Advertisement

Ambio

pp 1–13 | Cite as

Human–environmental drivers and impacts of the globally extreme 2017 Chilean fires

  • David M. J. S. Bowman
  • Andrés Moreira-Muñoz
  • Crystal A. Kolden
  • Roberto O. Chávez
  • Ariel A. Muñoz
  • Fernanda Salinas
  • Álvaro González-Reyes
  • Ronald Rocco
  • Francisco de la Barrera
  • Grant J. Williamson
  • Nicolás Borchers
  • Luis A. Cifuentes
  • John T. Abatzoglou
  • Fay H. Johnston
Research Article

Abstract

In January 2017, hundreds of fires in Mediterranean Chile burnt more than 5000 km2, an area nearly 14 times the 40-year mean. We contextualize these fires in terms of estimates of global fire intensity using MODIS satellite record, and provide an overview of the climatic factors and recent changes in land use that led to the active fire season and estimate the impact of fire emissions to human health. The primary fire activity in late January coincided with extreme fire weather conditions including all-time (1979–2017) daily records for the Fire Weather Index (FWI) and maximum temperature, producing some of the most energetically intense fire events on Earth in the last 15-years. Fire activity was further enabled by a warm moist growing season in 2016 that interrupted an intense drought that started in 2010. The land cover in this region had been extensively modified, with less than 20% of the original native vegetation remaining, and extensive plantations of highly flammable exotic Pinus and Eucalyptus species established since the 1970s. These plantations were disproportionally burnt (44% of the burned area) in 2017, and associated with the highest fire severities, as part of an increasing trend of fire extent in plantations over the past three decades. Smoke from the fires exposed over 9.5 million people to increased concentrations of particulate air pollution, causing an estimated 76 premature deaths and 209 additional admissions to hospital for respiratory and cardiovascular conditions. This study highlights that Mediterranean biogeographic regions with expansive Pinus and Eucalyptus plantations and associated rural depopulation are vulnerable to intense wildfires with wide ranging social, economic, and environmental impacts, which are likely to become more frequent due to longer and more extreme wildfire seasons.

Keywords

Fire weather Forest plantations Land cover change Mediterranean climate Smoke pollution Wildfire 

Notes

Acknowledgements

This paper is based on a workshop led by AM-M, that Pia Osses and the Biogeography course 2017 helped organize. DMJSB and AM-M led the writing of the paper with input from all authors as follows: CAK finalized the figures; GJW and CAK undertook the FRP analysis; ROC and RR did the EVI anomalies and burn severity analysis and figures; AM and AG-R did the PDSI drought analysis and figures; JTA provided analysis of the fire climatology; FHJ, NB, LAC, and FDLB undertook the analysis of PM2.5 pollution and health impacts; FS evaluated the ecological impacts of the fires. This paper is the output of a symposium ‘Chile en Llamas’ held in May 2017 by Instituto de Geografía, Pontificia Universidad Católica de Valparaíso, Chile. The work was supported by the following grants: Dirección General de Vinculación con el Medio PUCV, Fondecyt Iniciación No. 1150422, and 11161061; Fondecyt Regular No.1150425 Centro de Ciencia del Clima y la Resiliencia (CR)2; Fondap No. 15110009; CONICYT PAI No. 82140001; Fondecyt Iniciación No. 11171041; and Australian Research Council Linkage Grant LP130100146.

Supplementary material

13280_2018_1084_MOESM1_ESM.pdf (421 kb)
Supplementary material 1 (pdf 421 kb)

References

  1. Abatzoglou, J.T., and A.P. Williams. 2016. Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences 113: 11770–11775.CrossRefGoogle Scholar
  2. Abatzoglou, J.T., A.P. Williams, L. Boschetti, M. Zubkova, and C.A. Kolden. 2018. Global patterns of interannual climate-fire relationships. Global Change Biology.  https://doi.org/10.1111/gcb.14405.Google Scholar
  3. Aguilera Vivanco, P. 2016. Socio-spatial dynamics in territories of forestry expansion: Curepto Commune, Maule Region 19742015. Bachelor’s Degree in History Thesis, Universidad de Chile (in Spanish).Google Scholar
  4. Anonymous. 2017. Spreading like wildfire. Nature Climate Change 7: 755.CrossRefGoogle Scholar
  5. Aravena, J.C., C. LeQuesne, H. Jiménez, A. Lara, and J.J. Armesto. 2003. Fire history in central Chile: Tree-ring evidence and modern records. In Fire and climatic change in temperate ecosystems of the western Americas, ed. T. Veblen, W. Baker, G. Montenegro, and T. Swetnam. New York: Springer.Google Scholar
  6. Aronson, J., A. Del Pozo, C. Ovalle, J. Avendano, A. Lavin, and M. Etienne. 1998. Land use changes and conflicts in central Chile. In Landscape disturbance and biodiversity in Mediterranean-type ecosystems, ed. P. Rundel, G. Montenegro, and F. Jaksic. Berlin: Springer.Google Scholar
  7. Beck, H.E., A.I. van Dijk, V. Levizzani, J. Schellekens, D.G. Miralles, B. Martens, and A. de Roo. 2017. MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrology and Earth System Sciences 21: 589.CrossRefGoogle Scholar
  8. Boer, M.M., R.H. Nolan, V. Resco De Dios, H. Clarke, O.F. Price, and R.A. Bradstock. 2018. Changing weather extremes call for early warning of potential for catastrophic fire, 1196–1202. Future: Earth’s.Google Scholar
  9. Boisier, J.P., R. Rondanelli, R.D. Garreaud, and F. Muñoz. 2016. Anthropogenic and natural contributions to the Southeast Pacific precipitation decline and recent megadrought in central Chile. Geophysical Research Letters 43: 413–421.CrossRefGoogle Scholar
  10. Bowman, D.M., G.J. Williamson, J.T. Abatzoglou, C.A. Kolden, M.A. Cochrane, and A.M. Smith. 2017. Human exposure and sensitivity to globally extreme wildfire events. Nature Ecology & Evolution 1: 0058.CrossRefGoogle Scholar
  11. Bowman, D.M.J.S., J. Balch, P. Artaxo, W.J. Bond, M.A. Cochrane, C.M. D’Antonio, R. DeFries, F.H. Johnston, et al. 2011. The human dimension of fire regimes on Earth. Journal of Biogeography 38: 2223–2236.CrossRefGoogle Scholar
  12. Bowman, D.M.J.S., G.J. Williamson, L.D. Prior, and B.P. Murphy. 2016. The relative importance of intrinsic and extrinsic factors in the decline of obligate seeder forests. Global Ecology and Biogeography 25: 1166–1172.CrossRefGoogle Scholar
  13. Bozkurt, D., M. Rojas, J. Boisier, and J. Valdivieso. 2017. Climate change impacts on hydroclimatic regimes and extremes over Andean basins in Central Chile. Hydrology and Earth System Science Discussions 2017: 1–29.Google Scholar
  14. Bradstock, R.A. 2010. A biogeographic model of fire regimes in Australia: Current and future implications. Global Ecology and Biogeography 19: 145–158.CrossRefGoogle Scholar
  15. Broome, R.A., F.H. Johnston, J. Horsley, and G.G. Morgan. 2016. A rapid assessment of the impact of hazard reduction burning around Sydney, May 2016. Medical Journal of Australia 205: 407–408.CrossRefGoogle Scholar
  16. Carmona, A., M.E. Gonzalez, L. Nahuelhual, and J. Silva. 2012. Spatio-temporal effects of human drivers on fire danger in Mediterranean Chile. Bosque 33: 321–328.CrossRefGoogle Scholar
  17. Chávez, R.O., S.A. Estay, and C.G. Riquelme. 2017. npphen. An R package for estimating annual phenological cycle. Santiago: Uach, PUCV, Chile.Google Scholar
  18. Cifuentes, L.A., J. Vega, K. Köpfer, and L.B. Lave. 2000. Effect of the fine fraction of particulate matter versus the coarse mass and other pollutants on daily mortality in Santiago, Chile. Journal of the Air and Waste Management Association 50: 1287–1298.CrossRefGoogle Scholar
  19. Comisión Nacional del Medio Ambiente (CONAMA). 2006. Study of the climatic variability for the 21st century. Universidad de Chile Comisión Nacional del Medio Ambiente. (In Spanish).Google Scholar
  20. Corporación Nacional Forestal (CONAF). 2017. Fire storm in Chile [Online]. Available: http://www.conaf.cl/incendios-forestales/tormenta-de-fuego-en-chile/. [Accessed 15 September 2017]. (In Spanish).
  21. Cowling, R.M., P.W. Rundel, B.B. Lamont, M.K. Arroyo, and M. Arianoutsou. 1996. Plant diversity in Mediterranean-climate regions. Trends in Ecology & Evolution 11: 362–366.CrossRefGoogle Scholar
  22. Departamento de Información y Estadísticas de Salud Ministerio de Salud (DEIS). 2017. Department of Statistics and Health Information of the Ministry of Health [Online]. Available: http://www.deis.cl/ [Accessed November 2017].
  23. Diaz-Hormazabal, I., and M.E. Gonzalez. 2016. Spatio-temporal analysis of forest fires in the Maule region. Chile Bosque 37: 147–158 (In Spanish).CrossRefGoogle Scholar
  24. Fernandes, P.M. 2013. Fire-smart management of forest landscapes in the Mediterranean basin under global change. Landscape and Urban Planning 110: 175–182.CrossRefGoogle Scholar
  25. Fischer, A.P., T.A. Spies, T.A. Steelman, C. Moseley, B.R. Johnson, J.D. Bailey, A.A. Ager, P. Bourgeron, et al. 2016. Wildfire risk as a socioecological pathology. Frontiers in Ecology and the Environment 14: 276–284.CrossRefGoogle Scholar
  26. Garreaud, R., C. Alvarez-Garreton, J. Barichivich, J.P. Boisier, D. Christie, M. Galleguillos, C. LeQuesne, J. McPhee, et al. 2017. The 2010–2015 mega drought in Central Chile: Impacts on regional hydroclimate and vegetation. Hydrology and Earth Systems Science Discussions 2017: 1–37.Google Scholar
  27. Gibbons, P., L. Van Bommel, A.M. Gill, G.J. Cary, D.A. Driscoll, R.A. Bradstock, E. Knight, M.A. Moritz, et al. 2012. Land management practices associated with house loss in wildfires. PLoS ONE 7: e29212.CrossRefGoogle Scholar
  28. Gómez-González, S., F. Ojeda, and P.M. Fernandes. 2018. Portugal and Chile: Longing for sustainable forestry while rising from the ashes. Environmental Science & Policy 81: 104–107.CrossRefGoogle Scholar
  29. González-Reyes, Á. 2016. Occurrence of drought events in the city of Santiago de Chile since mid 21st century. Revista de Geografía Norte Grande 2016: 21–32 (in Spanish).CrossRefGoogle Scholar
  30. González-Reyes, Á., J. McPhee, D.A. Christie, C. Le Quesne, P. Szejner, M.H. Masiokas, R. Villalba, A.A. Muñoz, et al. 2017. Spatiotemporal variations in hydroclimate across the Mediterranean Andes (30°–37° S) since the early twentieth century. Journal of Hydrometeorology 18: 1929–1942.CrossRefGoogle Scholar
  31. Heilmayr, R., C. Echeverría, R. Fuentes, and E.F. Lambin. 2016. A plantation-dominated forest transition in Chile. Applied Geography 75: 71–82.CrossRefGoogle Scholar
  32. Holz, A., J. Paritsis, I.A. Mundo, T.T. Veblen, T. Kitzberger, G.J. Williamson, E. Aráoz, C. Bustos-Schindler, et al. 2017. Southern Annular Mode drives multicentury wildfire activity in southern South America. Proceedings of the National Academy of Sciences 114: 9552–9557.CrossRefGoogle Scholar
  33. Huete, A., K. Didan, W. van Leeuwen, T. Miura, and E. Glenn. 2010. MODIS vegetation indices. In Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS, ed. B. Ramachandran, C.O. Justice, and M.J. Abrams. New York: Springer.Google Scholar
  34. Instituto Forestal (INFOR). 2016. Forest Yearbook 2016 (Bulletin Es). Santiago, Chile: Instituto Forestal, Ministerio de Agricultura (In Spanish).Google Scholar
  35. Instituto Nacional de Estadística (INE). 2017. 2017 Chilean National Census Data [Online]. Santiago, Chile: Instituto Nacional de Estadísticas. Available: http://www.censo2017.cl/. [Accessed November 2017].
  36. Jolly, W. M., M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T. J. Brown, G. J. Williamson and D. M. Bowman 2015. Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6.Google Scholar
  37. Keeley, J.E. 2012. Fire in mediterranean climate ecosystems—a comparative overview. Israel Journal of Ecology and Evolution 58: 123–135.Google Scholar
  38. Klubock, T.M. 2006. The Politics of Forests and Forestry on Chile’s Southern Frontier, 1880s–1940s. Hispanic American Historical Review 86: 535–570.CrossRefGoogle Scholar
  39. Lilliefors, H.W. 1967. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. Journal of the American Statistical Association 62: 399–402.CrossRefGoogle Scholar
  40. Marlon, J.R., P.J. Bartlein, D.G. Gavin, C.J. Long, R.S. Anderson, C.E. Briles, K.J. Brown, D. Colombaroli, et al. 2012. Long-term perspective on wildfires in the western USA. Proceedings of the National Academy of Sciences 109: E535–E543.CrossRefGoogle Scholar
  41. Martinez-Harms, M.J., H. Caceres, D. Biggs, and H.P. Possingham. 2017. After Chile’s fires, reforest private land. Science 356: 147–148.CrossRefGoogle Scholar
  42. McWethy, D.B., C. Whitlock, J.M. Wilmshurst, M.S. McGlone, M. Fromont, X. Li, A. Dieffenbacher-Krall, W.O. Hobbs, et al. 2010. Rapid landscape transformation in South Island, New Zealand, following initial Polynesian settlement. Proceedings of the National Academy of Sciences 107: 21343–21348.CrossRefGoogle Scholar
  43. Montenegro, G., F. Díaz, M. Gómez, and R. Ginocchio. 2003. Regeneration potential of Chilean matorral after fire: An updated view. In Fire and climatic change in temperate ecosystems of the Western Americas, ed. T. Veblen, W. Baker, G. Montenegro, and T. Swetnam, 381–409. New York: Springer.CrossRefGoogle Scholar
  44. Moreira, F., O. Viedma, M. Arianoutsou, T. Curt, N. Koutsias, E. Rigolot, A. Barbati, P. Corona, et al. 2011. Landscape–wildfire interactions in southern Europe: implications for landscape management. Journal of Environmental Management 92: 2389–2402.CrossRefGoogle Scholar
  45. Moritz, M.A., E. Batllori, R.A. Bradstock, A.M. Gill, J. Handmer, P.F. Hessburg, J. Leonard, S. McCaffrey, et al. 2014. Learning to coexist with wildfire. Nature 515: 58–66.CrossRefGoogle Scholar
  46. Nauslar, N., J. Abatzoglou, and P. Marsh. 2018. The 2017 North Bay and Southern California fires: A case study. Fire 1: 18.  https://doi.org/10.3390/fire1010018.CrossRefGoogle Scholar
  47. Nunes, A.N., L. Lourenço, and A.C.C. Meira. 2016. Exploring spatial patterns and drivers of forest fires in Portugal (1980–2014). Science of the Total Environment 573: 1190–1202.CrossRefGoogle Scholar
  48. Oliveira, S., J.L. Zêzere, M. Queirós, and J.M. Pereira. 2017. Assessing the social context of wildfire-affected areas. The case of mainland Portugal. Applied Geography 88: 104–117.CrossRefGoogle Scholar
  49. Osborn, T.J., J. Barichivich, I. Harris, G. van der Schrier, and P.D. Jones. 2017. Monitoring global drought using the self-calibrating Palmer Drought Severity Index. Bulletin of the American Meteorological Society 98: S32–S33.Google Scholar
  50. Otero, L. 2016. Landscape and forestry plantations: Achitecture and ecology of plantation landscapes. Valdivia: Editorial Bosque y Paisaje (In Spanish).Google Scholar
  51. Parks, S.A., C. Miller, C.R. Nelson, and Z.A. Holden. 2014. Previous Fires Moderate Burn Severity of Subsequent Wildland Fires in Two Large Western US Wilderness Areas. Ecosystems 17: 29–42.CrossRefGoogle Scholar
  52. Parrington, M., F. Di Giuseppe, C. Vitolo, and F. Wetterhall. 2017. Devastating wildfires in Chile in January 2017. ECMWF Newsletter 151: 12–13.Google Scholar
  53. Pausas, J.G., and S. Fernández-Muñoz. 2012. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic change 110: 215–226.CrossRefGoogle Scholar
  54. Peña-Fernández, E. and L. Valenzuela-Palma. 2005. The Increase in Forest Fires in Natural Woodland and Forestry Plantations in Chile. Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View.Google Scholar
  55. Pliscoff, P., and T. Fuentes-Castillo. 2011. Representativeness of terrestrial ecosystems in Chile’s protected area system. Environmental Conservation 38: 303–311.CrossRefGoogle Scholar
  56. Reid, C.E., M. Brauer, F.H. Johnston, M. Jerrett, J.R. Balmes, and C.T. Elliott. 2016. Critical review of health impacts of wildfire smoke exposure. Environmental Health Perspectives 124: 1334.CrossRefGoogle Scholar
  57. Sanhueza, P.A., M.A. Torreblanca, L.A. Diaz-Robles, L.N. Schiappacasse, M.P. Silva, and T.D. Astete. 2009. Particulate Air Pollution and Health Effects for Cardiovascular and Respiratory Causes in Temuco, Chile: A Wood-Smoke-Polluted Urban Area. Journal of the Air and Waste Management Association 59: 1481–1488.CrossRefGoogle Scholar
  58. Sistema de Información Nacional de Calidad del Aire (SINCA). 2017. National Air Quality Information System of the Ministry of the Environment [Online]. Available: http://sinca.mma.gob.cl/ [Accessed November 2017].
  59. Syphard, A.D., T.J. Brennan, and J.E. Keeley. 2014. The role of defensible space for residential structure protection during wildfires. International Journal of Wildland Fire 23: 1165–1175.CrossRefGoogle Scholar
  60. Taylor, C., M.A. McCarthy, and D.B. Lindenmayer. 2014. Nonlinear Effects of Stand Age on Fire Severity. Conservation Letters 7: 355–370.CrossRefGoogle Scholar
  61. Úbeda, X., and P. Sarricolea. 2016. Wildfires in Chile: A review. Global and Planetary Change 146: 152–161.CrossRefGoogle Scholar
  62. Urrutia-Jalabert, R., M. Gonzalez, M. Gonzalez-Reyes, A. Lara, and R. Garreaud. 2018. Climate variability and forest fires in central and south-central Chile. Ecosphere 9: e02171.  https://doi.org/10.1002/ecs2.2171.CrossRefGoogle Scholar
  63. van Wagner, C. E. 1987. Development and structure of the Canadian forest fire weather index system. Can. For. Serv., For. Tech. Rep., 35.Google Scholar
  64. World Health Organization (WHO). 2013. Health risks of air pollution in EuropeHRAPIE project. Recommendations for concentration response functions for cost-benefit analysis of particular matter, ozone and nitrogen oxide. [Online]. Available: http://apps.who.int/iris/handle/10665/153692 [Accessed November 2017].
  65. Zhao, Y., D. Feng, L. Yu, X. Wang, Y. Chen, Y. Bai, H.J. Hernández, M. Galleguillos, et al. 2016. Detailed dynamic land cover mapping of Chile: Accuracy improvement by integrating multi-temporal data. Remote Sensing of Environment 183: 170–185.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2018

Authors and Affiliations

  • David M. J. S. Bowman
    • 1
  • Andrés Moreira-Muñoz
    • 2
  • Crystal A. Kolden
    • 3
  • Roberto O. Chávez
    • 2
  • Ariel A. Muñoz
    • 2
  • Fernanda Salinas
    • 8
  • Álvaro González-Reyes
    • 4
  • Ronald Rocco
    • 2
  • Francisco de la Barrera
    • 9
  • Grant J. Williamson
    • 1
  • Nicolás Borchers
    • 7
  • Luis A. Cifuentes
    • 5
  • John T. Abatzoglou
    • 6
  • Fay H. Johnston
    • 7
  1. 1.School of Natural SciencesUniversity of TasmaniaHobartAustralia
  2. 2.Instituto de GeografíaPontificia Universidad Católica de ValparaísoValparaísoChile
  3. 3.College of Natural ResourcesUniversity of IdahoMoscowUSA
  4. 4.Instituto de Ciencias de la Tierra, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  5. 5.Industrial and Systems Engineering DepartmentPontificia Universidad Católica de ChileSantiagoChile
  6. 6.College of ScienceUniversity of IdahoMoscowUSA
  7. 7.Menzies Institute for Medical ResearchUniversity of TasmaniaHobartAustralia
  8. 8.Fiscalía del Medio Ambiente (ONG FIMA)SantiagoChile
  9. 9.Faculty of Architecture, Urbanism and GeographyUniversidad de ConcepcionConcepciónChile

Personalised recommendations