatham MaritimeKentUnited Kingdom
  4. 4.ISISE - Institute for Sustainability and Innovation in Structural Engineering, Department of Civil EngineeringUniversity of MinhoGuimarãesPortugal
  5. 5.RISCO - Aveiro research centre of Risks and Sustainability in Construction, Department of Civil EngineeringUniversity of AveiroAveiroPortugal

Personalised recommendations