Skip to main content
Log in

Buckling Uncertainty Analysis for Steel Pipelines Buried in Elastic Soil Using FOSM and MCS Methods

  • Published:
International Journal of Steel Structures Aims and scope Submit manuscript

Abstract

Generally, buried steel pipes are designed for good transverse behavior by neglecting soil–structure interaction effect. Steel pipelines are also usually designed to prevent from the important failure mode of buckling. However, the design of this type of structures does not normally consider the uncertainties in soil and structural properties. To address the above issues, the paper estimates the uncertainties in terms of the coefficient of variation of critical buckling displacement, CVw using subgrade reaction theory (Winkler model) and first-order second-moment (FOSM) method. Two cases of boundary conditions have been considered in this study. In the first case, CVw is calculated within an infinitely thick soil as a function of uncertainty of subgrade reaction modulus (Ks). In the second case, CVw is calculated in a thick soil cylinder as a function of the uncertainty of the effective subgrade reaction modulus (\(K_{S}^{{\prime }}\)). Furthermore, the uncertainty of pipe flexibility (Sf) is also taken into account in the two cases. Uncertainty calculations by the FOSM method are then validated with those obtained from traditional Monte Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Abdel-Sayed, G. (1978). Stability of flexible conduits embedded in soil. Canadian Journal of Civil Engineering, 5(3), 324–333. https://doi.org/10.1139/l78-037.

    Article  Google Scholar 

  • Alani, A. M., Faramarzi, A., Mahmoodian, M., & Tee, K. (2014). Prediction of sulphide build-up in filled sewer pipes. Environmental Technology, 35(14), 1721–1728. https://doi.org/10.1080/09593330.2014.881403.

    Article  Google Scholar 

  • Annales. (1985). Institut technique du bâtiment et des travaux publiques. No 439, France.

  • Babu, G. L. S., & Rao, R. S. (2005). Reliability measures for buried flexible pipes. Canadian Geotechnical Journal, 42(2), 541–549. https://doi.org/10.1139/t04-116.

    Article  Google Scholar 

  • Chelapati, C. V., & Allgood, J. R. (1972). Buckling of cylinders in a confining medium. In 51st Annual meeting of the highway research board, Highway Research Record, Washington.

  • Cheney, J. A. (1963). Bending and buckling of thin-walled open-section rings. Journal of the Engineering Mechanics Division, 89(5), 17–44.

    Google Scholar 

  • Cheney, J. A. (1971). Buckling of soil-surrounded tubes. Journal of the Engineering Mechanics Division, 97(4), 1121–1132.

    Google Scholar 

  • Ditlevsen, O., & Madsen, H. (1996). Structural reliability methods. London: Wiley.

    Google Scholar 

  • Duncan, J. (2000). Factors of safety and reliability in geotechnical engineering. Journal of Geotechnical and Geoenvironmental Engineering, 126(4), 307–316. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:4(307).

    Article  Google Scholar 

  • Harr, M. E. (1977). Mechanics of particulate media: A probabilistic approach. New York: McGraw-Hill.

    Google Scholar 

  • Harr, M. E. (1987). Reliability-based design in civil engineering. Mcgraw-Hill (Tx), Dover Publications Inc.

  • Imanzadeh, S. (2013). Effects of uncertainties and spatial variation of soil and structure properties on geotechnical design, cases of continuous spread footings and buried pipes Ph.D Thesis, L’universite Bordeaux 1, Bordeaux, France.

  • Imanzadeh, S., Denis, A., & Marache, A. (2011). Estimation de la variabilité du module de réaction pour l’étude du comportement des semelles filantes sur sol élastique. Application à partir des modèles existants. In: XXIX e Rencontres Universitaires de Génie Civil, Tlemcen, Algérie, 2011/05//2011, pp. 145–154.

  • Imanzadeh, S., Denis, A., & Marache, A. (2013). Effect of uncertainty in soil and structure parameters for buried pipes. In T. F. Group (Ed.) Geotechnical and geophysical site characterization 4 – Coutinho & Mayne (eds), Université de Bordeaux—UMR 5295—I2 M, Environmental Civil Engineering Department, Avenue des Facultés, Talence Cedex, France, 2013, Geotechnical and Geophysical Site Characterization 4 – Coutinho & Mayne (eds), pp. 1847–1853

  • Imanzadeh, S., Denis, A., & Marache, A. (2013b). Simplified uncertainties analysis of continuous buried steel pipes on an elastic foundation in the presence of low stiffness zones. Computers and Geotechnics, 48, 62–71.

    Article  Google Scholar 

  • Kerr, A. (1965). A study of a new foundation model. Acta Mechanica, 1(2), 135–147. https://doi.org/10.1007/BF01174308.

    Article  Google Scholar 

  • Khemis, A., Chaouche, A. H., Athmani, A., & Tee, K. F. (2016). Uncertainty effects of soil and structural properties on the buckling of flexible pipes shallowly buried in Winkler foundation. Structural Engineering and Mechanics, 59(4), 739–759. https://doi.org/10.12989/sem.2016.59.4.739.

    Article  Google Scholar 

  • Kloppel, K., & Glock, D. (1970). Theoretische und Experimentelle Untersuchungen zu den Traglastproblem biegeweichen, in die Erde eingebetter Rohre. Germany: Institutes ftir Statik und Stahlbau der Technischen Hochschule Darmstadt.

    Google Scholar 

  • Kovara, K., Leijnseb, A., Uffinka, G. J. M., Pastoorsa, M. J. H., Mülschlegela, J. H. C., & Zaadnoordijkc, W. J. (2005). Reliability of travel times to groundwater abstraction wells: Application of the Netherlands groundwater model. Bilthoven: LGM.

    Google Scholar 

  • Kulhawy, F. (1992). On the evaluation of static soil properties. In Stability and performance of slopes and embankments II, 1992. ASCE, pp. 95–115.

  • Kulhawy, F., Roth, M., & Grigoriu, M. (1991). Some statistical evaluation of geotechnical properties. In Proceedings of 6th international conference on applications of statistics and probability in civil engineering, Mexico City.

  • Lacasse, S., & Nadim, F. (1966). Uncertainties in characterising soil properties. In Uncertainty in the geologic environment: From theory to practice. ASCE, Geotechnical Special Publication, pp. 49–75.

  • Lacasse, S., & Nadim, F. (1997). Uncertainties in characterizing soil properties. Oslo, Norway: Norwegian Geotechnical Institute.

    Google Scholar 

  • Lacasse, S., & Nadim, F. (2007). Probabilistic geotechnical analyses for offshore facilities. Georisk: Assessment and management of risk for engineered systems and geohazards, 1(1), 21–42. https://doi.org/10.1080/17499510701204224.

    Google Scholar 

  • Leonards, G. A., & Stetkar R. E. (1978). Performance of buried flexible conduits: Interim report, publication FHWA/IN/JHRP-78/24. Joint Highway Research Project, Department of Transportation and Purdue University, West Lafayette, Indiana, West Lafayette, IN. https://doi.org/10.5703/1288284313984.

  • Luscher, U. (1966). Buckling of soil-surrounded tubes. Soil Mechanics and Foundations, Division, 92(SM6), 211–228.

    Google Scholar 

  • Melchers, R. E. (1999). Structural reliability analysis and prediction (2nd ed.). Chichester: Wiley.

    Google Scholar 

  • Meyerhof, G. G. (1968). Some problems in the design of shallow-buried steel structures. In Canadian structural engineering conference, Toronto.

  • Meyerhof, G. G., Baikie, L. D. (1963). Strength of steel culvert sheets bearing against compacted sand backfill. Highway Research Record.

  • Moore, I. (1989). Elastic buckling of buried flexible tubes: A review of theory and experiment. Journal of Geotechnical Engineering, 115(3), 340–358. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:3(340).

    Article  Google Scholar 

  • Okeagu, B., & Abdel-Sayed, G. (1984). Coefficients of soil reaction for buried flexible conduits. Journal of Geotechnical Engineering, 110(7), 908–922. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:7(908).

    Article  Google Scholar 

  • Pasternak, P. L. (1954). On a new method of analysis of an elastic foundation by means of two foundation constants. Moscow: Gosudarstvennoe Izdatelstvo Literaturi po Stroitelstvu i Arkhitekture. (in Russian).

    Google Scholar 

  • Phoon, K. K., & Kulhawy, F. H. (1999a). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612–624. https://doi.org/10.1139/t99-038.

    Article  Google Scholar 

  • Phoon, K. K., & Kulhawy, F. H. (1999b). Evaluation of geotechnical property variability. Canadian Geotechnical Journal, 36(4), 625–639. https://doi.org/10.1139/t99-039.

    Article  Google Scholar 

  • Phoon, K. K., & Kulhawy, F. H. (2005). Characterisation of model uncertainties for laterally loaded rigid drilled shafts. Géotechnique, 55, 45–54.

    Article  Google Scholar 

  • Rubinstein, R. Y., & Kroese, D. P. (2008). Simulation and the Monte Carlo method (2nd ed.). Wiley: London.

    MATH  Google Scholar 

  • Sadrekarimi, J., & Akbarzad, M. (2009). Comparative study of methods of determination of coefficient of subgrade reaction. Electronic Journal of Geotechnical Engineering, 14 (Bundle. E).

  • Selvadurai, A. P. S. (1985). APS soil-pipeline interaction during ground movement. In Civil engineering in the arctic offshore. San Francisco. ASCE, pp. 763–773.

  • Sivakumar Babu, G., Srinivasa Murthy, B., & Seshagiri Rao, R. (2006). Reliability analysis of deflection of buried flexible pipes. Journal of Transportation Engineering, 132(10), 829–836. https://doi.org/10.1061/(ASCE)0733-947X(2006)132:10(829).

    Article  Google Scholar 

  • Tee, K. F., Khan, L. R., & Chen, H. P. (2013). Probabilistic failure analysis of underground flexible pipes. Structural Engineering and Mechanics, 47(2), 167–183. https://doi.org/10.12989/sem.2013.47.2.167.

    Article  Google Scholar 

  • Timoshenko, S. P., & Gere, J. M. (1961). Theory of elastic stability (2nd ed.). New York, USA: McGraw-Hill.

    Google Scholar 

  • Uzielli, M., Nadim, F., Lacasse, S., & Kaynia, A. M. (2008). A conceptual framework for quantitative estimation of physical vulnerability to landslides. Engineering Geology, 102(3–4), 251–256. https://doi.org/10.1016/j.enggeo.2008.03.011.

    Article  Google Scholar 

  • Vlassov, V. Z., and Leontiev, N N. (1966) Beams, plates and shells on elastic foundations. Translated from Russian, Israel Program for Scientific Translations. Jerusalem

  • Watkins, R. K., & Anderson, L. R. (1999). Structural mechanics of buried pipes. New York: CRC Press.

    Book  Google Scholar 

  • Winkler, E. (1867). Die lehre von der elasticitaet und festigkeit. Prag: Dominicus.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allaeddine Athmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Athmani, A., Khemis, A., Hacene Chaouche, A. et al. Buckling Uncertainty Analysis for Steel Pipelines Buried in Elastic Soil Using FOSM and MCS Methods. Int J Steel Struct 19, 381–397 (2019). https://doi.org/10.1007/s13296-018-0126-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13296-018-0126-7

Keywords

Navigation