e-Neuroforum

, Volume 4, Issue 1, pp 1–10 | Cite as

Fast network oscillations in the hippocampus

Phenomena, mechanisms and open questions at the interface of cellular and systemic neurosciences
Review article

Abstract

Neuronal networks often express coherent oscillatory activity. These rhythms can provide a temporal reference for the activity of single neurons and allow the formation of spatiotemporal activity patterns with a defined phase relationship of action potentials. In a single brain nucleus, oscillations at different frequencies might be simultaneously generated, but isolated rhythms might also be characteristic for specific functional brain states. During the last two decades the mammalian hippocampus has become an important model system for the study of neuronal network oscillations. In this brain area, cellular mechanisms underlying neuronal synchronization have been described, but also models were developed to explain the contribution of oscillations in encoding, consolidation, and recall of memories. Neuronal rhythmic activities provide an important field of analysis bringing together cellular mechanisms and systemic functions of the brain. Here, we use a particularly fast type of neuronal oscillation, hippocampal “ripples”, as an example to outline current knowledge and open questions related with this research field.

Keywords

Neuronal network oscillation Learning and memory Hippocampus Cellular mechanisms Ripples 

References

  1. 1.
    Chevaleyre V, Siegelbaum SA (2010) Strong CA2 pyramidal neuron synapses define a powerful disynaptic cortico-hippocampal loop. Neuron 66:560–572PubMedCrossRefGoogle Scholar
  2. 2.
    O’Keefe J, Nadel L (1978) The Hippocampus as a Cognitive MapGoogle Scholar
  3. 3.
    Wolansky T, Clement EA, Peters SR (2006) Hippocampal slow oscillation: a novel EEG state and its coordination with ongoing neocortical activity. J Neurosci 26:6213–6229PubMedCrossRefGoogle Scholar
  4. 4.
    Garaschuk O, Hanse E, Konnerth A (1998) Developmental profile and synaptic origin of early network oscillations in the CA1 region of rat neonatal hippocampus. J Physiol 507(Pt 1):219–236PubMedCrossRefGoogle Scholar
  5. 5.
    Bragin A, Engel J Jr, Wilson CL et al (1999) Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 40:127–137PubMedCrossRefGoogle Scholar
  6. 6.
    Foffani G, Uzcategui YG, Gal B, Menendez dlP (2007) Reduced spike-timing reliability correlates with the emergence of fast ripples in the rat epileptic hippocampus. Neuron 55:930–941PubMedCrossRefGoogle Scholar
  7. 7.
    Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics: the unity of hippocampal circuit operations. Science 321:53–57PubMedCrossRefGoogle Scholar
  8. 8.
    O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res 34:171–175CrossRefGoogle Scholar
  9. 9.
    O’Keefe J, Recce ML (1993) Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–330CrossRefGoogle Scholar
  10. 10.
    Wilson MA, McNaughton BL (1994) Reactivation of hippocampal ensemble memories during sleep. Science 265:676–679PubMedCrossRefGoogle Scholar
  11. 11.
    Lee AK, Wilson MA (2002) Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–1194PubMedCrossRefGoogle Scholar
  12. 12.
    Buzsáki G (1989) Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–570PubMedCrossRefGoogle Scholar
  13. 13.
    Hasselmo ME (1999) Neuromodulation: acetylcholine and memory consolidation. Trends Cogn Sci 3:351–359PubMedCrossRefGoogle Scholar
  14. 14.
    Siapas AG, Wilson MA (1998) Coordinated interactions between hippocampal ripples and cortical spindles during slow-wave sleep. Neuron 21:1123–1128PubMedCrossRefGoogle Scholar
  15. 15.
    Scoville WB, Milner B (1957) Loss of recent memory after bilateral hippocampal lesions. J Neurol Neurosurg Psychiatry 20:11–21PubMedCrossRefGoogle Scholar
  16. 16.
    Girardeau G, Benchenane K, Wiener SI et al (2009) Selective suppression of hippocampal ripples impairs spatial memory. Nat Neurosci 12:1222–1223PubMedCrossRefGoogle Scholar
  17. 17.
    Ego-Stengel V, Wilson MA (2010) Disruption of ripple-associated hippocampal activity during rest impairs spatial learning in the rat. Hippocampus 20:1–10PubMedGoogle Scholar
  18. 18.
    Jadhav SP, Kemere C, German PW, Frank LM (2012) Awake hippocampal sharp-wave ripples support spatial memory. Science 336:1454–1458PubMedCrossRefGoogle Scholar
  19. 19.
    Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966PubMedCrossRefGoogle Scholar
  20. 20.
    Foster DJ, Wilson MA (2006) Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–683PubMedCrossRefGoogle Scholar
  21. 21.
    Sirota A, Csicsvari J, Buhl D, Buzsáki G (2003) Communication between neocortex and hippocampus during sleep in rodents. Proc Natl Acad Sci U S A 100:2065–2069PubMedCrossRefGoogle Scholar
  22. 22.
    Battaglia FP, Sutherland GR, McNaughton BL (2004) Hippocampal sharp wave bursts coincide with neocortical “up-state” transitions. Learn Mem 11:697–704PubMedCrossRefGoogle Scholar
  23. 23.
    Isomura Y, Sirota A, Ozen S et al (2006) Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52:871–882PubMedCrossRefGoogle Scholar
  24. 24.
    Diba K, Buzsáki G (2007) Forward and reverse hippocampal place-cell sequences during ripples. Nat Neurosci 10:1241–1242PubMedCrossRefGoogle Scholar
  25. 25.
    Klausberger T, Magill PJ, Marton LF et al (2003) Brain-state- and cell-type-specific firing of hippocampal interneurons in vivo. Nature 421:844–848PubMedCrossRefGoogle Scholar
  26. 26.
    Klausberger T, Marton LF, Baude A et al (2004) Spike timing of dendrite-targeting bistratified cells during hippocampal network oscillations in vivo. Nat Neurosci 7:41–47PubMedCrossRefGoogle Scholar
  27. 27.
    Bähner F, Weiss EK, Birke G et al (2011) Cellular correlate of assembly formation in oscillating hippocampal networks in vitro. Proc Natl Acad Sci U S A 108:E607–E616PubMedCrossRefGoogle Scholar
  28. 28.
    Varga C, Golshani P, Soltesz I (2012) Frequency-invariant temporal ordering of interneuronal discharges during hippocampal oscillations in awake mice. Proc Natl Acad Sci U S A 109:E2726–E2734PubMedCrossRefGoogle Scholar
  29. 29.
    Traub RD, Whittington MA, Stanford IM, Jefferys JG (1996) A mechanism for generation of long-range synchronous fast oscillations in the cortex. Nature 383:621–624PubMedCrossRefGoogle Scholar
  30. 30.
    Traub RD, Whittington MA, Colling SB et al (1996) Analysis of gamma rhythms in the rat hippocampus in vitro and in vivo. J Physiol 493(Pt 2):471–484PubMedGoogle Scholar
  31. 31.
    Bartos M, Vida I, Frotscher M et al (2002) Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks. Proc Natl Acad Sci U S A 99:13222–13227PubMedCrossRefGoogle Scholar
  32. 32.
    Birke G, Draguhn A (2010) No simple brake—the complex functions of inhibitory synapses. Pharmacopsychiatry 43(Suppl 1):21–31CrossRefGoogle Scholar
  33. 33.
    Mann EO, Mody I (2010) Control of hippocampal gamma oscillation frequency by tonic inhibition and excitation of interneurons. Nat Neurosci 13:205–212PubMedCrossRefGoogle Scholar
  34. 34.
    Whittington MA, Traub RD (2003) Interneuron diversity series: inhibitory interneurons and network oscillations in vitro. Trends Neurosci 26:676–682PubMedCrossRefGoogle Scholar
  35. 35.
    Mann EO, Paulsen O (2007) Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci 30:343–349PubMedCrossRefGoogle Scholar
  36. 36.
    Buzsáki G, Wang XJ (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35:203–225PubMedCrossRefGoogle Scholar
  37. 37.
    Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284PubMedCrossRefGoogle Scholar
  38. 38.
    Dere E, Zlomuzica A (2012) The role of gap junctions in the brain in health and disease. Neurosci Biobehav Rev 36:206–217PubMedCrossRefGoogle Scholar
  39. 39.
    Vanderwolf CH (1969) Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26:407–418PubMedCrossRefGoogle Scholar
  40. 40.
    Maier N, Nimmrich V, Draguhn A (2003) Cellular and network mechanisms underlying spontaneous sharp wave-ripple complexes in mouse hippocampal slices. J Physiol 550:873–887PubMedCrossRefGoogle Scholar
  41. 41.
    Maier N, Tejero-Cantero A, Dorrn AL et al (2011) Coherent phasic excitation during hippocampal ripples. Neuron 72:137–152PubMedCrossRefGoogle Scholar
  42. 42.
    Both M, Bähner F, Bohlen und Halbach O, Draguhn A (2008) Propagation of specific network patterns through the mouse hippocampus. Hippocampus 18:899–908PubMedCrossRefGoogle Scholar
  43. 43.
    Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65:113–136PubMedCrossRefGoogle Scholar
  44. 44.
    Leibold C, Gundlfinger A, Schmidt R et al (2008) Temporal compression mediated by short-term synaptic plasticity. Proc Natl Acad Sci U S A 105:4417–4422PubMedCrossRefGoogle Scholar
  45. 45.
    Draguhn A, Traub RD, Schmitz D, Jefferys JG (1998) Electrical coupling underlies high-frequency oscillations in the hippocampus in vitro. Nature 394:189–192PubMedCrossRefGoogle Scholar
  46. 46.
    Kandel E, Spencer W, Brinley FJ (1961) Electrophysiology of hippocampal neurons. I. Sequential invasion and synaptic organization. J Neurophysiol 24:225–242PubMedGoogle Scholar
  47. 47.
    Epsztein J, Lee AK, Chorev E, Brecht M (2010) Impact of spikelets on hippocampal CA1 pyramidal cell activity during spatial exploration. Science 327:474–477PubMedCrossRefGoogle Scholar
  48. 48.
    Schmitz D, Schuchmann S, Fisahn A et al (2001) Axo-axonal coupling. a novel mechanism for ultrafast neuronal communication. Neuron 31:831–840PubMedCrossRefGoogle Scholar
  49. 49.
    Dugladze T, Schmitz D, Whittington MA et al (2012) Segregation of axonal and somatic activity during fast network oscillations. Science 336:1458–1461PubMedCrossRefGoogle Scholar
  50. 50.
    Memmesheimer RM (2010) Quantitative prediction of intermittent high-frequency oscillations in neural networks with supralinear dendritic interactions. Proc Natl Acad Sci U S A 107:11092–11097PubMedCrossRefGoogle Scholar
  51. 51.
    Reichinnek S, Künsting T, Draguhn A, Both M (2010) Field potential signature of distinct multicellular activity patterns in the mouse hippocampus. J Neurosci 30 (46):15441–15449PubMedCrossRefGoogle Scholar
  52. 52.
    Pangalos M, Donoso JR, Winterer J et al (2013) Recruitment of oriens-lacunosum-moleculare interneurons during hippocampal ripples. Proc Natl Acad Sci U S A. 2013 Feb 25. [Epub ahead of print]Google Scholar
  53. 53.
    Buzsáki G, Horváth Z, Urioste R et al (1992) High-frequency network oscillation in the hippocampus. Science 256: 1025–1027PubMedCrossRefGoogle Scholar
  54. 54.
    Csicsvari J, Hirase H, Mamiya A, Buzsáki G (2000) Ensemble patterns of hippocampal CA3-CA1 neurons during sharp wave-associated population events. Neuron 28: 585–594PubMedCrossRefGoogle Scholar
  55. 55.
    Csicsvari J, Hirase H, Czurkó A et al (1999) Oscillatory coupling of hippocampal pyramidal cells and interneurons in the behaving Rat. J Neurosci 19: 274–228PubMedGoogle Scholar
  56. 56.
    Ylinen A, Bragin A, Nádasdy Z et al (1995) Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms. J Neurosci 15: 30–46PubMedGoogle Scholar
  57. 57.
    Buzsáki G (1986) Hippocampal sharp waves: their origin and significance. Brain Res 398: 242–252PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Neurowissenschaftliches Forschungszentrum der CharitéCharité-Universitätsmedizin BerlinBerlinGermany
  2. 2.Institut für Physiologie und PathophysiologieMedizinische Fakultät der Universität HeidelbergHeidelbergGerman

Personalised recommendations