Advertisement

Ambio

pp 1–8 | Cite as

The role of protected areas in mitigating human impact in the world’s last wilderness areas

  • Emily Anderson
  • Christos MammidesEmail author
Research Article

Abstract

Human impact on the environment is evident across the planet, including its most biodiverse areas. Of particular interest is the impact on the world’s last wilderness areas, in which the largest patches of land relatively free from human influence remain. Here, we use the human footprint index to measure the extent to which the world’s last wilderness areas have been impacted by human activities—between the years 1993 and 2009—and whether protected areas have been effective in reducing human impact. We found that overall the increase in human footprint was higher in tropical than temperate regions. Moreover, although on average the increase was lower inside protected areas than outside, in half of the fourteen biomes examined the differences were insignificant. Although reasons varied, protected areas alone are unlikely to be ubiquitously successful in protecting wilderness areas. To achieve protection, it is important to address loss and improve environmental governance.

Keywords

Biodiversity conservation Human footprint IUCN protected areas Last of the wild Terrestrial biomes 

Notes

Acknowledgements

We are thankful to the researchers who have developed and made available the datasets we used in this study. We are also thankful to two anonymous reviewers for their constructive feedback. E.A. is also thankful to the Freeman Foundation and Furman University, in the United States, for a Grant supporting her stay in China.

Supplementary material

13280_2019_1213_MOESM1_ESM.pdf (16 kb)
Supplementary material 1 (PDF 17 kb)

References

  1. Andam, K.S., P.J. Ferraro, A. Pfaff, G.A. Sanchez-Azofeifa, and J.A. Robalino. 2008. Measuring the effectiveness of protected area networks in reducing deforestation. Proceedings of the National Academy of Sciences 105: 16089–16094.  https://doi.org/10.1073/pnas.0800437105.CrossRefGoogle Scholar
  2. Andrew, N., A. Nelson, and K.M. Chomitz. 2011. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: A global analysis using matching methods. PLoS ONE 6: e22722–e22722.  https://doi.org/10.1371/journal.pone.0022722.CrossRefGoogle Scholar
  3. Brooks, T.M., H.R. Akçakaya, N.D. Burgess, S.H.M. Butchart, C. Hilton-Taylor, M. Hoffmann, D. Juffe-Bignoli, N. Kingston, et al. 2016. Data from: Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Scientific Data 3: 160007.  https://doi.org/10.5061/dryad.6gb90.2.CrossRefGoogle Scholar
  4. Butchart, S.H.M., M. Walpole, B. Collen, A. Van Strien, J.P.W. Scharlemann, R.E.A. Almond, J.E.M. Baillie, B. Bomhard, et al. 2010. Global biodiversity: Indicators of recent declines. Science 328: 1164–1168.  https://doi.org/10.1126/science.1187512.CrossRefGoogle Scholar
  5. Cardinale, B.J., J.E. Duffy, A. Gonzalez, D.U. Hooper, C. Perrings, P. Venail, A. Narwani, G.M. Mace, et al. 2012. Biodiversity loss and its impact on humanity. Nature 486: 59–67.  https://doi.org/10.1038/nature11148.CrossRefGoogle Scholar
  6. Coetzee, B.W.T., K.J. Gaston, and S.L. Chown. 2014. Local scale comparisons of biodiversity as a test for global protected area ecological performance: A meta-analysis. PLoS ONE 9: e105824.  https://doi.org/10.1371/journal.pone.0105824.CrossRefGoogle Scholar
  7. Corlett, R.T. 2015. The anthropocene concept in ecology and conservation. Trends in Ecology & Evolution 30: 36–41.  https://doi.org/10.1016/j.tree.2014.10.007.CrossRefGoogle Scholar
  8. Dushoff, J., M.P. Kain, and B.M. Bolker. 2018. I can see clearly now: Reinterpreting statistical significance. Methods in Ecology and Evolution 10: 756–759.  https://doi.org/10.1111/2041-210X.13159.CrossRefGoogle Scholar
  9. Ellis, E.C., K. Klein Goldewijk, S. Siebert, D. Lightman, and N. Ramankutty. 2010. Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology and Biogeography 19: 589–606.  https://doi.org/10.1111/j.1466-8238.2010.00540.x.CrossRefGoogle Scholar
  10. Heino, M., M. Kummu, M. Makkonen, M. Mulligan, P.H. Verburg, M. Jalava, and T.A. Räsänen. 2015. Forest loss in protected areas and intact forest landscapes: A global analysis. PLoS ONE 10: 1–21.  https://doi.org/10.1371/journal.pone.0138918.CrossRefGoogle Scholar
  11. Ho, D.E., K. Imai, G. King, and E.A. Stuart. 2011. MatchIt: Nonparametric preprocessing for parametric causal inference. Journal of Statistical Software 42: 1–28.  https://doi.org/10.18637/jss.v042.i08.CrossRefGoogle Scholar
  12. Hulme, P.E. 2018. Protected land: Threat of invasive species. Science 361: 561–562.  https://doi.org/10.1126/science.aau3784.CrossRefGoogle Scholar
  13. Jenkins, M. 2003. Prospects for biodiversity. Science 302: 1175–1177.  https://doi.org/10.1126/science.1088666.CrossRefGoogle Scholar
  14. Jones, K.R., O. Venter, R.A. Fuller, J.R. Allan, S.L. Maxwell, P.J. Negret, and J.E.M. Watson. 2018. One-third of global protected land is under intense human pressure. Science 360: 788–791.  https://doi.org/10.1126/science.aap9565.CrossRefGoogle Scholar
  15. Joppa, L.N., and A. Pfaff. 2011. Global protected area impacts. Proceedings of the Royal Society B Biological Sciences 278: 1633–1638.  https://doi.org/10.1098/rspb.2010.1713.CrossRefGoogle Scholar
  16. Krausman, P.R. 2017. P-values and reality. The Journal of Wildlife Management 81: 562–563.  https://doi.org/10.1002/jwmg.21253.CrossRefGoogle Scholar
  17. Leroux, S.J., M.A. Krawchuk, F. Schmiegelow, S.G. Cumming, K. Lisgo, L.G. Anderson, and M. Petkova. 2010. Global protected areas and IUCN designations: Do the categories match the conditions? Biological Conservation 143: 609–616.  https://doi.org/10.1016/j.biocon.2009.11.018.CrossRefGoogle Scholar
  18. Leverington, F., K.L. Costa, H. Pavese, A. Lisle, and M. Hockings. 2010. A global analysis of protected area management effectiveness. Environmental Management 46: 685–698.  https://doi.org/10.1007/s00267-010-9564-5.CrossRefGoogle Scholar
  19. McDonald, R.I., and T.M. Boucher. 2011. Global development and the future of the protected area strategy. Biological Conservation 144: 383–392.  https://doi.org/10.1016/j.biocon.2010.09.016.CrossRefGoogle Scholar
  20. Mittermeier, R.A., C.G. Mittermeier, T.M. Brooks, J.D. Pilgrim, W.R. Konstant, G.A.B. da Fonseca, and C. Kormos. 2003. Wilderness and biodiversity conservation. Proceedings of the National Academy of Sciences of the USA 100: 10309–10313.  https://doi.org/10.1073/pnas.1732458100.CrossRefGoogle Scholar
  21. Newbold, T., L.N. Hudson, A.P. Arnell, S. Contu, A. De Palma, S. Ferrier, S.L.L. Hill, A.J. Hoskins, et al. 2016. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353: 288–291.CrossRefGoogle Scholar
  22. Olson, D.M., E. Dinerstein, E.D. Wikramanayake, N.D. Burgess, G.V.N. Powell, E.C. Underwood, J.A. D’amico, I. Itoua, et al. 2001. Terrestrial ecoregions of the world: A new map of life on earth. BioScience 51: 933.CrossRefGoogle Scholar
  23. Pettorelli, N., K. Safi, and W. Turner. 2014. Satellite remote sensing, biodiversity research and conservation of the future. Philosophical Transactions of the Royal Society B Biological Sciences 369: 20130190.  https://doi.org/10.1098/rstb.2013.0190.CrossRefGoogle Scholar
  24. Pouzols, F.M., T. Toivonen, E. Di Minin, A.S. Kukkala, P. Kullberg, J. Kuustera, J. Lehtomaki, H. Tenkanen, et al. 2014. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516: 383–386.  https://doi.org/10.1038/nature14032.CrossRefGoogle Scholar
  25. Ramankutty, N., Z. Mehrabi, K. Waha, L. Jarvis, C. Kremen, M. Herrero, and L.H. Rieseberg. 2018. Trends in global agricultural land use: Implications for environmental health and food security. Annual Review of Plant Biology 69: 789–815.  https://doi.org/10.1146/annurev-arplant-042817-040256.CrossRefGoogle Scholar
  26. Rands, M.R.W., W.M. Adams, L. Bennun, S.H.M. Butchart, A. Clements, D. Coomes, A. Entwistle, I. Hodge, et al. 2010. Biodiversity conservation: Challenges beyond 2010. Science 329: 1298–1303.  https://doi.org/10.1126/science.1189138.CrossRefGoogle Scholar
  27. Sachs, J.D. 2012. From millennium development goals to sustainable development goals. The Lancet 379: 2206–2211.CrossRefGoogle Scholar
  28. Sanderson, E.W., M. Jaiteh, M.A. Levy, K.H. Redford, A.V. Wannebo, and G. Woolmer. 2002. The human footprint and the last of the wild. BioScience 52: 891.  https://doi.org/10.1641/0006-3568(2002)052%5b0891:THFATL%5d2.0.CO;2.CrossRefGoogle Scholar
  29. Sloan, S., and J.A. Sayer. 2015. Forest resources assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. Forest Ecology and Management 352: 134–145.  https://doi.org/10.1016/j.foreco.2015.06.013.CrossRefGoogle Scholar
  30. Tilman, D., M. Clark, D.R. Williams, K. Kimmel, S. Polasky, and C. Packer. 2017. Future threats to biodiversity and pathways to their prevention. Nature 546: 73–81.  https://doi.org/10.1038/nature22900.CrossRefGoogle Scholar
  31. United Nations. 2017. World population prospects: The 2017 revision, key findings and advance tables. Department of Economic and Social Affair, Population Division, ESA/P/WP/248.Google Scholar
  32. Venter, O., R.A. Fuller, D.B. Segan, J. Carwardine, T. Brooks, S.H.M. Butchart, M. Di Marco, T. Iwamura, et al. 2014. Targeting global protected area expansion for imperiled biodiversity. PLoS Biology 12: e1001891.  https://doi.org/10.1371/journal.pbio.1001891.CrossRefGoogle Scholar
  33. Venter, O., E.W. Sanderson, A. Magrach, J.R. Allan, J. Beher, K.R. Jones, H.P. Possingham, W.F. Laurance, et al. 2016a. Global terrestrial human footprint maps for 1993 and 2009. Scientific Data 3: 160067.  https://doi.org/10.1038/sdata.2016.67.CrossRefGoogle Scholar
  34. Venter, O., E.W. Sanderson, A. Magrach, J.R. Allan, J. Beher, K.R. Jones, H.P. Possingham, W.F. Laurance, et al. 2016b. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications 7: 1–11.  https://doi.org/10.1038/ncomms12558.CrossRefGoogle Scholar
  35. Wasserstein, R.L., A.L. Schirm, and N.A. Lazar. 2019. Moving to a world beyond “ p < 0.05”. The American Statistician 73: 1–19.  https://doi.org/10.1080/00031305.2019.1583913.CrossRefGoogle Scholar
  36. Watson, J.E.M., N. Dudley, D.B. Segan, and M. Hockings. 2014. The performance and potential of protected areas. Nature 515: 67–73.  https://doi.org/10.1038/nature13947.CrossRefGoogle Scholar
  37. Watson, J.E.M., D.F. Shanahan, M. Di Marco, J. Allan, W.F. Laurance, E.W. Sanderson, B. Mackey, and O. Venter. 2016a. Catastrophic declines in wilderness areas undermine global environment targets. Current Biology 26: 2929–2934.  https://doi.org/10.1016/j.cub.2016.08.049.CrossRefGoogle Scholar
  38. Watson, J.E.M., K.R. Jones, R.A. Fuller, M. Di Marco, D.B. Segan, S.H.M. Butchart, J.R. Allan, E. McDonald-Madden, et al. 2016b. Persistent disparities between recent rates of habitat conversion and protection and implications for future global conservation targets. Conservation Letters 9: 413–421.  https://doi.org/10.1111/conl.12295.CrossRefGoogle Scholar
  39. Watson, J.E.M., T. Evans, O. Venter, B. Williams, A. Tulloch, C. Stewart, I. Thompson, J.C. Ray, et al. 2018. The exceptional value of intact forest ecosystems. Nature Ecology & Evolution 2: 599–610.  https://doi.org/10.1038/s41559-018-0490-x.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2019

Authors and Affiliations

  1. 1.Guangxi Key Laboratory of Forest Ecology and Conservation, College of ForestryGuangxi UniversityNanningChina
  2. 2.McbeeUSA

Personalised recommendations