Advertisement

Ambio

, Volume 48, Issue 4, pp 363–373 | Cite as

Increased fire hazard in human-modified wetlands in Southeast Asia

  • Muh TaufikEmail author
  • Budi I. Setiawan
  • Henny A. J. Van Lanen
Research Article

Abstract

Vast areas of wetlands in Southeast Asia are undergoing a transformation process to human-modified ecosystems. Expansion of agricultural cropland and forest plantations changes the landscape of wetlands. Here we present observation-based modelling evidence of increased fire hazard due to canalization in tropical wetland ecosystems. Two wetland conditions were tested in South Sumatra, Indonesia, natural drainage and canal drainage, using a hydrological model and a drought-fire index (modified Keetch–Byram index). Our results show that canalization has amplified fire susceptibility by 4.5 times. Canal drainage triggers the fire season to start earlier than under natural wetland conditions, indicating that the canal water level regime is a key variable controlling fire hazard. Furthermore, the findings derived from the modelling experiment have practical relevance for public and private sectors, as well as for water managers and policy makers, who deal with canalization of tropical wetlands, and suggest that improved water management can reduce fire susceptibility.

Keywords

Canalization Canal water level Fire hazard SWAP Water management 

Notes

Acknowledgements

This present study was completed with support of the DIKTI Scholarship (Contract No: 4115/E4.4/K/2013) and the SPIN-JRP-29 project Granted by the Royal Netherlands Academy of Arts and Sciences (KNAW). It contributes to WIMEK-SENSE and the UNESCO IHP-VIII programme FRIEND-Water.

References

  1. Ainuddin, N.A., and J. Ampun. 2008. Temporal Analysis of the Keetch-Byram Drought Index in Malaysia: Implications for Forest Fire Management. Journal of Applied Sciences 8: 3991–3994.  https://doi.org/10.3923/jas.2008.3991.3994.CrossRefGoogle Scholar
  2. Allen, R.G., L.S. Pereira, D. Raes, and M. Smith. 1998. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements. Rome: FAO.Google Scholar
  3. Amiro, B.D., K.A. Logan, B.M. Wotton, M.D. Flannigan, J.B. Todd, B.J. Stocks, and D.L. Martell. 2005. Fire Weather Index System Components for Large Fires in the Canadian Boreal Forest. International Journal of Wildland Fire 13: 391–400.CrossRefGoogle Scholar
  4. Bennett, N.D., B.F.W. Croke, G. Guariso, J.H.A. Guillaume, S.H. Hamilton, A.J. Jakeman, S. Marsili-Libelli, L.T.H. Newham, et al. 2013. Characterising performance of environmental models. Environmental Modelling & Software 40: 1–20.  https://doi.org/10.1016/j.envsoft.2012.09.011.CrossRefGoogle Scholar
  5. Destouni, G., and L. Verrot. 2014. Screening Long-term Variability and Change of Soil Moisture in a Changing Climate. Journal of Hydrology 516: 131–139.  https://doi.org/10.1016/j.jhydrol.2014.01.059.CrossRefGoogle Scholar
  6. Evers, S., C.M. Yule, R. Padfield, P. O’Reilly, and H. Varkkey. 2017. Keep Wetlands Wet: The Myth of Sustainable Development of Tropical Peatlands—Implications for Policies and Management. Global Change Biology 23: 534–549.  https://doi.org/10.1111/gcb.13422.CrossRefGoogle Scholar
  7. Giglio, L., J.T. Randerson, and G.R. Van Der Werf. 2013. Analysis of Daily, Monthly, and Annual Burned Area Using the Fourth-Generation Global Fire Emissions Database (GFED4). Journal of Geophysical Research: Biogeosciences 118: 317–328.  https://doi.org/10.1002/jgrg.20042.CrossRefGoogle Scholar
  8. Hirano, T., K. Kusin, S. Limin, and M. Osaki. 2015. Evapotranspiration of Tropical Peat Swamp Forests. Global Change Biology 21: 1914–1927.  https://doi.org/10.1111/gcb.12653.CrossRefGoogle Scholar
  9. Hirano, T., H. Segah, K. Kusin, S. Limin, H. Takahashi, and M. Osaki. 2012. Effects of Disturbances on the Carbon Balance of Tropical Peat Swamp Forests. Global Change Biology 18: 3410–3422.  https://doi.org/10.1111/j.1365-2486.2012.02793.x.CrossRefGoogle Scholar
  10. Hoscilo, A., S.E. Page, K.J. Tansey, and J.O. Rieley. 2011. Effect of Repeated Fires on Land-Cover Change on Peatland in Southern Central Kalimantan, Indonesia, from 1973 to 2005. International Journal of Wildland Fire 20: 578.  https://doi.org/10.1071/WF10029.CrossRefGoogle Scholar
  11. Ishii, Y., K. Koizumi, H. Fukami, K. Yamamoto, H. Takahashi, S.H. Limin, K. Kusin, A. Usup, et al. 2016. Groundwater in Peatland. In Tropical Peatland Ecosystems, 15th ed, ed. M. Osaki and N. Tsuji. Tokyo, Heidelberg, New York, Dordrecht, London: Springer.Google Scholar
  12. Jaramillo, F., I. Brown, P. Castellazzi, L. Espinosa, A. Guittard, S.-H. Hong, V.H. Rivera-Monroy, and S. Wdowinski. 2018a. Assessment of Hydrologic Connectivity in an Ungauged Wetland with InSAR Observations. Environmental Research Letters 13: 024003.  https://doi.org/10.1088/1748-9326/aa9d23.CrossRefGoogle Scholar
  13. Jaramillo, F., L. Licero, I. Åhlen, S. Manzoni, J.A. Rodríguez-Rodríguez, A. Guittard, A. Hylin, J. Bolaños, et al. 2018b. Effects of Hydroclimatic Change and Rehabilitation Activities on Salinity and Mangroves in the Ciénaga Grande de Santa Marta, Colombia. Wetlands.  https://doi.org/10.1007/s13157-018-1024-7.CrossRefGoogle Scholar
  14. Kier, G., J. Mutke, E. Dinerstein, T.H. Ricketts, W. Küper, H. Kreft, and W. Barthlott. 2005. Global Patterns of Plant Diversity and Floristic Knowledge. Journal of Biogeography 32: 1107–1116.  https://doi.org/10.1111/j.1365-2699.2005.01272.x.CrossRefGoogle Scholar
  15. Konecny, K., U. Ballhorn, P. Navratil, J. Jubanski, S.E. Page, K. Tansey, A. Hooijer, R. Vernimmen, et al. 2016. Variable Carbon Losses from Recurrent Fires in Drained Tropical Peatlands. Global Change Biology 22: 1469–1480.  https://doi.org/10.1111/gcb.13186.CrossRefGoogle Scholar
  16. Kroes, J.G., J.C. Van Dam, P. Groenendijk, R.F.A. Hendriks, and C.M.J. Jacobs. 2008. SWAP version 3.2. Theory Description and User Manual. Alterra: Wageningen.Google Scholar
  17. Leung, L.R., M. Huang, Y. Qian, and X. Liang. 2011. Climate–Soil–Vegetation Control on Groundwater Table Dynamics and its Feedbacks in a Climate Model. Climate Dynamics 36: 57–81.  https://doi.org/10.1007/s00382-010-0746-x.CrossRefGoogle Scholar
  18. Miettinen, J., C. Shi, and S.C. Liew. 2012. Two Decades of Destruction in Southeast Asia’s Peat Swamp Forests. Frontiers in Ecology and the Environment 10: 124–128.  https://doi.org/10.1890/100236.CrossRefGoogle Scholar
  19. Moriasi, D.N., J.G. Arnold, M.W. Van Liew, R.L. Binger, R.D. Harmel, and T.L. Veith. 2007. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Transactions of the ASABE 50: 885–900.  https://doi.org/10.13031/2013.23153.CrossRefGoogle Scholar
  20. Page, S.E., J.O. Rieley, and C.J. Banks. 2011. Global and Regional Importance of The Tropical Peatland Carbon Pool. Global Change Biology 17: 798–818.  https://doi.org/10.1111/j.1365-2486.2010.02279.x.CrossRefGoogle Scholar
  21. Petros, G., M. Antonis, and T. Marianthi. 2011. Development of an Adapted Empirical Drought Index to the Mediterranean Conditions for Use in Forestry. Agricultural and Forest Meteorology 151: 241–250.  https://doi.org/10.1016/j.agrformet.2010.10.011.CrossRefGoogle Scholar
  22. Ritzema, H.P. (ed.). 1994. Subsurface Flow to Drains. Subsurface Flow to Drains, 236–304. Wageningen: International Institute for Land Reclamation and Improvement.Google Scholar
  23. Ritzema, H., S. Limin, K. Kusin, J. Jauhiainen, and H. Wösten. 2014. Canal Blocking Strategies For Hydrological Restoration of Degraded Tropical Peatlands in Central Kalimantan, Indonesia. CATENA 114: 11–20.  https://doi.org/10.1016/j.catena.2013.10.009.CrossRefGoogle Scholar
  24. Sodhi, N.S., M.R.C. Posa, T.M. Lee, D. Bickford, L.P. Koh, and B.W. Brook. 2010. The State and Conservation of Southeast Asian Biodiversity. Biodiversity and Conservation 19: 317–328.  https://doi.org/10.1007/s10531-009-9607-5.CrossRefGoogle Scholar
  25. Sun, G., K. Alstad, J. Chen, S. Chen, C.R. Ford, G. Lin, C. Liu, N. Lu, et al. 2011. A General Predictive Model for Estimating Monthly Ecosystem Evapotranspiration. Ecohydrology 4: 245–255.  https://doi.org/10.1002/eco.194.CrossRefGoogle Scholar
  26. Tacconi, L. 2016. Preventing Fires and Haze in Southeast Asia. Nature Climate Change 6: 640–643.  https://doi.org/10.1038/nclimate3008.CrossRefGoogle Scholar
  27. Takeuchi, W., T. Hirano, and O. Roswintiarti. 2016. Estimation Model of GroundWater Table at Peatland in Central Kalimantan, Indonesia. In Tropical Peatland Ecosystems, 9th ed, ed. M. Osaki and N. Tsuji. Tokyo, Heidelberg, New York, Dordrecht, London: Springer.Google Scholar
  28. Taufik, M., B.I. Setiawan, and H.A.J. van Lanen. 2015. Modification of a Fire Drought Index for Tropical Wetland Ecosystems by Including Water Table Depth. Agricultural and Forest Meteorology 203: 1–10.  https://doi.org/10.1016/j.agrformet.2014.12.006.CrossRefGoogle Scholar
  29. Taufik, M., P.J.J.F. Torfs, R. Uijlenhoet, P.D. Jones, D. Murdiyarso, and H.A.J. Van Lanen. 2017. Amplification of Wildfire Area Burnt by Hydrological Drought in the Humid Tropics. Nature Climate Change 7: 428–431.  https://doi.org/10.1038/nclimate3280.CrossRefGoogle Scholar
  30. Van Dam, J.C., and R.A. Feddes. 2000. Numerical Simulation of Infiltration, Evaporation and Shallow Groundwater Levels with the Richards Equation. Journal of Hydrology 233: 72–85.  https://doi.org/10.1016/S0022-1694(00)00227-4.CrossRefGoogle Scholar
  31. Van Dam, J.C., P. Groenendijk, R.F.A. Hendriks, and J.G. Kroes. 2008. Advances of Modeling Water Flow in Variably Saturated Soils with SWAP. Vadose Zone Journal 7: 640.  https://doi.org/10.2136/vzj2007.0060.CrossRefGoogle Scholar
  32. Van Genuchten, M.T. 1980. A Closed-Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal 44: 892–898.CrossRefGoogle Scholar
  33. Verrot, L., and G. Destouni. 2016. Data-Model Comparison of Temporal Variability in Long-term Time Series of Large-Scale soil Moisture: Results from an Analytical Framework. Journal of Geophysical Research: Atmospheres 121: 10056–10073.  https://doi.org/10.1002/2016JD025209.CrossRefGoogle Scholar
  34. Wooster, M.J., G.L.W. Perry, and A. Zoumas. 2012. Fire, Drought and El Niño Relationships on Borneo (Southeast Asia) in the pre-MODIS Era (1980–2000). Biogeosciences 9: 317–340.  https://doi.org/10.5194/bg-9-317-2012.CrossRefGoogle Scholar
  35. Wösten, J.H.M., E. Clymans, S.E. Page, J.O. Rieley, and S.H. Limin. 2008. Peat–Water Interrelationships in a Tropical Peatland Ecosystem in Southeast Asia. Hydropedology.  https://doi.org/10.1016/j.catena.2007.07.010.CrossRefGoogle Scholar
  36. Wösten, H., A. Hooijer, C. Siderius, D.S. Rais, A. Idris, and J. Rieley. 2006. Tropical Peatland Water Management Modelling of the Air Hitam Laut Catchment in Indonesia. International Journal of River Basin Management 4: 233–244.  https://doi.org/10.1080/15715124.2006.9635293.CrossRefGoogle Scholar
  37. Yule, C.M. 2010. Loss of Biodiversity and Ecosystem Functioning in Indo-Malayan Peat Swamp Forests. Biodiversity and Conservation 19: 393–409.  https://doi.org/10.1007/s10531-008-9510-5.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2018

Authors and Affiliations

  • Muh Taufik
    • 1
    Email author
  • Budi I. Setiawan
    • 2
  • Henny A. J. Van Lanen
    • 3
  1. 1.Department of Geophysics and MeteorologyBogor Agricultural UniversityBogorIndonesia
  2. 2.Department of Civil and Environmental EngineeringBogor Agricultural UniversityBogorIndonesia
  3. 3.Hydrology and Quantitative Water Management GroupWageningen UniversityWageningenThe Netherlands

Personalised recommendations