Advertisement

Ambio

pp 1–13 | Cite as

Satellite-based decadal change assessments of pan-Arctic environments

  • Liza K. JenkinsEmail author
  • Tom Barry
  • Karl R. Bosse
  • William S. Currie
  • Tom Christensen
  • Sara Longan
  • Robert A. Shuchman
  • Danielle Tanzer
  • Jason J. Taylor
Terrestrial Biodiversity in a Rapidly Changing Arctic

Abstract

Remote sensing can advance the work of the Circumpolar Biodiversity Monitoring Program through monitoring of satellite-derived terrestrial and marine physical and ecological variables. Standardized data facilitate an unbiased comparison across variables and environments. Using MODIS standard products of land surface temperature, percent snow covered area, NDVI, EVI, phenology, burned area, marine chlorophyll, CDOM, sea surface temperature, and marine primary productivity, significant trends were observed in almost all variables between 2000 and 2017. Analysis of seasonal data revealed significant breakpoints in temporal trends. Within the terrestrial environment, data showed significant increasing trends in land surface temperature and NDVI. In the marine environment, significant increasing trends were detected in primary productivity. Significantly earlier onset of green up date was observed in bioclimate subzones C&E and longer end of growing season in B&E. Terrestrial and marine parameters showed similar rates of change with unidirectional change in terrestrial and significant directional and magnitude shifts in marine.

Keywords

Arctic MODIS Remote sensing Satellite Time series 

Notes

Acknowledgements

Funding and support for this work has been provided by the Conservation of Arctic Flora and Fauna (CAFF) and the US Bureau of Land Management. We thank the Circumpolar Biodiversity Monitoring Program (CBMP) and the CAFF Secretariat for their support and guidance. We also thank John Payne and Matthew Whitley for their participation in earlier phases of this work, and we thank the anonymous reviewers for their constructive feedback.

Supplementary material

13280_2019_1249_MOESM1_ESM.pdf (23 kb)
Supplementary material 1 (PDF 24 kb)

References

  1. ACIA. 2004. Impacts of a warming arctic: Arctic climate impact assessment. ACIA Overview Report. Cambridge : Cambridge University Press.Google Scholar
  2. Arrigo, K.R., G. van Dijken, and S. Pabi. 2008. Impact of shrinking Arctic ice cover on marine primary productivity. Geophysical Research Letters 35: L19603.  https://doi.org/10.1029/2008GL035028.CrossRefGoogle Scholar
  3. Bhatt, U.S., D.A. Walker, M.K. Raynolds, J.C. Comison, H.E. Epstein, G. Jia, R. Gens, J.E. Pinzon, et al. 2010. Circumpolar arctic tundra vegetation change is linked to sea ice decline. Earth Interactions 14: 1–20.  https://doi.org/10.1175/2010EI315.1.CrossRefGoogle Scholar
  4. Bhatt, U.S., D.A. Walker, M.K. Raynolds, P.A. Bieniek, H.E. Epstein, J.C. Comiso, J.E. Pinzon, C.J. Tucker, et al. 2013. Recent declines in warming and vegetation greening trends over pan-arctic tundra. Remote Sensing 5: 4229–4254.  https://doi.org/10.3390/rs5094229.CrossRefGoogle Scholar
  5. Bunn, A.G., S.J. Goetz, J.S. Kimball, and K. Zhang. 2007. Northern high-latitude ecosystems respond to climate change. Eos, Transactions American Geophysical Union 88: 333–335.CrossRefGoogle Scholar
  6. CAFF. 2017. State of the Arctic Marine Biodiversity Report. Conservation of Arctic Flora and Fauna International Secretariat, Akureyri, Iceland. 978-9935-431-63-9.Google Scholar
  7. Carroll, M.L., J.R.G. Townshend, C.M. DiMiceli, T. Loboda, and R.A. Sohlberg. 2011. Shrinking lakes of the Arctic: Spatial relationships and trajectory of change. Geophysical Research Letters 38: L20406.  https://doi.org/10.1029/2011GL049427.CrossRefGoogle Scholar
  8. CAVM Team. 2003. Circumpolar Arctic vegetation map. Scale 1:7 500 000. Conservation of Arctic Flora and Fauna (CAFF) Map No. 1. US Fish and Wildlife Service, Anchorage, Alaska, USA. Retrieved December 1, 2016, from http://www.geobotany.uaf.ed383-50-1292u/cavm/.
  9. Comiso, J.C., C.L. Parkinson, R. Gersten, and L. Stock. 2008. Accelerated decline in the arctic sea ice cover. Geophysical Research Letters 35: L01703.  https://doi.org/10.1029/2007GL031972.CrossRefGoogle Scholar
  10. de Jong, R., and S. de Bruin. 2012. Linear trends in seasonal vegetation time series and the modifiable temporal unit problem. Biogeosciences 9: 71–77.  https://doi.org/10.5194/bg-9-71-2012.CrossRefGoogle Scholar
  11. de Jong, R., J. Verbesselt, M.E. Schaepman, and S. de Bruin. 2012. Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Global Change Biology 18: 642–655.  https://doi.org/10.1111/j.1365-2486.2011.02578.x.CrossRefGoogle Scholar
  12. Dye, D.G., and C.J. Tucker. 2003. Seasonality and trends of snow-cover, vegetation index, and temperature in northern Eurasia. Geophysical Research Letters 30: 1405.  https://doi.org/10.1029/2002GL016384.CrossRefGoogle Scholar
  13. Epstein, H.E., M.K. Raynolds, D.A. Walker, U.S. Bhatt, C.J. Tucker, and J.E. Pinzon. 2012. Dynamics of aboveground phytomass of the circumpolar Arctic tundra during the past three decades. Environmental Research Letters 7: 015506.  https://doi.org/10.1088/1748-9326/7/1/015506.CrossRefGoogle Scholar
  14. Frey, K.E., G.W.K. Moore, L.W. Cooper, and J.M. Grebmeier. 2015. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the pacific arctic region. Oceanography 136: 32–49.  https://doi.org/10.1016/j.pocean.2015.05.009.CrossRefGoogle Scholar
  15. GDAL. 2017. GDAL—Geospatial Data Abstraction Library: Version 2.2.3, Open Source Geospatial Foundation. Retrieved December 1, 2016, from http://gdal.osgeo.org.
  16. Goetz, S.J., A.G. Bunn, G.J. Fiske, and R.A. Houghton. 2005. Satellite-observed photosynthetic trends across boreal North America associated with climate and fire disturbances. Proceedings of the National Academy of Sciences 102: 13521–13525.  https://doi.org/10.1073/pnas.0506179102.CrossRefGoogle Scholar
  17. Hachem, S., M. Allard, and C. Duguay. 2009. Using the MODIS land surface temperature product for mapping permafrost: an application to Northern Quebec and Labrador. Canada. Permafrost and Periglacial Processes 20: 407–416.  https://doi.org/10.1002/ppp.672.CrossRefGoogle Scholar
  18. Hall, D.K., and G.A. Riggs. 2007. Accuracy assessment of the MODIS snow products. Hydrological Processes: An International Journal 21: 1534–1547.  https://doi.org/10.1002/hyp.6715.CrossRefGoogle Scholar
  19. Hansen, J., R. Ruedy, J. Glascoe, and M. Sato. 1999. GISS analysis of surface temperature change. Journal of Geophysical Research 104: 30997–31022.  https://doi.org/10.1029/1999JD900835.CrossRefGoogle Scholar
  20. HEG. 2017. HDF-EOS to GeoTIFF Conversion Tool (HEG), Version 2.14, Earth Observing System (EOS) Program, National Aeronautics and Space Administration. Retrieved December 1, 2016, from https://newsroom.gsfc.nasa.gov/sdptoolkit/HEG/HEGHome.html.
  21. Hill, V.J., P.A. Matrai, E. Olson, S. Suttles, M. Steele, L.A. Codispoti, and R.C. Zimmerman. 2012. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates. Oceanography 110: 107–125.  https://doi.org/10.1016/j.pocean.2012.11.005.CrossRefGoogle Scholar
  22. Hope, A.S., J.S. Kimball, and D.A. Stow. 1993. The relationship between tussock tundra spectral reflectance properties and biomass and vegetation composition. International Journal of Remote Sensing 14: 1861–1874.  https://doi.org/10.1080/01431169308954008.CrossRefGoogle Scholar
  23. Huete, A., C. Justice, and W. van Leeuwen. 1999. MODIS vegetation index (MOD13). Algorithm theoretical basis document 3: 213.Google Scholar
  24. Huete, A., K. Didan, T. Miura, E.P. Rodriguez, X. Gao, and L.G. Ferreira. 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment 83: 195–213.  https://doi.org/10.1016/S0034-4257(02)00096-2.CrossRefGoogle Scholar
  25. IPCC. 2018. Global warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways. In The context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, ed. V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, et al., 32. Geneva: Intergovernmental Panel on Climate Change.Google Scholar
  26. Jia, G.J., H.E. Epstein, and D.A. Walker. 2003. Greening of arctic Alaska, 1981-2001. Geophysical Research Letters 30: 2067.  https://doi.org/10.1029/2003GL018268.CrossRefGoogle Scholar
  27. Jia, G.J., H.E. Epstein, and D.A. Walker. 2009. Vegetation greening in the Canadian Arctic related to decadal warming. Journal of Environmental Monitoring 11: 2231–2238.CrossRefGoogle Scholar
  28. Karami, M., B.U. Hansen, A. Westergaard-Nielsen, J. Abermann, M. Lund, N.M. Schmidt, and B. Elberling. 2017. Vegetation phenology gradients along the west and east coasts of Greenland from 2001 to 2015. Ambio 46: 94–105.  https://doi.org/10.1007/s13280-016-0866-6.CrossRefGoogle Scholar
  29. Kaufman, D.S., D.P. Schneider, N.P. McKay, C.M. Ammann, R.S. Bradley, K.R. Briffa, G.H. Miller, B.L. Otto-Bliesner, et al. 2009. Recent warming reverses long-term arctic cooling. Science 325: 1236–1239.  https://doi.org/10.1126/science.1173983.CrossRefGoogle Scholar
  30. Laidler, G.J., P.M. Treitz, and D.M. Atkinson. 2007. Remote sensing of arctic vegetation: Relations between the NDVI spatial resolution and vegetation cover on Boothia Peninsula. Nunavut. Arctic 61: 1–13.Google Scholar
  31. Lambert, J., C. Drenou, J.P. Denux, G. Balent, and V. Cheret. 2013. Monitoring forest decline through remote sensing time series analysis. GIScience & Remote Sensing 50: 437–457.  https://doi.org/10.1080/15481603.2013.820070.CrossRefGoogle Scholar
  32. Lanzante, J.R. 1996. Resistant, robust and non-parametric techniques for the analysis of climate data: Theory and examples, including applications to historical radiosonde station data. International Journal of Climatology: A Journal of the Royal Meteorological Society 16: 1197–1226.  https://doi.org/10.1002/(SICI)1097-0088(199611)16:11%3c1197:AID-JOC89%3e3.0.CO;2-L.CrossRefGoogle Scholar
  33. Loboda, T.V., J.V. Hall, A.H. Hall, and V.S. Shevade. 2017. ABoVE: Cumulative Annual Burned Area, Circumpolar High Northern Latitudes, 2001–2015. ORNL DAAC, Oak Ridge, Tennessee, USA. Retrieved December 1, 2016, from  https://doi.org/10.3334/ORNLDAAC/1526.
  34. McDonald, K.C., J.S. Kimball, E. Njoku, R. Zimmerman, and M. Zhao. 2004. Variability in springtime thaw in the terrestrial high latitudes: Monitoring a major control on the biospheric assimilation of atmospheric CO2 with spaceborne microwave remote sensing. Earth Interactions 8: 1–23.  https://doi.org/10.1175/1087-3562(2004)8%3c1:VISTIT%3e2.0.CO;2.CrossRefGoogle Scholar
  35. Meltofte, H. (ed.). 2013. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Akureyri: Conservation of Arctic Flora and Fauna.Google Scholar
  36. O’Malley, R. 2017. Ocean productivity. Retrieved December 1, 2018, from http://science.oregonstate.edu/ocean.productivity/index.php.
  37. Park, T., S. Ganguly, H. Tommervik, E.S. Euskirchen, K. Hogda, S.R. Karlsen, V. Brovkin, R.R. Nemani, et al. 2016. Changes in growing season duration and productivity of northern vegetation inferred from long-term remote sensing data. Environmental Research Letters.  https://doi.org/10.1088/1748-9326/11/8/084001.CrossRefGoogle Scholar
  38. Parkinson, C.L., D.J. Cavalieri, P. Gloersen, H.J. Zwally, and J.C. Comiso. 1999. Arctic sea ice extents, areas, and trends, 1978-1996. Journal of Geophysical Research 104: 20837–20856.  https://doi.org/10.1029/1999JC900082.CrossRefGoogle Scholar
  39. R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Retrieved December 1, 2016, from https://www.R-project.org/.
  40. Reichle, L.M., H.E. Epstein, U.S. Bhatt, M.K. Raynolds, and D.A. Walker. 2018. Spatial heterogeneity of the temporal dynamics of Arctic tundra vegetation. Geophysical Research Letters 45: 9206–9215.  https://doi.org/10.1029/2018GL078820.CrossRefGoogle Scholar
  41. Riggs, G.A., and D.K. Hall. 2016. MODIS Snow Products Collection 6 User Guide. https://nsidc.org/sites/nsidc.org/files/files/MODIS-snow-user-guide-C6.pdf.
  42. Riordan, B., D. Verbyla, and A.D. McGuire. 2006. Shrinking ponds in subarctic Alaska based on 1950–2002 remotely sensed images. Journal of Geophysical Research 111: G04002.  https://doi.org/10.1029/2005JG000150.CrossRefGoogle Scholar
  43. Smith, L.C., Y. Sheng, G.M. MacDonald, and L.D. Hinzman. 2005. Disappearing arctic lakes. Science 308: 1429.  https://doi.org/10.1126/science.1108142.CrossRefGoogle Scholar
  44. Stow, D.A., A.S. Hope, and T.H. George. 1993. Reflectance characteristics of arctic tundra vegetation from airborne radiometry. International Journal of Remote Sensing 14: 1239–1244.  https://doi.org/10.1080/01431169308904408.CrossRefGoogle Scholar
  45. Stow, D.A., A. Hope, D. McGuire, D. Verbyla, J. Gamon, F. Huemmrich, S. Houston, C. Racine, et al. 2004. Remote sensing of vegetation and land-cover change in arctic tundra ecosystems. Remote Sensing of Environment 89: 281–308.  https://doi.org/10.1016/j.rse.2003.10.018.CrossRefGoogle Scholar
  46. Stroeve, J., and W. Meier. 2017. Sea ice trends and climatologies from SMMR and SSM/I-SSMIS, Version 2. ESMR-SMMR-SSM/I-SSMIS-Merged Sea Ice Extent. Boulder: NASA National Snow and Ice Data Center Distributed Active Archive Center. Retrieved December 1, 2016, from  https://doi.org/10.5067/EYICLBOAAJOU.
  47. Stroeve, J., and D. Notz. 2018. Changing state of Arctic sea ice across all seasons. Environmental Research Letters 13: 103001.CrossRefGoogle Scholar
  48. Verbesselt, J., R. Hyndman, A. Zeileis, and D. Culvenor. 2010. Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sensing of Environment 114: 2970–2980.  https://doi.org/10.1016/j.rse.2010.08.003.CrossRefGoogle Scholar
  49. Watts, J.D., J.S. Kimball, L.A. Jones, R. Schroeder, and K.C. McDonald. 2012. Satellite microwave remote sensing of contrasting surface water inundation changes within the arctic-boreal region. Remote Sensing of Environment 127: 223–236.  https://doi.org/10.1016/j.rse.2012.09.003.CrossRefGoogle Scholar
  50. Westermann, S., M. Langer, and J. Boike. 2011. Systematic bias of average winter-time land surface temperatures inferred from MODIS at a site on Svalbard. Norway. Remote Sensing of Environment 118: 162–167.  https://doi.org/10.1016/j.rse.2011.10.025.CrossRefGoogle Scholar
  51. Zeng, H., G. Jia, and H. Epstein. 2011. Recent changes in phenology over the northern high latitudes detected from multi-satellite data. Environmental Research Letters 6: 045508.  https://doi.org/10.1088/1748-9326/6/4/045508.CrossRefGoogle Scholar
  52. Zeng, H., G. Jia, and B.C. Forbes. 2013. Shifts in Arctic phenology in response to climate and anthropogenic factors as detected from multiple satellite time series. Environmental Research Letters 8: 035036.  https://doi.org/10.1088/1748-9326/8/3/035036.CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2019

Authors and Affiliations

  1. 1.Michigan Tech Research Institute (MTRI)Michigan Technological UniversityAnn ArborUSA
  2. 2.School for Environment and SustainabilityUniversity of MichiganAnn ArborUSA
  3. 3.Conservation of Arctic Flora and Fauna (CAFF)AkureyriIceland
  4. 4.Aarhus UniversityRoskildeDenmark
  5. 5.North Slope Science Initiative (NSSI)AnchorageUSA
  6. 6.Alaska Department of Natural ResourcesAnchorageUSA
  7. 7.National Park ServiceAnchorageUSA
  8. 8.University of Iceland, Environment and Natural ResourcesReykjavíkIceland

Personalised recommendations