, Volume 5, Issue 4, pp 93–100 | Cite as

How light traverses the inverted vertebrate retina

No flaw of nature
  • A. ReichenbachEmail author
  • S. Agte
  • M. Francke
  • K. Franze
Review article


In our eyes, as in the eyes of all vertebrates, images of the environment are projected onto an inverted retina, where photons must pass through most of the retinal layers before being captured by the light-sensitive cells. Light scattering in these retinal layers must decrease the signal-to-noise ratio of the images and thus interfere with clear vision. Surprisingly however, our eyes display splendid visual abilities. This apparent contradiction could be resolved if intraretinal light scattering were to be minimized by built-in optical elements that facilitate light transmission through the tissue. Indeed, we were able to show that one function of radial glial (Müller) cells is to act as effective optical fibers in the living retina, bypassing the light-scattering structures in front of the light-sensitive cells. Each Müller cell serves as a ‘private’ light cable, providing one individual cone photoreceptor cell with its appropriate pixel of the environmental image, thus optimizing special resolution and visual acuity.


Vision Glial cells Visual acuity Scattering Photoreceptor cells 


  1. 1.
    Agte S, Junek S, Matthias S et al (2011) Müller glial cell-provided cellular light guidance through the vital guinea-pig retina. Biophys J 101:2611–2619PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Bass M (1995) Handbook of optics, volume I: fundamentals, techniques, and design. McGraw-Hill, New YorkGoogle Scholar
  3. 3.
    Enoch JM (1961) Visualization of wave-guide modes in retinal receptors. Am J Ophthalmol 51:1107–1118PubMedCrossRefGoogle Scholar
  4. 4.
    Enoch JM (1963) Optical properties of the retinal receptors. J Opt Soc Am 53:71–85CrossRefGoogle Scholar
  5. 5.
    Enoch JM, Glisman LE (1966) Physical and optical changes in excised retinal tissue. Resolution of retinal receptors as a fiber optic bundle. Invest Ophthamol Vis Sci 5:208–221Google Scholar
  6. 6.
    Franze K, Grosche J, Skatchkov SN et al (2007) Müller cells are living optical fibers in the vertebrate retina. Proc Natl Acad Sci U S A 104:8287–8292PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Goldsmith TH (1990) Optimization, constraint, and history in the evolution of eyes. Q Rev Biol 65:285–287CrossRefGoogle Scholar
  8. 8.
    Land MF, Nilsson D-E (2002) Animal eyes. Oxford University Press, New YorkGoogle Scholar
  9. 9.
    Puliafito CA, Hee MR, Lin CP et al (1995) Imaging of macular diseases with optical coherence tomography. Ophthalmology 102:217–229PubMedCrossRefGoogle Scholar
  10. 10.
    Reichenbach A, Robinson S (1995) Phylogenetic constraints on retinal organization and development. Prog Retin Eye Res 15:139–171CrossRefGoogle Scholar
  11. 11.
    Reichenbach A, Bringmann A (2010) Müller cells in the healthy and diseased retina. Springer, New YorkGoogle Scholar
  12. 12.
    Reichenbach A, Franze K, Agte S et al (2012) Live cells as optical fibers in the vertebrate retina. In: Yasin M, Arof H, Harun SW (eds) Selected topics on optical fiber technology. InTech, Rijeka, pp 247–270Google Scholar
  13. 13.
    Rodieck RW (1973) The vertebrate retina: principles of structure and function. W. H. Freeman, San FranciscoGoogle Scholar
  14. 14.
    Solovei I, Kreysing M, Lanctôt C et al (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:356–368PubMedCrossRefGoogle Scholar
  15. 15.
    Tobey FL, Enoch JM, Scandrett JH (1975) Experimentally determined optical properties of goldfish cones and rods. Invest Ophthalmol 14:7–23PubMedGoogle Scholar
  16. 16.
    Valentin G (1879) Ein Beitrag zur Kenntniss der Brechungsverhältnisse der Thiergewebe. Arch Ges Physiol 19:78–105CrossRefGoogle Scholar
  17. 17.
    Walls GL (1963) The Vertebrate Eye. Hafner Publishing Company, New YorkGoogle Scholar
  18. 18.
    Winston A, Enoch JM (1971) Retinal cone receptor as an ideal light collector. J Opt Soc Am 61:1120–1122PubMedCrossRefGoogle Scholar
  19. 19.
    Zernike F (1955) How I discovered phase contrast. Science 121:345–349PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • A. Reichenbach
    • 1
    Email author
  • S. Agte
    • 1
  • M. Francke
    • 1
    • 2
  • K. Franze
    • 3
  1. 1.Paul Flechsig Institute for Brain Research, Department of Pathophysiology of NeurogliaLeipzig UniversityLeipzigGermany
  2. 2.Translational Center for Regenerative MedicineLeipzigGermany
  3. 3.Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK

Personalised recommendations