Skip to main content

Advertisement

Log in

Scientists’ warning to humanity on the freshwater biodiversity crisis

  • Perspective
  • Published:
Ambio Aims and scope Submit manuscript

Abstract

Freshwater ecosystems provide irreplaceable services for both nature and society. The quality and quantity of freshwater affect biogeochemical processes and ecological dynamics that determine biodiversity, ecosystem productivity, and human health and welfare at local, regional and global scales. Freshwater ecosystems and their associated riparian habitats are amongst the most biologically diverse on Earth, and have inestimable economic, health, cultural, scientific and educational values. Yet human impacts to lakes, rivers, streams, wetlands and groundwater are dramatically reducing biodiversity and robbing critical natural resources and services from current and future generations. Freshwater biodiversity is declining rapidly on every continent and in every major river basin on Earth, and this degradation is occurring more rapidly than in terrestrial ecosystems. Currently, about one third of all global freshwater discharges pass through human agricultural, industrial or urban infrastructure. About one fifth of the Earth’s arable land is now already equipped for irrigation, including all the most productive lands, and this proportion is projected to surpass one third by midcentury to feed the rapidly expanding populations of humans and commensal species, especially poultry and ruminant livestock. Less than one fifth of the world’s preindustrial freshwater wetlands remain, and this proportion is projected to decline to under one tenth by midcentury, with imminent threats from water transfer megaprojects in Brazil and India, and coastal wetland drainage megaprojects in China. The Living Planet Index for freshwater vertebrate populations has declined to just one third that of 1970, and is projected to sink below one fifth by midcentury. A linear model of global economic expansion yields the chilling prediction that human utilization of critical freshwater resources will approach one half of the Earth’s total capacity by midcentury. Although the magnitude and growth of the human freshwater footprint are greater than is generally understood by policy makers, the news media, or the general public, slowing and reversing dramatic losses of freshwater species and ecosystems is still possible. We recommend a set of urgent policy actions that promote clean water, conserve watershed services, and restore freshwater ecosystems and their vital services. Effective management of freshwater resources and ecosystems must be ranked amongst humanity’s highest priorities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Image sources: Acipenser naccarii,Psephurus gladius, Andrias davidianus from Wikimedia Commons; Crocodylus intermedius and Podocnemis lewyana from Threatened Reptiles of Colombia (http://reporte.humboldt.org.co/biodiversidad/); Pangasianodon gigas from PGNGuru (http://www.pngguru.com/), †Lipotes vexillifer from PNGGuru (http://www.pngguru.com/)

Similar content being viewed by others

References

  • Aldaya, M.M., A.K. Chapagain, A.Y. Hoekstra, and M.M. Mekonnen. 2012. The water footprint assessment manual: Setting the global standard. London: Routledge.

    Google Scholar 

  • Allan, C., and R.J. Watts. 2018. Revealing adaptive management of environmental flows. Environmental Management 61: 520–533.

    Google Scholar 

  • Atwood, T.B., R.M. Connolly, H. Almahasheer, P.E. Carnell, C.M. Duarte, C.J.E. Lewis, X. Irigoien, J.J. Kelleway, et al. 2017. Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change 7: 523–528.

    CAS  Google Scholar 

  • Bar-On, Y.M., R. Phillips, and R. Milo. 2018. The biomass distribution on Earth. Proceedings of the National academy of Sciences of the United States of America 115 (25): 6506–6511.

    CAS  Google Scholar 

  • Barbier, E.B. 2017. The economics of aquatic ecosystems: An introduction to the special issue. Water Economics and Policy 3: 1202002.

    Google Scholar 

  • Bennett, C.E., R. Thomas, M. Williams, J. Zalasiewicz, M. Edgeworth, H. Miller, B. Coles, A. Foster, et al. 2018. The broiler chicken as a signal of a human reconfigured biosphere. Royal Society Open Science 5: 180325.

    Google Scholar 

  • Beschta, R.L., D.L. Donahue, D.A. DellaSala, J.J. Rhodes, J.R. Karr, M.H. O’Brien, T.L. Fleischner, and C.D. Williams. 2013. Adapting to climate change on western public lands: Addressing the ecological effects of domestic, wild, and feral ungulates. Environmental Management 51: 474–491.

    Google Scholar 

  • Brack, W., R. Altenburger, G. Schüürmann, M. Krauss, D.L. van Herráez, J. Gils, J. Slobodnik, J. Munthe, et al. 2015. The SOLUTIONS project: Challenges and responses for present and future emerging pollutants in land and water resources management. Science of the Total Environment 503: 22–31.

    Google Scholar 

  • Campos-Silva, J.V., and C.A. Peres. 2016. Community-based management induces rapid recovery of a high-value tropical freshwater fishery. Scientific Reports 6: 34745.

    CAS  Google Scholar 

  • Carrizo, S.F., S.C. Jähnig, V. Bremerich, J. Freyhof, I. Harrison, F. He, S.D. Langhans, K. Tockner, et al. 2017. Freshwater megafauna: Flagships for freshwater biodiversity under threat. BioScience 67: 919–927.

    Google Scholar 

  • Ceballos, G., P.R. Ehrlich, A.D. Barnosky, A. García, R.M. Pringle, and T.M. Palmer. 2015. Accelerated modern human-induced species losses: Entering the sixth mass extinction. Science Advances 1: e1400253.

    Google Scholar 

  • Cohen, A.S., E.L. Gergurich, B.M. Kraemer, M.M. McGlue, P.B. McIntyre, J.M. Russell, J.D. Simmons, and P.W. Swarzenski. 2016a. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proceedings of the National Academy of Sciences of the United States of America 113: 9563–9568.

    CAS  Google Scholar 

  • Cohen, M.J., I.F. Creed, L. Alexander, N.B. Basu, A.J. Calhoun, C. Craft, E. D’Amico, E. DeKeyser, et al. 2016b. Do geographically isolated wetlands influence landscape functions? Proceeding of the National Academy of Sciences of the United States of America 113: 1978–1986.

    CAS  Google Scholar 

  • Cooke, S.J., N.W.R. Lapointe, E.G. Martins, J.D. Thiem, G.D. Raby, M.K. Taylor, T.D. Beard, and I.G. Cowx. 2013. Failure to engage the public in issues related to inland fishes and fisheries: Strategies for building public and political will to promote meaningful conservation. Journal of Fish Biology 83: 997–1018.

    CAS  Google Scholar 

  • Cooke, S.J., E.G. Martins, D.P. Struthers, L.F. Gutowsky, M. Power, S. Doka, and C.C. Krueger. 2016. A moving target—Incorporating knowledge of the spatial ecology of fish into the assessment and management of freshwater fish populations. Environmental Monitoring and Assessment 188: 239. https://doi.org/10.1007/s10661-016-5228-0.

    Article  Google Scholar 

  • Crist, E., C. Mora, and R. Engelman. 2017. The interaction of human population, food production, and biodiversity protection. Science 356: 260–264.

    CAS  Google Scholar 

  • Cui, B., Q. He, B. Gu, J. Bai, and X. Liu. 2016. China’s coastal wetlands: Understanding environmental changes and human impacts for management and conservation. Wetlands 36: 1–9.

    Google Scholar 

  • Damania, R., S. Desbureaux, A.-S. Rodella, J. Russ, and E. Zaveri. 2019. Quality unknown: The invisible water crisis. Washington, DC: World Bank. https://doi.org/10.1596/978-1-4648-1459-4.

    Book  Google Scholar 

  • Davidson, N.C. 2014. How much wetland has the world lost? Long-term and recent trends in global wetland area. Marine & Freshwater Research 65: 934–941.

    Google Scholar 

  • Destouni, G., and J. Jarsjö. 2018. Zones of untreatable water pollution call for better appreciation of mitigation limits and opportunities. Wiley Interdisciplinary Reviews: Water 5: e1312.

    Google Scholar 

  • Destouni, G., I. Fischer, and C. Prieto. 2017. Water quality and ecosystem management: Data-driven reality check of effects in streams and lakes. Water Resources Research 53: 6395–6406.

    CAS  Google Scholar 

  • Destouni, G., F. Jaramillo, and C. Prieto. 2013. Hydroclimatic shifts driven by human water use for food and energy production. Nature Climate Change 3: 213.

    Google Scholar 

  • Dias, M.S., P.A. Tedesco, B. Hugueny, C. Jézéquel, O. Beauchard, S. Brosse, and T. Oberdorff. 2017. Anthropogenic stressors and riverine fish extinctions. Ecological Indicators 79: 37–46.

    Google Scholar 

  • D’Odorico, P., K.F. Davis, L. Rosa, J.A. Carr, D. Chiarelli, J. Dell’Angelo, J. Gephart, G.K. MacDonald, et al. 2018. The global food-energy-water nexus. Reviews of Geophysics 56: 456–531.

    Google Scholar 

  • Dudgeon, D. 2019. Multiple threats imperil freshwater biodiversity in the Anthropocene. Current Biology 29: R960–R967.

    CAS  Google Scholar 

  • Ellis, E.C., K. Klein-Goldewijk, S. Siebert, D. Lightman, and N. Ramankutty. 2010. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography 19: 589–606.

    Google Scholar 

  • Elmgren, R., T. Blenckner, and A. Andersson. 2015. Baltic Sea management: Successes and failures. Ambio 44: 335–344.

    Google Scholar 

  • Elmhagen, B., G. Destouni, A. Angerbjörn, S. Borgström, E. Boyd, S.A. Cousins, L. Dalén, J. Ehrlén, et al. 2015. Interacting effects of change in climate, human population, land use, and water use on biodiversity and ecosystem services. Ecology and Society 20: 23.

    Google Scholar 

  • Engström, R.E., G. Destouni, M. Howells, V. Ramaswamy, H. Rogner, and M. Bazilian. 2019. Cross-scale water and land impacts of local climate and energy policy—A local Swedish analysis of selected SDG interactions. Sustainability 11: 1847.

    Google Scholar 

  • FAO. 2011. The state of the world’s land and water resources for food and agriculture (SOLAW)Managing systems at risk. Quebec: Food and Agriculture Organization of the United Nations.

  • FAO. 2016. AQUASTAT database. http://www.fao.org/nr/water/aquastat/data/.

  • Fenwick, A. 2006. Waterborne infectious diseases: Could they be consigned to history? Science 313: 1077–1081.

    CAS  Google Scholar 

  • Finlayson, C. M. Arthington, A. H. and Pittock, J. (Eds.). 2018. Freshwater ecosystems in protected areas: Conservation and management. London: Routledge.

  • Fluet-Chouinard, E., S. Funge-Smith, and P.B. McIntyre. 2018. Global hidden harvest of freshwater fish revealed by household surveys. Proceedings of the National academy of Sciences of the United States of America 115: 7623–7628.

    CAS  Google Scholar 

  • Freyhof, J., and E. Brooks. 2017. European red list of freshwater fishes. Luxembourg: Publications Office of the European Union.

    Google Scholar 

  • Fricko, O., S.C. Parkinson, N. Johnson, M. van Strubegger, M.T. Vliet, and K. Riahi. 2016. Energy sector water use implications of a 2 C climate policy. Environmental Research Letters 11: 034011.

    Google Scholar 

  • Gleeson, T., K.M. Befus, S. Jasechko, E. Luijendijk, and M.B. Cardenas. 2016. The global volume and distribution of modern groundwater. Nature Geoscience 9: 161.

    CAS  Google Scholar 

  • Grill, G., B. Lehner, M. Thieme, B. Geenen, D. Tickner, F. Antonelli, S. Babu, P. Borrelli, et al. 2019. Mapping the world’s free-flowing rivers. Nature 569: 215.

    CAS  Google Scholar 

  • Gude, V.G. 2016. Desalination and sustainability—An appraisal and current perspective. Water Research 89: 87–106.

    CAS  Google Scholar 

  • He, F., C. Zarfl, V. Bremerich, J.N. David, Z. Hogan, G. Kalinkat, K. Tockner, and S.C. Jähnig. 2019. The global decline of freshwater megafauna. Global Change Biology 25: 3883–3892.

    Google Scholar 

  • Heino, J., R. Virkkala, and H. Toivonen. 2009. Climate change and freshwater biodiversity: Detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.

    Google Scholar 

  • Hobbs, R.J., P.R. Ehrlich, and H.A. Mooney. 2011. Intervention ecology: Applying ecological science in the twenty-first century. BioScience 61: 442–450.

    Google Scholar 

  • Hoekstra, A.Y., and M.M. Mekonnen. 2012. The water footprint of humanity. Proceedings of the National academy of Sciences of the United States of America 109: 3232–3237.

    CAS  Google Scholar 

  • Hughes, T.P., S. Carpenter, J. Rockström, M. Scheffer, and B. Walker. 2013. Multiscale regime shifts and planetary boundaries. Trends in Ecology & Evolution 28: 389–395.

    Google Scholar 

  • IPBES (2019). Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, eds. S. Díaz, J. Settele, E.S. Brondízio, H.T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, et al., 56 pp. IPBES secretariat, Bonn. https://doi.org/10.5281/zenodo.3553579.

  • Irvine, K., L. Castello, A. Junqueira, and T. Moulton. 2016. Linking ecology with social development for tropical aquatic conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 917–941.

    Google Scholar 

  • Jaramillo, F., and G. Destouni. 2015. Local flow regulation and irrigation raise global human water consumption and footprint. Science 350: 1248–1251.

    CAS  Google Scholar 

  • Jardine, T.D., N.R. Bond, M.A. Burford, M.J. Kennard, D.P. Ward, P. Bayliss, P.M. Davies, M.M. Dougals, et al. 2015. Does flood rhythm drive ecosystem responses in tropical riverscapes? Ecology 96: 684–692.

    Google Scholar 

  • Juffe-Bignoli, D., I. Harrison, S.H. Butchart, R. Flitcroft, V. Hermoso, H. Jonas, A. Lukasiewicz, M. Thieme, et al. 2016. Achieving Aichi Biodiversity Target 11 to improve the performance of protected areas and conserve freshwater biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 26: 133–151.

    Google Scholar 

  • Khazaei, B., S. Khatami, S.H. Alemohammad, L. Rashidi, C. Wu, K. Madani, Z. Kalantari, G. Destouni, et al. 2019. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. Journal of Hydrology 569: 203–217.

    Google Scholar 

  • Kingsford, R.T., G. Bino, and J.L. Porter. 2017. Continental impacts of water development on waterbirds, contrasting two Australian river basins: Global implications for sustainable water use. Global Change Biology. https://doi.org/10.1111/gcb.13743.

    Article  Google Scholar 

  • Krausmann, F., K.H. Erb, S. Gingrich, H. Haberl, A. Bondeau, V. Gaube, C. Lauk, C. Plutzar, et al. 2013. Global human appropriation of net primary production doubled in the 20th century. Proceedings of the National academy of Sciences of the United States of America 110: 10324–10329.

    CAS  Google Scholar 

  • Latrubesse, E.M., E.Y. Arima, T. Dunne, E. Park, V.R. Baker, F.M. d’Horta, C. Wight, F. Wittmann, et al. 2017. Damming the rivers of the Amazon basin. Nature 546: 363–369.

    CAS  Google Scholar 

  • Leigh, N.G. and Blakely, E.J. 2017. Planning local economic development: Theory and practice. SAGE publications.

  • Lenton, T.M., J. Rockström, O. Gaffney, S. Rahmstorf, K. Richardson, W. Steffen, and H.J. Schellnhuber. 2019. Climate tipping points—Too risky to bet against. Nature 57: 592–595. https://doi.org/10.1038/d41586-019-03595-0.

    Article  CAS  Google Scholar 

  • Levi, L., V. Cvetkovic, and G. Destouni. 2018. Data-driven analysis of nutrient inputs and transfers through nested catchments. Science of the Total Environment 610: 482–494.

    Google Scholar 

  • Loh, J., R.E. Green, T. Ricketts, J. Lamoreux, M. Jenkins, V. Kapos, and J. Randers. 2005. The Living Planet Index: Using species population time series to track trends in biodiversity. Philosophical Transactions of the Royal Society of London B: Biological Sciences 360: 289–295.

    Google Scholar 

  • Luo, X.X., S.L. Yang, R.S. Wang, C.Y. Zhang, and P. Li. 2017. New evidence of the Yangtze delta recession after closing the Three Gorges dam. Scientific Reports. https://doi.org/10.1038/srep41735.

    Article  Google Scholar 

  • Magurran, A.E. 2016. How ecosystems change. Science 351: 448–449.

    CAS  Google Scholar 

  • Mekonnen, M.M., and A.Y. Hoekstra. 2016. Four billion people facing water scarcity. Science Advances 2: e1500323.

    Google Scholar 

  • Milliman, J.D., and K.L. Farnsworth. 2013. River discharge to the coastal ocean: A global synthesis. Cambridge: Cambridge University Press.

    Google Scholar 

  • Molden, D. 2007. Water for food, water for life: A comprehensive assessment of water management in agriculture. In Comprehensive assessment of water management in agriculture, ed. D. Molden. London: Earthscan and International Water Management Institute.

    Google Scholar 

  • Ngor, P.B., K.S. McCann, G. Grenouillet, N. So, B.C. McMeans, E. Fraser, and S. Lek. 2018. Evidence of indiscriminate fishing effects in one of the world’s largest inland fisheries. Scientific Reports 8: 8947.

    Google Scholar 

  • Pelicice, F.M., V.M. Azevedo-Santos, J.R. Vitule, M.L. Orsi, D.P. Lima Junior, A.L. Magalhães, P.S. Pompeu, M. Petrere Jr., et al. 2017. Fish and Fisheries 18: 1119–1133.

    Google Scholar 

  • Petts, G.E. 2018. Perspectives for ecological management of regulated rivers. Alternatives in regulated river management, 13–34. Boca Raton: CRC Press.

    Google Scholar 

  • Poff, N.L., and J.C. Schmidt. 2016. How dams can go with the flow. Science 353: 1099–1100.

    CAS  Google Scholar 

  • Poff, N.L., C.M. Brown, T.E. Grantham, J.H. Matthews, M.A. Palmer, C.M. Spence, R.L. Wilby, M. Haasnoot, et al. 2016. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nature Climate Change 6: 25.

    Google Scholar 

  • Reid, A.J., A.K. Carlson, I.F. Creed, E.J. Eliason, P.A. Gell, P.T. Johnson, K.A. Kidd, T.J. MacCormack, et al. 2019. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews 94: 849–873.

    Google Scholar 

  • Ripple, W.J., P. Smith, H. Haberl, S.A. Montzka, C. McAlpine, and D.H. Boucher. 2013. Ruminants, climate change and climate policy. Nature Climate Change 4: 2–5.

    Google Scholar 

  • Ripple, W.J., C. Wolf, T.M. Newsome, P. Barnard, and W.R. Moomaw. 2019. World Scientists’ warning of a climate emergency. BioScience. https://doi.org/10.1093/biosci/biz088.

    Article  Google Scholar 

  • Ripple, W.J., C. Wolf, T.M. Newsome, M. Galetti, M. Alamgir, E. Crist, M.I. Mahmoud, W.F. Laurance, et al. 2017. World scientists’ warning to humanity: A second notice. BioScience 67: 1026–1028.

    Google Scholar 

  • Rodell, M., J.S. Famiglietti, D.N. Wiese, J.T. Reager, H.K. Beaudoing, F.W. Landerer, and M.H. Lo. 2018. Emerging trends in global freshwater availability. Nature 557: 651–659.

    CAS  Google Scholar 

  • Rogelj, J., A. Popp, K.V. Calvin, G. Luderer, J. Emmerling, D. Gernaat, S. Fujimori, J. Strefler, et al. 2018. Scenarios towards limiting global mean temperature increase below 1.5 C. Nature Climate Change 8: 325–332.

    CAS  Google Scholar 

  • Sabo, J.L., A. Ruhi, G.W. Holtgrieve, V. Elliott, M.E. Arias, P.B. Ngor, T.A. Räsänen, and S. Nam. 2017. Designing river flows to improve food security futures in the Lower Mekong Basin. Science 358: 1053.

    Google Scholar 

  • Sánchez-Bayo, F., and K.A. Wyckhuys. 2019. Worldwide decline of the entomofauna: A review of its drivers. Biological Conservation 232: 8–27.

    Google Scholar 

  • Scanlon, B.R., I. Jolly, M. Sophocleous, and L. Zhang. 2007. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality. Water Resources Research 43: 3. https://doi.org/10.1029/2006WR005486.

    Article  CAS  Google Scholar 

  • Schleussner, C.F., T.K. Lissner, E.M. Fischer, J. Wohland, M. Perrette, A. Golly, J. Rogelj, K. Childers, et al. 2016. Differential climate impacts for policy-relevant limits to global warming: The case of 1.5°C and 2°C. Earth System Dynamics 7: 327–351.

    Google Scholar 

  • Sengupta, S., and W. Cai. 2019. A quarter of humanity faces looming water crises. New York Times. Aug. 6: 2019.

    Google Scholar 

  • Shiklomanov, I.A., and J.C. Rodda. 2004. World water resources at the beginning of the twenty-first century. Cambridge: Cambridge University Press.

    Google Scholar 

  • Shumilova, O., K. Tockner, M. Thieme, A. Koska, and C. Zarfl. 2018. Global water transfer megaprojects: A potential solution for the water-food-energy nexus? Frontiers in Environmental Science 6: 150. https://doi.org/10.3389/fenvs.2018.00150.

    Article  Google Scholar 

  • Siebert, S., M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B.R. Scanlon. 2015. A global data set of the extent of irrigated land from 1900 to 2005. Hydrology and Earth System Sciences 19: 1521–1545.

    Google Scholar 

  • Smil, V. 2011. Harvesting the biosphere: The human impact. Population and Development Review 37: 613–636.

    Google Scholar 

  • Steffen, W., K. Richardson, J. Rockström, S.E. Cornell, I. Fetzer, E.M. Bennett, R. Biggs, S.R.De Carpenter, et al. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347: 1259855.

    Google Scholar 

  • Sterner, T., E.B. Barbier, I. van den Bateman, I. Bijgaart, A.S. Crépin, O. Edenhofer, C. Fischer, W. Habla, et al. 2019. Policy design for the Anthropocene. Nature Sustainability 2: 14–21.

    Google Scholar 

  • Turak, E., I. Harrison, D. Dudgeon, R. Abell, A. Bush, W. Darwall, C.M. Finlayson, S. Ferrier, et al. 2017. Essential Biodiversity Variables for measuring change in global freshwater biodiversity. Biological Conservation 213: 272–279.

    Google Scholar 

  • Turvey, S.T., R.L. Pitman, B.L. Taylor, J. Barlow, T. Akamatsu, L.A. Barrett, X. Zhao, R.R. Reeves, et al. 2007. First human-caused extinction of a cetacean species? Biology Letters 3: 537–540.

    Google Scholar 

  • Udall, S.L. 2017. Battle against extinction: Native fish management in the American West. Tucson: University of Arizona Press.

    Google Scholar 

  • UNFCCC. 2015. United Nations Framework Convention on Climate Change. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1. http://www.unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf.

  • van Vliet, M.T., W.H. Franssen, J.R. Yearsley, F. Ludwig, I. Haddeland, D.P. Lettenmaier, and P. Kabat. 2013. Global river discharge and water temperature under climate change. Global Environmental Change 23: 450–464.

    Google Scholar 

  • Vörösmarty, C.J., P.B. McIntyre, M.O. Gessner, D. Dudgeon, A. Prusevich, P. Green, S. Glidden, S.E. Bunn, et al. 2010. Global threats to human water security and river biodiversity. Nature 467: 555–561.

    Google Scholar 

  • Wagner, D.L. 2019. Insect declines in the Anthropocene. Annual Review of Entomology. https://doi.org/10.1146/annurev-ento-011019-025151.

    Article  Google Scholar 

  • Winemiller, K.O., P.B. McIntyre, L. Castello, E. Fluet-Chouinard, T. Giarrizzo, S. Nam, I.G. Baird, W. Darwall, et al. 2016. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351: 128–129.

    CAS  Google Scholar 

  • WWF. 2016. Living planet: Report 2016: Risk and resilience in a new era. Gland: World Wide Fund for Nature.

    Google Scholar 

  • Zhang, H., Q.W. Wei, H. Du, L. Shen, Y.H. Li, and Y. Zhao. 2009. Is there evidence that the Chinese paddlefish (Psephurus gladius) still survives in the upper Yangtze River? Concerns inferred from hydroacoustic and capture surveys, 2006–2008. Journal of Applied Ichthyology 25: 95–99.

    CAS  Google Scholar 

Download references

Funding

Funding was funded by National Science Foundation (US) (Grant Nos. 0614334, 0741450, 1354511), Svenska Forskningsrådet Formas (Grant No. 2016-02045), H2020 European Research Council (Grant No. AdG 250189) and Instituto Nacional de Ciência e Tecnologia de Ciência Animal (Grant No. 306455/2014-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James S. Albert.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 589 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albert, J.S., Destouni, G., Duke-Sylvester, S.M. et al. Scientists’ warning to humanity on the freshwater biodiversity crisis. Ambio 50, 85–94 (2021). https://doi.org/10.1007/s13280-020-01318-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13280-020-01318-8

Keywords

Navigation