, Volume 49, Issue 2, pp 541–556 | Cite as

Linking the scientific knowledge on marine frontal systems with ecosystem services

  • Paulina MartinettoEmail author
  • Daniela Alemany
  • Florencia Botto
  • Matías Mastrángelo
  • Valeria Falabella
  • E. Marcelo Acha
  • Gustavo Antón
  • Alejandro Bianchi
  • Claudio Campagna
  • Guillermo Cañete
  • Pablo Filippo
  • Oscar Iribarne
  • Pedro Laterra
  • Patricia Martínez
  • Rubén Negri
  • Alberto R. Piola
  • Silvia I. Romero
  • David Santos
  • Martín Saraceno


Primary production hotspots in the marine environment occur where the combination of light, turbulence, temperature and nutrients makes the proliferation of phytoplankton possible. Satellite-derived surface chlorophyll-a distributions indicate that these conditions are frequently associated with sharp water mass transitions named “marine fronts”. Given the link between primary production, consumers and ecosystem functions, marine fronts could play a key role in the production of ecosystem services (ES). Using the shelf break front in the Argentine Sea as a study case, we show that the high primary production found in the front is the main ecological feature that supports the production of tangible (fisheries) and intangible (recreation, regulation of atmospheric gases) marine ES and the reason why the provision of ES in the Argentine Sea concentrates there. This information provides support to satellite chlorophyll as a good indicator of multiple marine ES. We suggest that marine fronts could be considered as marine ES hot spots.


Argentine Sea Ecosystem services Marine fronts Satellite chlorophyll South Western Atlantic 



The first draft of this article was originated during a workshop under the framework of the project: “The relative ecosystem services of frontal areas in the South West Atlantic Large Marine Ecosystem” (IAI-CONICET 3347/14). We thank to the Inter American Institute for Global Change Research through the National Science Foundation (EEUU, Grant GEO-1128040) and its support to the project CRN3070 “VOCES”.

Supplementary material

13280_2019_1222_MOESM1_ESM.pdf (261 kb)
Supplementary material 1 (PDF 262 kb)


  1. Acha, E.M., H.W. Mianzan, R.A. Guerrero, M. Favero, and J. Bava. 2004. Marine fronts at the continental shelves of austral South America: Physical and ecological processes. Journal of Marine System 44: 83–105.CrossRefGoogle Scholar
  2. Acha, E.M., A. Piola, O. Iribarne, and H. Mianzan. 2015. Ecological processes at marine fronts, oases in the ocean. Mar del Plata: Springer.CrossRefGoogle Scholar
  3. Alemany, D., E.M. Acha, and O. Iribarne. 2014. Marine fronts are important fishing areas for demersal species at the Argentine Sea (Southwest Atlantic Ocean). Journal of Sea Research 87: 56–67.CrossRefGoogle Scholar
  4. Ardhuin, F., J.E. Stopa, B. Chapron, F. Collard, R. Husson, R.E. Jensen, J. Johannessen, A. Mouche, et al. 2019. Observing sea states. Frontiers in Marine Science 6: 124. Scholar
  5. Armstrong, C.W., N.S. Foley, R. Tinch, and S. van den Hove. 2012. Services from the deep: Steps towards valuation of deep sea goods and services. Ecosystem Services 2: 2–13.CrossRefGoogle Scholar
  6. Barbier, E.B., S.D. Hacker, C. Kennedy, E.W. Koch, A.C. Stier, and B.R. Silliman. 2011. The value of estuarine and coastal ecosystem services. Ecological Monographs 81: 169–193.CrossRefGoogle Scholar
  7. Belkin, I.M., P.C. Cornillon, and K. Sherman. 2009. Fronts in large marine ecosystems. Progress in Oceanography 81: 223–236.CrossRefGoogle Scholar
  8. Benoit-Bid, K.J., and M.A. NcManus. 2012. Bottom-up regulation of a pelagic community through spatial aggregations. Biological Letters 8: 813–816.CrossRefGoogle Scholar
  9. Bergstad, O.A., E. Johannesen, Å. Høines, K.E. Ellingsen, V.S. Lien, I. Byrkjedal, N.G. Yoccoz, T. Tveraa, et al. 2018. Demersal fish assemblages in the boreo-Arctic shelf waters around Svalbard during the warm period 2007–2014. Polar Biology 41: 125–142.CrossRefGoogle Scholar
  10. Bianchi, A.A., A.P. Osiroff, C.F. Balestrini, A.R. Piola, and H.I. Perlender. 2010. Atrapando CO2 en el mar patagónico. Ciencia Hoy 20: 8–23.Google Scholar
  11. Bianchi, A.A., D.R. Pino, H.G.I. Perlender, A.P. Osiroff, V. Segura, V. Lutz, M.L. Clara, C.F. Balestrini, et al. 2009. Annual balance and seasonal variability of sea-air CO2 fluxes in the Patagonia Sea: Their relationship with fronts and chlorophyll distribution. Journal of Geophysical Research: Oceans 114: C03018.CrossRefGoogle Scholar
  12. Blanco, G.S., J.P. Pisoni, and F. Quintana. 2015. Characterization of the seascape used by juvenile and wintering adult Southern Giant Petrels from Patagonia Argentina. Estuarine, Coastal and Shelf Science 153: 135–144.CrossRefGoogle Scholar
  13. Blondeau-Patissier, D., J.F.R. Gower, A.G. Dekker, S.R. Phinn, and V.E. Brando. 2014. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Progress in Oceanography 123: 123–144.CrossRefGoogle Scholar
  14. Bogazzi, E., A. Baldoni, A. Rivas, P. Martos, R. Reta, J.M. Orensanz, M. Lasta, P. Dell’Arciprete, et al. 2005. Spatial correspondence between areas of concentration of Patagonian scallop (Zygochlamys patagonica) and frontal systems in the southwestern Atlantic. Fisheries Oceanography 14: 359–376.CrossRefGoogle Scholar
  15. Bost, C.A., C. Cotté, F. Bailleul, Y. Cherel, J.B. Charrassin, C. Guinet, D.G. Ainley, and H. Weimerskirch. 2009. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. Journal of Marine Systems 78: 363–376.CrossRefGoogle Scholar
  16. Cáceres, D.M., E. Tapella, F. Quétier, and S. Díaz. 2015. The social value of biodiversity and ecosystem services from the perspectives of different social actors. Ecology and Society 20: 62.CrossRefGoogle Scholar
  17. Calado, R., M. Costa Leal, H. Gaspar, S. Santos, A. Marques, M.L. Nunes, and H. Vieira. 2018. How to succeed in marketing marine natural products for nutraceutical, pharmaceutical and cosmeceutical markets. In Grand challenges in marine biotechnology, grand challenges in biology and biotechnology, ed. P.H. Rampelotto and A. Trincone, 317–404. New York: Springer.CrossRefGoogle Scholar
  18. Campagna, C., A.R. Piola, M.R. Marin, M. Lewis, U. Zajaczkovski, and T. Fernández. 2007. Deep divers in shallow seas: Southern elephant seals on the Patagonian shelf. Deep-Sea Research 54: 1792–1814.CrossRefGoogle Scholar
  19. Campodónico, S., and G.V. Garaffo. 2014. Variación estacional de los índices gonadal y muscular de Zygochlamys patagónica (King, 1832) en relación con el almacenamiento de reservas energéticas. Revista de Investigación y Desarrollo Pesquero (INIDEP) 24: 75.Google Scholar
  20. Carreto, J.I., N.G. Montoya, M.O. Carignan, R. Akselman, E.M. Acha, and C. Derisio. 2016. Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf-break front—Degraded fucoxanthin pigments and the importance of microzooplankton grazing. Progress in Oceanography 146: 1–21.CrossRefGoogle Scholar
  21. Chassot, E., S. Bonhommeau, N.K. Dulvy, F. Mélin, R. Watson, D. Gascuel, and O. Le Pape. 2010. Global marine primary production constrains fisheries catches. Ecology Letters 13: 495–505.CrossRefGoogle Scholar
  22. Chen, C.S., T.S. Chiu, and W.B. Haung. 2007. The spatial and temporal distribution patterns of the Argentine short-finned squid, Illex argentinus, abundances in the Southwest Atlantic and the effects of environmental influences. Zoological Studies 46: 111–122.Google Scholar
  23. Ciancio, J.E., M.A. Pascual, F. Botto, E. Frere, and O. Iribarne. 2008. Trophic relationships of exotic anadromous salmonids in the southern Patagonian Shelf as inferred from stable isotopes. Limnology and Oceanography 53: 788–798.CrossRefGoogle Scholar
  24. Cognetti, G., and F. Maltagliati. 2010. Ecosystem service provision: An operational way for marine biodiversity conservation and management. Marine Pollution Bulletin 60: 1916–1923.CrossRefGoogle Scholar
  25. Costa Leal, M., J. Puga, J. Serôdio, N.C.M. Gomes, and R. Calado. 2012. Trends in the discovery of new marine natural products from invertebrates over the last two decades—Where and what are we bioprospecting? PLoS ONE 7: e30580.CrossRefGoogle Scholar
  26. Costanza, R., R. de Arge, R. de Groot, S. Farber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.CrossRefGoogle Scholar
  27. Costanza, R., R. de Groot, P. Sutton, S. van der Ploeg, S.J. Anderson, I. Kubiszewski, S. Farber, and R.K. Turner. 2014. Changes in the global value of ecosystem services. Global Environmental Changes 26: 152–158.CrossRefGoogle Scholar
  28. de Groot, R.S., B. Fisher, M. Christie, J. Aronson, L.C. Braat, R. Haines-Young, J. Gowdy, E. Maltby, et al. 2010. Integrating the ecological and economic dimensions in biodiversity and ecosystem service valuation, Chap. 1. In The economics of ecosystems and biodiversity (TEEB): Ecological and economic foundations, ed. P. Kumar, 9–40. London: TEEB Foundations.Google Scholar
  29. Druon, J.N. 2010. Habitat zapping of the Atlantic blue fin tuna derived from satellite data: Its potential as a tool for the sustainable management of pelagic fisheries. Marine Policy 34: 293–297.CrossRefGoogle Scholar
  30. Duarte, C.M. 2010. Océano, el secreto del planeta Tierra. Madrid: Los libros de la Catarata, CSIC.Google Scholar
  31. Duarte, C.M., R.W. Fulweiler, C.E. Lovelock, P. Martinetto, M. Saunders, J.M. Pandolfi, S. Gelcich, and S. Nixon. 2015. Reconsidering ocean calamities. BioScience 65: 130–139.CrossRefGoogle Scholar
  32. Eder, E.B., and M.N. Lewis. 2005. Proximate composition and energetic value of demersal and pelagic prey species from the SW Atlantic Ocean. Marine Ecology Progress Series 291: 43–52.CrossRefGoogle Scholar
  33. Falabella, V., C. Campagna, and J. Croxall. 2009. Atlas of the Patagonian Sea: Species and spaces. Buenos Aires: Wildlife Conservation Society and BirdLife International.Google Scholar
  34. Falkowski, P.G., R.T. Barber, and V. Smetacek. 1998. Biogeochemical controls and feedbacks on ocean primary production. Science 281: 200–206.CrossRefGoogle Scholar
  35. FAO. 2016. El estado mundial de la pesca y la acuicultura 2016. Contribución a la seguridad alimentaria y la nutrición para todos. Rome: FAO.Google Scholar
  36. Ferrari, R. 2011. A frontal challenger for climate models. Science 332: 316–317.CrossRefGoogle Scholar
  37. Field, C.B., M.J. Behrenfeld, J.T. Randerson, and P. Falkowski. 1998. Primary production of the biosphere: Integrating terrestrial and oceanic components. Science 281: 237–240.CrossRefGoogle Scholar
  38. Fisher, B., R.K. Turner, and P. Morling. 2009. Defining and classifying ecosystem services for decision making. Ecological Economics 68: 643–653.CrossRefGoogle Scholar
  39. Fretwell, P.T., M.A. LaRue, P. Morin, G.L. Kooyman, B. Wienecke, N. Ratcliffe, A.J. Fox, A.H. Fleming, et al. 2012. An emperor penguin population estimate: The first global, synoptic survey of a species from space. PLoS One 7: e33751. Scholar
  40. Harrison, A.L., D.P. Costa, A.J. Winship, S.R. Benson, S.J. Bograd, M. Antolos, A.B. Carlisle, H. Dewar, et al. 2018. The political biogeography of migratory marine predators. Nature Ecology & Evolution 2: 1571–1578.CrossRefGoogle Scholar
  41. Heron, S.F., L. Johnston, G. Liu, E.F. Geiger, J.A. Maynard, J.L. De La Cour, S. Johnson, R. Okano, et al. 2016. Validation of reef-scale thermal stress satellite products for coral bleaching monitoring. Remote Sensing 8: 59. Scholar
  42. Hoffmeyer, M.S., M.E. Sabatini, F.P. Brandini, D.L. Calliari, and N.H. Santinelli. 2018. Plankton ecology of the Southwestern Atlantic—From the subtropical to the subantarctic realm. Part VI: Harmful algae and their impacts, 453–515. New York: Springer.Google Scholar
  43. INDEC. 2018. Instituto Nacional de Estadísticas y Censo, Argentina. Accessed 26 Nov 2018.
  44. Jaspars, M., D. de Pascalle, J.H. Andersen, F. Reyes, A.D. Crawford, and A. Ianora. 2016. The marine biodiscovery pipeline and ocean medicines of tomorrow. Journal of the Marine Biological Association of the United Kingdom 96: 151–158.CrossRefGoogle Scholar
  45. Jacobs, S., N. Dendoncker, B. Martín-López, D.N. Barton, E. Gomez-Baggethun, F. Boeraeve, F.L. McGrath, K. Vierikko, et al. 2016. A new valuation school: Integrating diverse values of nature in resource and land use decisions. Ecosystem Services 22: 213–220.CrossRefGoogle Scholar
  46. Kahl, L.C., A.B. Bianchi, A.P. Osiroff, D. Ruiz Pino, and A.R. Piola. 2017. Distribution of sea-air CO2 fluxes in the Patagonian Sea: Seasonal, biological and thermal effects. Continental Shelf Research 143: 18–28.CrossRefGoogle Scholar
  47. Kubiszewski, I., R. Costanza, S. Anderson, and P. Sutton. 2017. The future value of ecosystem services: Global scenarios and national implementation. Ecosystem Services 26: 289–301.CrossRefGoogle Scholar
  48. Kummu, M., H. de Moel, G. Salvucci, D. Viviroli, P.J. Ward, and O. Varis. 2016. Over the hills and further away from coast: Global geospatial patterns of human and environment over the 20th–21st centuries. Environmental Research Letters 1: 034010.CrossRefGoogle Scholar
  49. Kurlansky, M. 1998. Cod: A biography on the fish that changed the world. New York: Penguin Random House.Google Scholar
  50. Lembke, C., S. Grasty, A. Silverman, H. Broadbent, S. Butcher, and S. Murawski. 2017. The camera-based assessment survey system (C-BASS): A towed camera platform for reef fish abundance surveys and benthic habitat characterization in the Gulf of Mexico. Continental Shelf Research 151: 62–71.CrossRefGoogle Scholar
  51. Leitner, A.B., A.B. Neuheimer, E. Donlon, C.R. Smith, and J.C. Drazen. 2017. Environmental and bathymetric influences on abyssal bait-attending communities of the Clarion Clipperton Zone. Deep-Sea Research Part I 125: 65–80.CrossRefGoogle Scholar
  52. Liquete, C., C. Piroddi, E.G. Drakou, L. Gurney, S. Katsanevakis, A. Charef, and B. Egoh. 2013. Current status and future prospects for the assessment of marine and coastal ecosystem services: A systematic review. PLoS ONE 8: e67737.CrossRefGoogle Scholar
  53. Lucifora, L., V. García, R. Menni, and B. Worm. 2012. Spatial patterns in the diversity of sharks, rays, and chimaeras (Chondrichthyes) in the Southwest Atlantic. Biodiversity and Conservation 21: 407–419.CrossRefGoogle Scholar
  54. Lutz, V.A., V. Segura, A.I. Dogliotti, D. Gagliardini, A. Bianchi, and C.F. Balestrini. 2010. Primary production in the Argentine Sea during spring estimated by field and satellite models. Journal of Plankton Research 32: 181–195.CrossRefGoogle Scholar
  55. Mann, K.H., and J.R.N. Lazier. 2006. Dynamics of marine ecosystems biological-physical interactions in the oceans. Cambridge: Blackwell.Google Scholar
  56. Marrari, M., M.D. Viñas, P. Martos, and D. Hernández. 2004. Spatial patterns of mesozooplankton distribution in the Southwestern Atlantic Ocean (34°-41°S) during austral spring: Relationship with the hydrographic conditions. ICES Journal of Marine Science 61: 667–679.CrossRefGoogle Scholar
  57. Martínez, P.A., and O.C. Wöhler. 2016. Hacia la recuperación de la pesquería de la merluza negra (Dissostichus eleginoides) en el Mar Argentino: un ejemplo de trabajo conjunto entre el sector de la administración, la investigación y la industria. Frente Marítimo 24: 115–124.Google Scholar
  58. Mastrangelo, M.E., and P. Laterra. 2015. From biophysical to social-ecological trade-offs: integrating biodiversity conservation and agricultural production in the Argentine Dry Chaco. Ecology and Society 20: 1.CrossRefGoogle Scholar
  59. Mauna, A.C., E.M. Acha, M.L. Lasta, and O.O. Iribarne. 2011. The influence of a large SW Atlantic shelf-break frontal system on epibenthic community composition, trophic guilds and diversity. Journal of Sea Research 66: 39–46.CrossRefGoogle Scholar
  60. Millennium Ecosystem Assessment (MEA). 2005. Ecosystems and human well-being: Synthesis. Washington, DC: Island Press.Google Scholar
  61. Miller, P.I., and S. Christodoulou. 2014. Frequent locations of oceanic fronts as an indicator of pelagic diversity: Application to marine protected areas and renewables. Marine Policy 45: 318–329.CrossRefGoogle Scholar
  62. O’dea, E.J., A.K. Arnold, K.P. Edwards, R. Furner, P. Hyder, M.J. Martin, J.R. Siddorn, D. Storkey, et al. 2012. An operational ocean forecast system incorporating NEMO and SST data assimilation for the tidally driven European North-West shelf. Journal of Operational Oceanography 5: 3–17.CrossRefGoogle Scholar
  63. Orselli, I.B.M., R. Kerr, R.G. Ito, V.M. Tavano, C.R.B. Mendes, and C.A.E. Garcia. 2018. How fast is the Patagonian shelf-break acidifying? Journal of Marine Systems 178: 1–14.CrossRefGoogle Scholar
  64. Paruelo, J.M., M. Texeira, L. Staiano, M. Mastrángelo, L. Amdan, and F. Gallego. 2016. An integrative index of ecosystem services provision based in remotely sensed data. Ecological Indicators 71: 145–154.CrossRefGoogle Scholar
  65. Podestá, G.P., J.A. Browder, and J.J. Hoey. 1993. Exploring the relationship between swordfish catch rates and thermal fronts on U.S. longline grounds in the western North Atlantic. Continental Shelf Research 13: 253–277.CrossRefGoogle Scholar
  66. Pollard, R.T., and L. Regier. 1990. Large variations in potential vorticity at small spatial scales in the upper ocean. Nature 348: 227.CrossRefGoogle Scholar
  67. Poloczanska, E.S., M.T. Burrows, C.J. Brown, J. García Molinos, B.S. Halpern, O. Hoegh-Guldberg, C.V. Kappel, P.J. Moore, et al. 2016. Responses of marine organisms to climate change across oceans. Frontiers in Marine Science 3: 62.CrossRefGoogle Scholar
  68. Qu, B., A.J. Gabric, and P.A. Matrai. 2006. The satellite-derived distribution of chlorophyll-a and its relation to ice cover, radiation and sea surface temperature in the Barents Sea. Polar Biology 29: 196–210.CrossRefGoogle Scholar
  69. Quintana, F., and O.P. Dell’Arciprete. 2002. Foraging grounds of southern giant petrels (Macronectes giganteus) on the Patagonian shelf. Polar Biology 25: 159–161.CrossRefGoogle Scholar
  70. Rhein, M., Rintoul, S.R., Aoki, S., Campos, E., Chambers, D., Feely, R.A., Gulev, S., Johnson, G.C., et al. 2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press.Google Scholar
  71. Rivas, A.L., and J.P. Pisoni. 2010. Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf. Journal of Marine Systems 79: 134–143.CrossRefGoogle Scholar
  72. Romero, S.I., A.R. Piola, M. Charo, and C.A.E. Garcia. 2006. Chlorophyll a variability off Patagonia based on SeaWiFS data. Journal of Geophysical Research: Oceans 111: C05021.CrossRefGoogle Scholar
  73. Ruiz, A.E., and R.R. Fondacaro. 1997. Diet of hake (Merluccius hubbsi Marini) in a spawning and nursery area within Patagonian shelf waters. Fisheries Research 30: 157–160.CrossRefGoogle Scholar
  74. Sagebiel, J., C. Schwartz, M. Rhozyel, S. Rajmis, and J. Hirschfeld. 2016. Economic valuation of Baltic marine ecosystem services: Blind spot and limited consistency. ICES Journal of Marine Science 73: 991–1003.CrossRefGoogle Scholar
  75. Sánchez, R.P., and J. Ciechomski. 1995. Spawning and nursery grounds of pelagic fish species in the sea-shelf off Argentina and adjacent areas. Scientia Marina 59: 455–478.Google Scholar
  76. Sherman, K. 2005. The large marine ecosystem approach for assessment and management of ocean coastal waters. In Sustaining large marine ecosystems: The human dimension, ed. T.M. Hennessey and J.G. Sutinen, 3–16. Amsterdam: Elsevier.CrossRefGoogle Scholar
  77. Soria, G., J.M. Orensanz, E.M. Morsán, A.M. Parma, and R.O. Amoroso. 2016. Chapter 25—Scallops biology, fisheries, and management in Argentina. In Developments in aquaculture and fisheries science, ed. S.E. Shumway and G.J. Parsons, 1019–1046. Amsterdam: Elsevier.Google Scholar
  78. Stocker, T.F. 2015. The silent services of the world ocean. Science 350: 764–765.CrossRefGoogle Scholar
  79. Takahashi, T., S.T. Sutherland, C. Sweeney, A. Poisson, N. Metzl, B. Tilbrook, N. Bates, R. Wanninkhif, et al. 2002. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research II 49: 1601–1622.CrossRefGoogle Scholar
  80. Thurber, A.R., A.K. Sweetman, B.E. Narayanaswamy, D.O.B. Jones, J. Ingels, and R.L. Hansman. 2014. Ecosystem function and services provided by the deep sea. Biogeosciences 11: 3941–3963.CrossRefGoogle Scholar
  81. Townsend, M., K. Davies, N. Hanley, J.E. Hewitt, C.J. Lundquist, and A.M. Lohrer. 2018. The challenge of implementing the marine ecosystem service concept. Frontiers in Marine Science 5: 359.CrossRefGoogle Scholar
  82. Valla, D., and A.R. Piola. 2015. Evidence of upwelling events at the northern Patagonian shelf break. Journal of Geophysical Research: Oceans 120: 7635–7656.Google Scholar
  83. van Deurs, M., A. Persson, M. Lindegren, C. Jacobsen, S. Neuenfeldt, C. Jørgensen, and P.A. Nilsson. 2016. Marine ecosystem connectivity mediated by migrant–resident interactions and the concomitant cross-system flux of lipids. Ecology and Evolution 6: 4076–4087.CrossRefGoogle Scholar
  84. Vilela, R., D. Conesa, J.L. del Rio, A. López-Quílez, J. Portela, and J.M. Bellido. 2018. Integrating fishing spatial patterns and strategies to improve high seas fisheries management. Marine Policy 94: 132–142.CrossRefGoogle Scholar
  85. Weatherdon, L.V., A.K. Magnan, A.D. Rogers, U.R. Sumaila, and W.W.L. Cheung. 2016. Observed and projected impacts of climate change on marine fisheries, aquaculture, coastal tourism, and human health: An update. Frontiers in Marine Science 3: 48.CrossRefGoogle Scholar
  86. Welch, H., R.L. Pressey, S.F. Heron, D.M. Ceccarelli, and A.J. Hobday. 2015. Regimes of chlorophyll-a in the Coral Sea: Implications for evaluating adequacy of marine protected areas. Ecography 39: 286–304.Google Scholar
  87. Woodson, C.B., and S.Y. Litvin. 2015. Ocean fronts drive marine fishery production and biogeochemical cycling. PNAS 112: 1710–1715.CrossRefGoogle Scholar
  88. Zerbini, A.N., H. Rosenbaum, M. Mendez, F. Sucunza, A. Andriolo, G. Harris, P.J. Clapham, M. Sironi, et al. 2016. Tracking southern right whales through the Southwest Atlantic: An update on movements, migratory routes and feeding destinations. In Paper SC/66b/BRG/26 presented to the International Whale Commission Scientific Committee, June 2016, Bled, Slovenia, 16pp.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2019

Authors and Affiliations

  1. 1.Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyNUNMdP-CONICETMar del PlataArgentina
  2. 2.Grupo de Estudio de Agroecosistemas y Paisajes Rurales (GEAP)Facultad de Ciencias Agrarias of the Universidad Nacional de Mar del PlataBalcarceArgentina
  3. 3.Wildlife Conservation SocietyBuenos AiresArgentina
  4. 4.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)Mar del PlataArgentina
  5. 5.Facultad de Ciencias SocialesUniversidad de Buenos AiresBuenos AiresArgentina
  6. 6.Departamento de OceanografíaServicio de HidrografíaBuenos AiresArgentina
  7. 7.WCS ArgentinaBuenos AiresArgentina
  8. 8.Fundacion Vida Silvestre ArgentinaMar del PlataArgentina
  9. 9.Foro para la Conservación del Mar PatagónicoBuenos AiresArgentina
  10. 10.Fundación Bariloche-CONICETSan Carlos de BarilocheArgentina
  11. 11.Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP)Mar del PlataArgentina
  12. 12.Departamento OceanografíaServicio de Hidrografía NavalBuenos AiresArgentina
  13. 13.Servicio de Hidrografía NavalBuenos AiresArgentina
  14. 14.Departamento de Turismo, Facultad de Humanidades y Ciencias SocialesUNPSJBPuerto MadrynArgentina
  15. 15.Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos Aires, Intendente GüiraldesBuenos AiresArgentina
  16. 16.Centro de Investigaciones del Mar y la Atmosfera (CIMA/CONICET-UBA)Buenos AiresArgentina
  17. 17.Instituto Franco-Argentino para el Estudio del Clima y sus Impactos (UMI IFAECI/CNRS-CONICET-UBA)Buenos AiresArgentina

Personalised recommendations