Ambio

, Volume 46, Issue 5, pp 543–553 | Cite as

Economic effects of ocean acidification: Publication patterns and directions for future research

Review

Abstract

Human societies derive economic benefit from marine systems, yet these benefits may be modified as humans drive environmental change. Here, we conducted the first systematic review of literature on the potential economic effects of ocean acidification. We identified that while there is a growing literature discussing this topic, assessments of the direction and magnitude of anticipated economic change remain limited. The few assessments which have been conducted indicate largely negative economic effects of ocean acidification. Insights are, however, limited as the scope of the studies remains restricted. We propose that understanding of this topic will benefit from using standard approaches (e.g. timescales and emissions scenarios) to consider an increasing range of species/habitats and ecosystem services over a range of spatial scales. The resulting understanding could inform decisions such that we maintain, or enhance, economic services obtained from future marine environments.

Keywords

Carbon dioxide Climate change Ecosystem services Socio-economic Systematic literature review Warming 

Supplementary material

13280_2017_895_MOESM1_ESM.xlsx (27 kb)
Table S1 (XLSX 27 kb)

References

  1. Adger, W.N., T.P. Hughes, C. Folke, S.R. Carpenter, and J. Rockström. 2005. Social-ecological resilience to coastal disasters. Science 309: 1036–1039.CrossRefGoogle Scholar
  2. Armstrong CW, Holen S, Navrud S, Seifert I (2012) The economics of ocean acidification—a scoping study. Fram Centre.Google Scholar
  3. Ballantyne, M., and C.M. Pickering. 2015. The impacts of trail infrastructure on vegetation and soils: Current literature and future directions. Journal of Environmental Management 164: 53–64.CrossRefGoogle Scholar
  4. Blackford, J., and F. Gilbert. 2007. pH variability and CO2 induced acidification in the North Sea. Journal of Marine Systems 64: 229–241.CrossRefGoogle Scholar
  5. Branch, T.A., B.M. DeJoseph, L.J. Ray, and C.A. Wagner. 2013. Impacts of ocean acidification on marine seafood. Trends in Ecology & Evolution 28: 178–186.CrossRefGoogle Scholar
  6. Brander, L.M., D. Narita, K. Rehdanz, and R.S. Tol. 2014. The economic impacts of ocean acidification. In Handbook on the Economics of Ecosystem Services and Biodiversity, ed. P. Nunes, P. Kumar, and T. Dedeurwaerdere. Cheltenham: Edward Elgar.Google Scholar
  7. Brander, L.M., K. Rehdanz, R.S. Tol, and P.J. Van Beukering. 2012. The economic impact of ocean acidification on coral reefs. Climate Change Economics 3: 1250002.CrossRefGoogle Scholar
  8. Brown, C.J., M.I. Saunders, H.P. Possingham, and A.J. Richardson. 2014. Interactions between global and local stressors of ecosystems determine management effectiveness in cumulative impact mapping. Diversity and Distributions 20: 538–546.CrossRefGoogle Scholar
  9. Caldeira, K., and M.E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365.CrossRefGoogle Scholar
  10. Campbell, L.M. 2005. Overcoming obstacles to interdisciplinary research. Conservation Biology 19: 574–577.CrossRefGoogle Scholar
  11. Chen, P.-Y., C.-C. Chen, L. Chu, and B. McCarl. 2015. Evaluating the economic damage of climate change on global coral reefs. Global Environmental Change 30: 12–20.CrossRefGoogle Scholar
  12. CICES. 2016. The Common International Classification of Ecosystem Services, CICES Version 4.3. Accessed October 28, 2016, from http://cices.eu/.
  13. Cooley, S.R., and S.C. Doney. 2009. Anticipating ocean acidification’s economic consequences for commercial fisheries. Environmental Research Letters 4: 024007.CrossRefGoogle Scholar
  14. Cooley, S.R., J.E. Rheuban, D.R. Hart, V. Luu, D.M. Glover, J.A. Hare, and S.C. Doney. 2015. An integrated assessment model for helping the United States sea scallop (Placopecten magellanicus) fishery plan ahead for ocean acidification and warming. PLoS ONE 10: e0124145.CrossRefGoogle Scholar
  15. Costanza, R., R. d’Arge, R. de Groot, S. Faber, M. Grasso, B. Hannon, K. Limburg, S. Naeem, et al. 1997. The value of the world’s ecosystem services and natural capital. Nature 387: 253–260.CrossRefGoogle Scholar
  16. Costanza, R., R. de Groot, P. Sutton, S. van der Ploeg, S.J. Anderson, I. Kubiszewski, S. Farber, and R.K. Turner. 2014. Changes in the global value of ecosystem services. Global Environmental Change 26: 152–158.CrossRefGoogle Scholar
  17. Doney, S.C., V.J. Fabry, R.A. Feely, and J.A. Kleypas. 2009. Ocean acidification: The other CO2 problem. Marine Science 1: 169–192.CrossRefGoogle Scholar
  18. Dupont, S., J. Havenhand, W. Thorndyke, L.S. Peck, and M. Thorndyke. 2008. Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology Progress Series 373: 285–294.CrossRefGoogle Scholar
  19. Ekstrom, J.A., L. Suatoni, S.R. Cooley, L.H. Pendleton, G.G. Waldbusser, J.E. Cinner, J. Ritter, C. Langdon, et al. 2015. Vulnerability and adaptation of US shellfisheries to ocean acidification. Nature Climate Change 5: 207–214.CrossRefGoogle Scholar
  20. Falkenberg, L.J., S.D. Connell, and B.D. Russell. 2013a. Disrupting the effects of synergies between stressors: Improved water quality dampens the effects of future CO2 on a marine habitat. Journal of Applied Ecology 50: 51–58.CrossRefGoogle Scholar
  21. Falkenberg, L.J., B.D. Russell, and S.D. Connell. 2013b. Future herbivory: The indirect effects of enriched CO2 may rival its direct effects. Marine Ecology Progress Series 492: 85–95.CrossRefGoogle Scholar
  22. Falkenberg, L.J., S.D. Connell, and B.D. Russell. 2014. Herbivory mediates the expansion of an algal habitat under nutrient and CO2 enrichment. Marine Ecology Progress Series 497: 87–92.CrossRefGoogle Scholar
  23. Feely, R.A., C.L. Sabine, K. Lee, W. Berelson, J. Kleypas, V.J. Fabry, and F.J. Millero. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362–366.CrossRefGoogle Scholar
  24. Fitzer, S.C., V.R. Phoenix, M. Cusack, and N.A. Kamenos. 2014. Ocean acidification impacts mussel control on biomineralisation. Scientific Reports 4: 6218.CrossRefGoogle Scholar
  25. Frommel, A.Y., R. Maneja, D. Lowe, A.M. Malzahn, A.J. Geffen, A. Folkvord, U. Piatkowski, T.B. Reusch, and C. Clemmesen. 2012. Severe tissue damage in Atlantic cod larvae under increasing ocean acidification. Nature Climate Change 2: 42–46.CrossRefGoogle Scholar
  26. Garrard, S.L., and N.J. Beaumont. 2014. The effect of ocean acidification on carbon storage and sequestration in seagrass beds; a global and UK context. Marine Pollution Bulletin 86: 138–146.CrossRefGoogle Scholar
  27. Gazeau, F., C. Quiblier, J.M. Jansen, J.P. Gattuso, J.J. Middelburg, and C.H. Heip. 2007. Impact of elevated CO2 on shellfish calcification. Geophysical Research Letters 34: L07603.CrossRefGoogle Scholar
  28. Guitart, D., C. Pickering, and J. Byrne. 2012. Past results and future directions in urban community gardens research. Urban Forestry & Urban Greening 11: 364–373.CrossRefGoogle Scholar
  29. Hall-Spencer, J.M., R. Rodolfo-Metalpa, S. Martin, E. Ransome, M. Fine, S.M. Turner, S.J. Rowley, D. Tedesco, et al. 2008. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454: 96–99.CrossRefGoogle Scholar
  30. Harvey, B.P., D. Gwynn-Jones, and P.J. Moore. 2013. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecology and Evolution 3: 1016–1030.CrossRefGoogle Scholar
  31. Heal, G. 2000. Valuing ecosystem services. Ecosystems 3: 24–30.CrossRefGoogle Scholar
  32. Hepburn, C., D. Pritchard, C. Cornwall, R. McLeod, J. Beardall, J. Raven, and C. Hurd. 2011. Diversity of carbon use strategies in a kelp forest community: Implications for a high CO2 ocean. Global Change Biology 17: 2488–2497.CrossRefGoogle Scholar
  33. IPCC. 2014. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.Google Scholar
  34. Kroeker, K.J., R.L. Kordas, R. Crim, I.E. Hendriks, L. Ramajo, G.S. Singh, C.M. Duarte, and J.P. Gattuso. 2013. Impacts of ocean acidification on marine organisms: Quantifying sensitivities and interaction with warming. Global Change Biology 19: 1884–1896.CrossRefGoogle Scholar
  35. Kroeker, K.J., R.L. Kordas, R.N. Crim, and G.G. Singh. 2010. Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13: 1419–1434.CrossRefGoogle Scholar
  36. Lam, V.W., W.W. Cheung, and U.R. Sumaila. 2014. Marine capture fisheries in the Arctic: Winners or losers under climate change and ocean acidification? Fish and Fisheries. doi:10.1111/faf.12106.Google Scholar
  37. Lane, D.R., R.C. Ready, R.W. Buddemeier, J.A. Martinich, K.C. Shouse, and C.W. Wobus. 2013. Quantifying and valuing potential climate change impacts on coral reefs in the United States: Comparison of two scenarios. PLoS ONE 8: e82579.CrossRefGoogle Scholar
  38. Le Quéré, C., R. Moriarty, R.M. Andrew, J.G. Canadell, S. Sitch, J.I. Korsbakken, P. Friedlingstein, G.P. Peters, et al. 2015. Global carbon budget 2015. Earth System Science Data 7: 349–396.CrossRefGoogle Scholar
  39. Liu, J., T. Dietz, S.R. Carpenter, M. Alberti, C. Folke, E. Moran, A.N. Pell, P. Deadman, et al. 2007. Complexity of coupled human and natural systems. Science 317: 1513–1516.CrossRefGoogle Scholar
  40. Mabardy, R.A., G.G. Waldbusser, F. Conway, and C.S. Olsen. 2015. Perception and response of the US west coast shellfish industry to ocean acidification: The voice of the canaries in the coal mine. Journal of Shellfish Research 34: 565–572.CrossRefGoogle Scholar
  41. Marzano, M., D.N. Carss, and S. Bell. 2006. Working to make interdisciplinarity work: Investing in communication and interpersonal relationships. Journal of Agricultural Economics 57: 185–197.CrossRefGoogle Scholar
  42. Moore, C. 2015. Welfare estimates of avoided ocean acidification in the US mollusk market. Journal of Agricultural and Resource Economics 40: 50–62.Google Scholar
  43. Mork, M. 1996. Wave attenuation due to bottom vegetation. In Waves and nonlinear processes in hydrodynamics, ed. J. Grue, B. Gjevik, and J.E. Weber. Dordrecht: Kluwer/Springer.Google Scholar
  44. Nagelkerken, I., and S.D. Connell. 2015. Global alteration of ocean ecosystem functioning due to increasing human CO2 emissions. Proceedings of the National Academy of Sciences 112: 13272–13277.CrossRefGoogle Scholar
  45. Narita, D., K. Rehdanz, and R.S. Tol. 2012. Economic costs of ocean acidification: A look into the impacts on global shellfish production. Climatic Change 113: 1049–1063.CrossRefGoogle Scholar
  46. Norman-López, A., É. Plagányi, T. Skewes, E. Poloczanska, D. Dennis, M. Gibbs, and P. Bayliss. 2013. Linking physiological, population and socio-economic assessments of climate-change impacts on fisheries. Fisheries Research 148: 18–26.CrossRefGoogle Scholar
  47. Parker, L., P.M. Ross, and W.A. O’Connor. 2011. Populations of the Sydney rock oyster, Saccostrea glomerata, vary in response to ocean acidification. Marine Biology 158: 689–697.CrossRefGoogle Scholar
  48. Pickering, C., and J. Byrne. 2014. The benefits of publishing systematic quantitative literature reviews for PhD candidates and other early-career researchers. Higher Education Research & Development 33: 534–548.CrossRefGoogle Scholar
  49. Przeslawski, R., S. Ahyong, M. Byrne, G. Woerheide, and P. Hutchings. 2008. Beyond corals and fish: The effects of climate change on noncoral benthic invertebrates of tropical reefs. Global Change Biology 14: 2773–2795.CrossRefGoogle Scholar
  50. Punt, A.E., D. Poljak, M.G. Dalton, and R.J. Foy. 2014. Evaluating the impact of ocean acidification on fishery yields and profits: The example of red king crab in Bristol Bay. Ecological Modelling 285: 39–53.CrossRefGoogle Scholar
  51. Riebesell, U., V.J. Fabry, L. Hansson, and J.-P. Gattuso. 2010. Guide to best practices for ocean acidification research and data reporting, vol. 260. Luxembourg: Publications Office of the European Union Luxembourg.Google Scholar
  52. Roy, E.D., A.T. Morzillo, F. Seijo, S.M. Reddy, J.M. Rhemtulla, J.C. Milder, T. Kuemmerle, and S.L. Martin. 2013. The elusive pursuit of interdisciplinarity at the human-environment interface. BioScience 63: 745–753.CrossRefGoogle Scholar
  53. Roy, S., J. Byrne, and C. Pickering. 2012. A systematic quantitative review of urban tree benefits, costs, and assessment methods across cities in different climatic zones. Urban Forestry & Urban Greening 11: 351–363.CrossRefGoogle Scholar
  54. Russell, B.D., J.A.I. Thompson, L.J. Falkenberg, and S.D. Connell. 2009. Synergistic effects of climate change and local stressors: CO2 and nutrient-driven change in subtidal rocky habitats. Global Change Biology 15: 2153–2162.CrossRefGoogle Scholar
  55. Shi, D., Y. Xu, B.M. Hopkinson, and F.M. Morel. 2010. Effect of ocean acidification on iron availability to marine phytoplankton. Science 327: 676–679.CrossRefGoogle Scholar
  56. Sumaila, U.R., W.W. Cheung, V.W. Lam, D. Pauly, and S. Herrick. 2011. Climate change impacts on the biophysics and economics of world fisheries. Nature Climate Change 1: 449–456.CrossRefGoogle Scholar
  57. Vila, A.R., V. Falabella, M. Gálvez, A. Farías, D. Droguett, and B. Saavedra. 2015. Identifying high-value areas to strengthen marine conservation in the channels and fjords of the southern Chile ecoregion. Oryx 47 (2): 273–279.Google Scholar
  58. Voss, R., M.F. Quaas, J.O. Schmidt, and U. Kapaun. 2015. Ocean acidification may aggravate social–ecological trade-offs in coastal fisheries. PLoS ONE 10: e0120376.CrossRefGoogle Scholar
  59. Wam, H.K. 2010. Economists, time to team up with the ecologists! Ecological Economics 69: 675–679.CrossRefGoogle Scholar
  60. Zeebe, R.E., A. Ridgwell, and J.C. Zachos. 2016. Anthropogenic carbon release rate unprecedented during the past 66 million years. Nature Geoscience 9: 325–329.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2017

Authors and Affiliations

  1. 1.School of Energy and Resources, UCL AustraliaUniversity College LondonAdelaideAustralia
  2. 2.Norwegian Institute for Water Research (NIVA)NIVA Region WestBergenNorway

Personalised recommendations