, Volume 46, Issue 3, pp 277–290 | Cite as

Differentiating the effects of climate and land use change on European biodiversity: A scenario analysis

  • Jan E. Vermaat
  • Fritz A. Hellmann
  • Astrid J. A. van Teeffelen
  • Jelle van Minnen
  • Rob Alkemade
  • Regula Billeter
  • Carl Beierkuhnlein
  • Luigi Boitani
  • Mar Cabeza
  • Christian K. Feld
  • Brian Huntley
  • James Paterson
  • Michiel F. WallisDeVries


Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of ‘Continental Europe’. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50–100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40–50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.


Climate envelope modelling Dry grasslands Habitat connectivity Land use change Species sensitivity database SRES scenario articulation Wetlands 



This paper is based on the outcome of an expert workshop organized in March 2012 in the hamlet Ehrenberg-Seiferts, located in the UNESCO Biosphere Reserve Rhön, Hessen, Germany ( It was supported financially by the European Commission as part of the EU-funded FP7 project RESPONSES, Grant Agreement number 244092.

Supplementary material

13280_2016_840_MOESM1_ESM.pdf (678 kb)
Supplementary material 1 (PDF 679 kb)


  1. Amezaga, J.M., L. Santamaria, and A.J. Green. 2002. Biotic wetland connectivity—Supporting a new approach for wetland policy. Acta Oecologica 23: 213–222.CrossRefGoogle Scholar
  2. Anderson, M., and C. Ferree. 2010. Conserving the stage: Climate change and the geophysical underpinnings of species diversity. PLoS ONE 5: e11554.CrossRefGoogle Scholar
  3. Araújo, M.B., D. Alagador, M. Cabeza, D. Nogués-Bravo, and W. Thuiller. 2011. Climate change threatens European conservation areas. Ecology Letters 14: 484–492.CrossRefGoogle Scholar
  4. Araújo, M.B., and A.T. Peterson. 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93: 1527–1539.CrossRefGoogle Scholar
  5. Auffret, A.G. 2011. Can seed dispersal by human activity play a useful role for the conservation of European grasslands? Applied Vegetation Science 14: 291–303.CrossRefGoogle Scholar
  6. Barbet-Massin, M., W. Thuiller, and F. Jiguet. 2012. The fate of European breeding birds under climate, land-use and dispersal scenarios. Global Change Biology 18: 881–890.CrossRefGoogle Scholar
  7. Beale, C.M., J.J. Lennon, and A. Gimona. 2008. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences 105: 14908–14912.CrossRefGoogle Scholar
  8. Beltman, B.G.H.J., N. Omtzigt, and J.E. Vermaat. 2011. Turbary restoration meets variable success: Does landscape structure force colonization success of wetland plants? Restoration Ecology 19: 185–193.CrossRefGoogle Scholar
  9. Berkhout, F., J. Hertin, and A. Jordan. 2002. Socio-economic futures in climate change impact assessment: Using scenarios as ‘learning machines’. Global Environmental Change 12: 83–95.CrossRefGoogle Scholar
  10. BISE. 2016. Biodiversity information system for Europe. Accessed 2 Feb 2016.
  11. Bruun, H.H., and B. Fritzbøger. 2002. The past impact of livestock husbandry on dispersal of plant seeds in the landscape of Denmark. Ambio 31: 425–431.CrossRefGoogle Scholar
  12. Busch, G. 2006. Future European agricultural landscapes—What can we learn from existing quantitative land use scenario studies. Agriculture, Ecosystems & Environment 114: 121–140.CrossRefGoogle Scholar
  13. Campbell, A., V. Kapos, J.P.W. Scharlemann, P. Bubb, A. Chenery, L. Coad, B. Dickson, N. Doswald, et al. 2009. Review of the literature on the links between biodiversity and climate change: impacts, adaptation and mitigation. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series No. 42, 124 pages.Google Scholar
  14. Christensen, J., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. Kolli, et al. 2007. Regional climate projections. In: Solomon S, D.Qin, M.Manning et al. (eds) Climate Change 2007: The Physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 847–940. Cambridge, UK, New York, NY: Cambridge University Press.Google Scholar
  15. Čížková H., J. Květ, F.A. Comín, R. Laiho, J. Pokorný and D. Pithart. 2013. Actual state of European wetlands and their possible future in the context of global climate change. Aquatic Sciences 75: 3–26.CrossRefGoogle Scholar
  16. Cliquet, A., C. Backes, J. Harris, and P. Howsam. 2009. Adaptation to climate change: Legal challenges for protected areas. Utrecht Law Rev 5: 158–175.CrossRefGoogle Scholar
  17. Couvreur, M., B. Christiaen, K. Verheyen, and M. Hermy. 2004. Large herbivores as mobile links between isolated nature reserves through adhesive seed dispersal. Applied Vegetation Science 7: 229–236.CrossRefGoogle Scholar
  18. Dale, V., R. Efroymson, and K. Kline. 2011. The land use–climate change–energy nexus. Landscape Ecology 26: 755–773.CrossRefGoogle Scholar
  19. Davies, C.E., D. Moss, and M.O. Hill. 2004. EUNIS habitat classification revised 2004. Report to the European Environment Agency and the European Topic Centre on Nature Protection and Biodiversity. Centre for Ecology and Hydrology, Dorchester, UK, 307 pp. See also:
  20. Delbaere, B., A. Nieto Serradilla, and M. Sethlage (eds.). 2009. BIOSCORE: A tool to assess the impacts of European Community policies on Europe’s biodiversity. Tilburg: ECNC.Google Scholar
  21. Dengler, J. 2005. Zwischen Estland und Portugal—Gemeinsamkeiten und Unterschiede der Phytodiversitätsmuster europäischer Trockenrasen. Tuexenia 25: 387–405.Google Scholar
  22. Devictor, V., C. Van Swaay, T. Brereton, L. Brotons, D. Chamberlain, J. Heliölä, S. Herrando, R. Julliard, et al. 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change 1347: 121–124.CrossRefGoogle Scholar
  23. de Chazal, J., and M.D.A. Rounsevell. 2009. Land-use and climate change within assessments of biodiversity change: A review. Global Environmental Change 19: 306–315.CrossRefGoogle Scholar
  24. Dijkstra, K.D.B. and R. Lewington. 2006. Field guide to the dragonflies of Britain and Europe. Totnes: British Wildlife Publishers.Google Scholar
  25. Dodd, A., A. Hardiman, K. Jennings, and G. Williams. 2010. Protected areas and climate change: Reflections from a practitioner’s perspective. Utrecht Law Rev 6: 141–150.CrossRefGoogle Scholar
  26. EEA. 2012. Climate change, impacts and vulnerability in Europe 2012. European Environment Agency. Technical report No 12/2012., Copenhagen.
  27. Eggers, J., K. Tröltzsch, A. Falcucci, L. Maiorano, P.H. Verburg, E. Framstad, G. Louette, D. Maes, et al. 2009. Is biofuel policy harming biodiversity in Europe? Global Change Biology Bioenergy 1: 18–34.CrossRefGoogle Scholar
  28. Fischer, S., P. Poschlod, and B. Beinlich. 1996. Experimental studies on the dispersal of plants and animals by sheep in calcareous grasslands. Journal of Applied Ecology 33: 1206–1222.CrossRefGoogle Scholar
  29. Fletcher, R.J., B.A. Robertson, J. Evans, P.J. Doran, J.R.R. Alavalapati, and D.W. Schemske. 2010. Biodiversity conservation in the era of biofuels: Risks and opportunities. Frontiers in Ecology and the Environment 9: 161–168.CrossRefGoogle Scholar
  30. Fronzek, S., T.R. Carter, and K. Jylha. 2012. Representing two centuries of past and future climate for assessing risks to biodiversity in Europe. Global Ecology and Biogeography 21: 19–35.CrossRefGoogle Scholar
  31. Habel, J.C., A. Segerer, W. Ulrich, O. Torchyk, W.W. Weisser, and T. Schmitt. 2016. Butterfly community shifts over 2 centuries. Conservation Biology. doi: 10.1111/cobi.12656.Google Scholar
  32. Harrison, P.A., P.M. Berry, N. Butt, and M. New. 2006. Modelling climate change impacts on species’ distributions at the European scale: Implications for conservation policy. Environmental Science & Policy 9: 116–128.CrossRefGoogle Scholar
  33. Hellmann, F., and P.H. Verburg. 2010. Impact assessment of the European biofuel directive on land use and biodiversity. J Environ Manag 91: 1389–1396.CrossRefGoogle Scholar
  34. Heubes, J., V. Retzer, S. Schmidtlein and C. Beierkuhnlein. 2011. Historical land use explains current distribution of calcareous grassland species. Folia Geobotanica 46:1–16.CrossRefGoogle Scholar
  35. Hickler, T., K. Vohland, J. Feehan, P.A. Miller, B. Smith, L. Costa, T. Giesecke, S. Fronzek, et al. 2012. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography 21: 50–63.CrossRefGoogle Scholar
  36. Hickling, R., D.B. Roy, J.K. Hill, R. Fox, and C.D. Thomas. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12: 450–455.CrossRefGoogle Scholar
  37. Hinsby, K., M.T. Condeso de Melo, and M. Dahl. 2008. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci Tot Env 401: 1–20.CrossRefGoogle Scholar
  38. Huntley, B., R.E. Green, Y. Collingham, and S.G. Willis. 2007. A climatic atlas of European breeding birds. Durham: Durham University, RSPB and Lynx Edicions.Google Scholar
  39. Huntley, B., Y.C. Collingham, S.G. Willis, and R.E. Green. 2008. Potential impacts of climatic change on European breeding birds. PLoS ONE 3: e1439.CrossRefGoogle Scholar
  40. Huntley, B., P. Barnard, R. Altwegg, L. Chambers, B.W.T. Coetzee, L. Gibson, P.A.R. Hockey, D.G. Hole, et al. 2010. Beyond bioclimatic envelopes: Dynamic species’ range and abundance modelling in the context of climatic change. Ecography 33: 621–626.Google Scholar
  41. Jaeschke, A., T. Bittner, B. Reineking, and C. Beierkuhnlein. 2013. Can they keep up with climate change? Integrating specific dispersal abilities of protected Odonata in species distribution modelling. Insect Conserv Div 6: 93–103.CrossRefGoogle Scholar
  42. Kirtman, B., S.B. Power, J.A. Adedoyin, G.J. Boer, R. Bojariu, I. Camilloni, F.J. Doblas-Reyes, A.M. Fiore, et al. 2013. Near-term climate change: projections and predictability. In Stocker et al. (eds), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK.Google Scholar
  43. Kleijn, D., F. Kohler, A. Báldi, P. Batary, E.D. Concepcion, Y. Clough, M. Diaz, D. Gabriel, et al. 2009. On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society B 276: 903–909.CrossRefGoogle Scholar
  44. LaFranchis, T. 2004. Butterflies of Europe, new field guide and key. Paris: Diatheo.Google Scholar
  45. Lorenzoni, I., A. Jordan, M. Hulme, R.K. Turner, and T. O’Riordan. 2000. A co-evolutionary approach to climate impact assessment: Part I. Integrating socio-economic and climate change scenarios. Global Environmental Change 10: 57–68.CrossRefGoogle Scholar
  46. Louette, G.D., J. Maes, R.M. Alkemade, L. Boitani, B. De Knegt, J. Eggers, A. Falcucci, E. Framstad, et al. 2010. BIOSCORE–cost-effective assessment of policy impact on biodiversity using species sensitivity scores. Journal for Nature Conservation 18: 142–148.CrossRefGoogle Scholar
  47. Manzano, P., and J.E. Malo. 2006. Extreme long-distance seed dispersal via sheep. Frontiers in Ecology and Evolution 4: 244–248.CrossRefGoogle Scholar
  48. Martin, Y., H. Van Dyck, N. Dendoncker, and N. Titeux. 2013. Testing instead of assuming the importance of land use change scenarios to model species distributions under climate change. Global Ecology and Biogeography 22: 1204–1216.CrossRefGoogle Scholar
  49. Menzel, A., T.H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kübler, P. Bissolli, et al. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969–1976.CrossRefGoogle Scholar
  50. Metzger, M.J., R.G.H. Bunce, R.H.G. Jongman, C.A. Mücher and J.W. Watkins. 2005. A climatic stratification of the environment of Europe. Global Ecology and Biogeography 14: 549–563.CrossRefGoogle Scholar
  51. Moss, R.H., J.A. Edmonds, K.A. Hibbard, M.R. Manning, S.K. Rose, D.P. Van Vuuren, T.R. Carter, S. Emori, et al. 2010. The next generation of scenarios for climate change research and assessment. Nature 463: 747–756.CrossRefGoogle Scholar
  52. Oliver, T.H., and M.D. Morecroft. 2014. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. WIREs Climate Change 5: 317–335.CrossRefGoogle Scholar
  53. Ozinga, W.A., C. Römermann, R.M. Bekker, A. Prinzing, W.L.M. Tamis, J.H.J. Schaminee, S.M. Hennekens, K. Thompson, et al. 2009. Dispersal failure contributes to plant losses in NW Europe. Ecology Letters 12: 66–74.CrossRefGoogle Scholar
  54. Paterson, J.S., M.B. Araújo, P.M. Berry, J.M. Piper, and M.D.A. Rounsevell. 2008. Mitigation, adaptation and the threat to biodiversity. Conservation Biology 22: 1352–1355.CrossRefGoogle Scholar
  55. Pawson, S.M., A. Brin, E.G. Brockerhoff, D. Lamb, T.W. Payn, A. Paquette, and J.A. Parrotta. 2013. Plantation forests, climate change and biodiversity. Biodiversity and Conservation 22: 1203–1227.CrossRefGoogle Scholar
  56. Pompe, S., J. Hanspach, F. Badeck, S. Klotz, W. Thuiller, and I. Kühn. 2008. Climate and land use change impacts on plant distributions in Germany. Biology Letters 4: 564–567.CrossRefGoogle Scholar
  57. Poschlod, P., and M.F. WallisDeVries. 2002. The historical and socioeconomic perspective of calcareous grasslands—Lessons from the distant and recent past. Biological Conservation 104: 361–376.CrossRefGoogle Scholar
  58. Rajczak, J., P. Pall, and C. Schär. 2013. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine region. Journal of Geophysical Research: Atmospheres 118: 3610–3626.Google Scholar
  59. Santamaria, L. 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137–154.CrossRefGoogle Scholar
  60. Settele, J., O. Kudrna, A. Harpke, I. Kühn, C. Van Swaay, R. Verovnik, M. Warren, M. Wiemers, et al. 2008. Climatic risk atlas of European butterflies, vol 1. Biorisk 1. Sofia: Pensoft Publishers.Google Scholar
  61. Spangenberg, J.H., A. Bondeau, T.R. Carter, S. Fronzek, J. Jaeger, K. Jylha, I. Kuhn, I. Omann, et al. 2012. Scenarios for investigating risks to biodiversity. Global Ecology and Biogeography 21: 5–18.CrossRefGoogle Scholar
  62. Suttle, K.B., M.A. Thomsen, and M.E. Power. 2007. Species interactions reverse grassland responses to changing climate. Science 315: 640–642.CrossRefGoogle Scholar
  63. Svensson, L. and P.J. Grant. 2013. Vogelgids van Europa. Voorschoten: ANWB.Google Scholar
  64. Thuiller, W., S. Lavorel, M.B. Araujo, M.T. Sykes, and I.C. Prentice. 2005. Climate change threats to plant diversity in Europe. Proc Nat Acad Sci 102: 8245–8250.CrossRefGoogle Scholar
  65. Titeux, N., K. Henle, J.B. Mihoub, A. Regos, I.R. Geijzendorffer, W. Cramer, P.H. Verburg, and L. Brotons. 2016. Biodiversity scenarios neglect future land use changes. Global Change Biology. doi: 10.1111/gcb.13272.Google Scholar
  66. Van der Meijden, R. 2005. Heukel’s Flora van Nederland, 23rd ed. Groningen: Noordhoff Publishers.Google Scholar
  67. Van Swaay, C., M. Warren and G. Loıs. 2006. Biotope use and trends of European butterflies. Journal of Insect Conservation 10: 189–209.CrossRefGoogle Scholar
  68. Van Teeffelen, A.J.A., L. Meller, J. Van Minnen, J.E. Vermaat, and M. Cabeza. 2015. How climate proof is the European Union’s biodiversity policy? Reg Env Change 15: 997–1010.CrossRefGoogle Scholar
  69. Van Vuuren, D., and T.R. Carter. 2014. Climate and socio-economic scenarios for climate change research and assessment: Reconciling the new with the old. Climate Change 122: 415–429.CrossRefGoogle Scholar
  70. Veen, P., R. Jefferson, J. de Smidt, and J. van der Straaten. 2009. Grasslands in Europe of high nature value. Zeist: KNNV.Google Scholar
  71. Verboom, J., R. Alkemade, J. Klijn, M.J. Metzger, and R. Reijnen. 2007. Combining biodiversity modeling with political and economic development scenarios for 25 EU countries. Ecological Economics 62: 267–276.CrossRefGoogle Scholar
  72. Verburg, P., B. Eickhout, and H. Van Meijl. 2008. A multi-scale, multi-model approach for analysing the future dynamics of European land use. The Annals of Regional Science 42: 57–77.CrossRefGoogle Scholar
  73. Walker, K.J., P.A. Stevens, D.P. Stevens, J.O. Mountford, S.J. Manchester, and R.F. Pywell. 2004. The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biological Conservation 119: 1–18.CrossRefGoogle Scholar
  74. WallisDeVries, M.F. 2014. Linking species assemblages to environmental change: Moving beyond the specialist-generalist dichotomy. Basic and Applied Ecology 15: 279–287.CrossRefGoogle Scholar
  75. Westhoek, H., M. Van den Berg, and J. Bakker. 2006. Development of land use scenarios for European land use. Agriculture, Ecosystems & Environment 114: 7–20.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2016

Authors and Affiliations

  • Jan E. Vermaat
    • 1
  • Fritz A. Hellmann
    • 2
  • Astrid J. A. van Teeffelen
    • 3
    • 7
  • Jelle van Minnen
    • 2
  • Rob Alkemade
    • 2
  • Regula Billeter
    • 4
  • Carl Beierkuhnlein
    • 5
  • Luigi Boitani
    • 6
  • Mar Cabeza
    • 7
  • Christian K. Feld
    • 8
  • Brian Huntley
    • 9
  • James Paterson
    • 10
  • Michiel F. WallisDeVries
    • 11
    • 12
  1. 1.Department of Environmental SciencesNorway’s University of Life SciencesÅsNorway
  2. 2.PBL Netherlands Environmental Assessment AgencyThe HagueThe Netherlands
  3. 3.Environmental Geography group, Department of Earth Sciences, Faculty Earth and Life SciencesVU UniversityAmsterdamThe Netherlands
  4. 4.Institute of Natural Resource SciencesZürich University of Applied SciencesWädeswilSwitzerland
  5. 5.Department of Biogeography, BayCEERUniversity of BayreuthBayreuthGermany
  6. 6.Department of Biology and BiotechnologiesUniversità di Roma La SapienzaRomaItaly
  7. 7.Department of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
  8. 8.Department of Aquatic Ecology and Centre for Water and Environmental Research (ZWU)University of Duisburg and EssenEssenGermany
  9. 9.School of Biological and Biomedical SciencesDurham UniversityDurhamUK
  10. 10.Land Use Research Group, School of GeosciencesUniversity of EdinburghEdinburghUK
  11. 11.De Vlinderstichting/Dutch Butterfly ConservationWageningenThe Netherlands
  12. 12.Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands

Personalised recommendations