Differentiating the effects of climate and land use change on European biodiversity: A scenario analysis
- 763 Downloads
- 1 Citations
Abstract
Current observed as well as projected changes in biodiversity are the result of multiple interacting factors, with land use and climate change often marked as most important drivers. We aimed to disentangle the separate impacts of these two for sets of vascular plant, bird, butterfly and dragonfly species listed as characteristic for European dry grasslands and wetlands, two habitats of high and threatened biodiversity. We combined articulations of the four frequently used SRES climate scenarios and associated land use change projections for 2030, and assessed their impact on population trends in species (i.e. whether they would probably be declining, stable or increasing). We used the BIOSCORE database tool, which allows assessment of the effects of a range of environmental pressures including climate change as well as land use change. We updated the species lists included in this tool for our two habitat types. We projected species change for two spatial scales: the EU27 covering most of Europe, and the more restricted biogeographic region of ‘Continental Europe’. Other environmental pressures modelled for the four scenarios than land use and climate change generally did not explain a significant part of the variance in species richness change. Changes in characteristic bird and dragonfly species were least pronounced. Land use change was the most important driver for vascular plants in both habitats and spatial scales, leading to a decline in 50–100% of the species included, whereas climate change was more important for wetland dragonflies and birds (40–50 %). Patterns of species decline were similar in continental Europe and the EU27 for wetlands but differed for dry grasslands, where a substantially lower proportion of butterflies and birds declined in continental Europe, and 50 % of bird species increased, probably linked to a projected increase in semi-natural vegetation. In line with the literature using climate envelope models, we found little divergence among the four scenarios. Our findings suggest targeted policies depending on habitat and species group. These are, for dry grasslands, to reduce land use change or its effects and to enhance connectivity, and for wetlands to mitigate climate change effects.
Keywords
Climate envelope modelling Dry grasslands Habitat connectivity Land use change Species sensitivity database SRES scenario articulation WetlandsNotes
Acknowledgments
This paper is based on the outcome of an expert workshop organized in March 2012 in the hamlet Ehrenberg-Seiferts, located in the UNESCO Biosphere Reserve Rhön, Hessen, Germany (www.biosphaerenreservat-rhoen.de). It was supported financially by the European Commission as part of the EU-funded FP7 project RESPONSES, Grant Agreement number 244092.
Supplementary material
References
- Amezaga, J.M., L. Santamaria, and A.J. Green. 2002. Biotic wetland connectivity—Supporting a new approach for wetland policy. Acta Oecologica 23: 213–222.CrossRefGoogle Scholar
- Anderson, M., and C. Ferree. 2010. Conserving the stage: Climate change and the geophysical underpinnings of species diversity. PLoS ONE 5: e11554.CrossRefGoogle Scholar
- Araújo, M.B., D. Alagador, M. Cabeza, D. Nogués-Bravo, and W. Thuiller. 2011. Climate change threatens European conservation areas. Ecology Letters 14: 484–492.CrossRefGoogle Scholar
- Araújo, M.B., and A.T. Peterson. 2012. Uses and misuses of bioclimatic envelope modeling. Ecology 93: 1527–1539.CrossRefGoogle Scholar
- Auffret, A.G. 2011. Can seed dispersal by human activity play a useful role for the conservation of European grasslands? Applied Vegetation Science 14: 291–303.CrossRefGoogle Scholar
- Barbet-Massin, M., W. Thuiller, and F. Jiguet. 2012. The fate of European breeding birds under climate, land-use and dispersal scenarios. Global Change Biology 18: 881–890.CrossRefGoogle Scholar
- Beale, C.M., J.J. Lennon, and A. Gimona. 2008. Opening the climate envelope reveals no macroscale associations with climate in European birds. Proceedings of the National Academy of Sciences 105: 14908–14912.CrossRefGoogle Scholar
- Beltman, B.G.H.J., N. Omtzigt, and J.E. Vermaat. 2011. Turbary restoration meets variable success: Does landscape structure force colonization success of wetland plants? Restoration Ecology 19: 185–193.CrossRefGoogle Scholar
- Berkhout, F., J. Hertin, and A. Jordan. 2002. Socio-economic futures in climate change impact assessment: Using scenarios as ‘learning machines’. Global Environmental Change 12: 83–95.CrossRefGoogle Scholar
- BISE. 2016. Biodiversity information system for Europe. http://biodiversity.europa.eu/topics/land-use-change. Accessed 2 Feb 2016.
- Bruun, H.H., and B. Fritzbøger. 2002. The past impact of livestock husbandry on dispersal of plant seeds in the landscape of Denmark. Ambio 31: 425–431.CrossRefGoogle Scholar
- Busch, G. 2006. Future European agricultural landscapes—What can we learn from existing quantitative land use scenario studies. Agriculture, Ecosystems & Environment 114: 121–140.CrossRefGoogle Scholar
- Campbell, A., V. Kapos, J.P.W. Scharlemann, P. Bubb, A. Chenery, L. Coad, B. Dickson, N. Doswald, et al. 2009. Review of the literature on the links between biodiversity and climate change: impacts, adaptation and mitigation. Secretariat of the Convention on Biological Diversity, Montreal. Technical Series No. 42, 124 pages.Google Scholar
- Christensen, J., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. Kolli, et al. 2007. Regional climate projections. In: Solomon S, D.Qin, M.Manning et al. (eds) Climate Change 2007: The Physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 847–940. Cambridge, UK, New York, NY: Cambridge University Press.Google Scholar
- Čížková H., J. Květ, F.A. Comín, R. Laiho, J. Pokorný and D. Pithart. 2013. Actual state of European wetlands and their possible future in the context of global climate change. Aquatic Sciences 75: 3–26.CrossRefGoogle Scholar
- Cliquet, A., C. Backes, J. Harris, and P. Howsam. 2009. Adaptation to climate change: Legal challenges for protected areas. Utrecht Law Rev 5: 158–175.CrossRefGoogle Scholar
- Couvreur, M., B. Christiaen, K. Verheyen, and M. Hermy. 2004. Large herbivores as mobile links between isolated nature reserves through adhesive seed dispersal. Applied Vegetation Science 7: 229–236.CrossRefGoogle Scholar
- Dale, V., R. Efroymson, and K. Kline. 2011. The land use–climate change–energy nexus. Landscape Ecology 26: 755–773.CrossRefGoogle Scholar
- Davies, C.E., D. Moss, and M.O. Hill. 2004. EUNIS habitat classification revised 2004. Report to the European Environment Agency and the European Topic Centre on Nature Protection and Biodiversity. Centre for Ecology and Hydrology, Dorchester, UK, 307 pp. See also: http://eunis.eea.eu.int/index.jsp.
- Delbaere, B., A. Nieto Serradilla, and M. Sethlage (eds.). 2009. BIOSCORE: A tool to assess the impacts of European Community policies on Europe’s biodiversity. Tilburg: ECNC.Google Scholar
- Dengler, J. 2005. Zwischen Estland und Portugal—Gemeinsamkeiten und Unterschiede der Phytodiversitätsmuster europäischer Trockenrasen. Tuexenia 25: 387–405.Google Scholar
- Devictor, V., C. Van Swaay, T. Brereton, L. Brotons, D. Chamberlain, J. Heliölä, S. Herrando, R. Julliard, et al. 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change 1347: 121–124.CrossRefGoogle Scholar
- de Chazal, J., and M.D.A. Rounsevell. 2009. Land-use and climate change within assessments of biodiversity change: A review. Global Environmental Change 19: 306–315.CrossRefGoogle Scholar
- Dijkstra, K.D.B. and R. Lewington. 2006. Field guide to the dragonflies of Britain and Europe. Totnes: British Wildlife Publishers.Google Scholar
- Dodd, A., A. Hardiman, K. Jennings, and G. Williams. 2010. Protected areas and climate change: Reflections from a practitioner’s perspective. Utrecht Law Rev 6: 141–150.CrossRefGoogle Scholar
- EEA. 2012. Climate change, impacts and vulnerability in Europe 2012. European Environment Agency. Technical report No 12/2012. http://www.eea.europa.eu/pressroom/newsreleases/climate-change-evident-across-europe, Copenhagen.
- Eggers, J., K. Tröltzsch, A. Falcucci, L. Maiorano, P.H. Verburg, E. Framstad, G. Louette, D. Maes, et al. 2009. Is biofuel policy harming biodiversity in Europe? Global Change Biology Bioenergy 1: 18–34.CrossRefGoogle Scholar
- Fischer, S., P. Poschlod, and B. Beinlich. 1996. Experimental studies on the dispersal of plants and animals by sheep in calcareous grasslands. Journal of Applied Ecology 33: 1206–1222.CrossRefGoogle Scholar
- Fletcher, R.J., B.A. Robertson, J. Evans, P.J. Doran, J.R.R. Alavalapati, and D.W. Schemske. 2010. Biodiversity conservation in the era of biofuels: Risks and opportunities. Frontiers in Ecology and the Environment 9: 161–168.CrossRefGoogle Scholar
- Fronzek, S., T.R. Carter, and K. Jylha. 2012. Representing two centuries of past and future climate for assessing risks to biodiversity in Europe. Global Ecology and Biogeography 21: 19–35.CrossRefGoogle Scholar
- Habel, J.C., A. Segerer, W. Ulrich, O. Torchyk, W.W. Weisser, and T. Schmitt. 2016. Butterfly community shifts over 2 centuries. Conservation Biology. doi: 10.1111/cobi.12656.Google Scholar
- Harrison, P.A., P.M. Berry, N. Butt, and M. New. 2006. Modelling climate change impacts on species’ distributions at the European scale: Implications for conservation policy. Environmental Science & Policy 9: 116–128.CrossRefGoogle Scholar
- Hellmann, F., and P.H. Verburg. 2010. Impact assessment of the European biofuel directive on land use and biodiversity. J Environ Manag 91: 1389–1396.CrossRefGoogle Scholar
- Heubes, J., V. Retzer, S. Schmidtlein and C. Beierkuhnlein. 2011. Historical land use explains current distribution of calcareous grassland species. Folia Geobotanica 46:1–16.CrossRefGoogle Scholar
- Hickler, T., K. Vohland, J. Feehan, P.A. Miller, B. Smith, L. Costa, T. Giesecke, S. Fronzek, et al. 2012. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model. Global Ecology and Biogeography 21: 50–63.CrossRefGoogle Scholar
- Hickling, R., D.B. Roy, J.K. Hill, R. Fox, and C.D. Thomas. 2006. The distributions of a wide range of taxonomic groups are expanding polewards. Global Change Biology 12: 450–455.CrossRefGoogle Scholar
- Hinsby, K., M.T. Condeso de Melo, and M. Dahl. 2008. European case studies supporting the derivation of natural background levels and groundwater threshold values for the protection of dependent ecosystems and human health. Sci Tot Env 401: 1–20.CrossRefGoogle Scholar
- Huntley, B., R.E. Green, Y. Collingham, and S.G. Willis. 2007. A climatic atlas of European breeding birds. Durham: Durham University, RSPB and Lynx Edicions.Google Scholar
- Huntley, B., Y.C. Collingham, S.G. Willis, and R.E. Green. 2008. Potential impacts of climatic change on European breeding birds. PLoS ONE 3: e1439.CrossRefGoogle Scholar
- Huntley, B., P. Barnard, R. Altwegg, L. Chambers, B.W.T. Coetzee, L. Gibson, P.A.R. Hockey, D.G. Hole, et al. 2010. Beyond bioclimatic envelopes: Dynamic species’ range and abundance modelling in the context of climatic change. Ecography 33: 621–626.Google Scholar
- Jaeschke, A., T. Bittner, B. Reineking, and C. Beierkuhnlein. 2013. Can they keep up with climate change? Integrating specific dispersal abilities of protected Odonata in species distribution modelling. Insect Conserv Div 6: 93–103.CrossRefGoogle Scholar
- Kirtman, B., S.B. Power, J.A. Adedoyin, G.J. Boer, R. Bojariu, I. Camilloni, F.J. Doblas-Reyes, A.M. Fiore, et al. 2013. Near-term climate change: projections and predictability. In Stocker et al. (eds), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, UK.Google Scholar
- Kleijn, D., F. Kohler, A. Báldi, P. Batary, E.D. Concepcion, Y. Clough, M. Diaz, D. Gabriel, et al. 2009. On the relationship between farmland biodiversity and land-use intensity in Europe. Proceedings of the Royal Society B 276: 903–909.CrossRefGoogle Scholar
- LaFranchis, T. 2004. Butterflies of Europe, new field guide and key. Paris: Diatheo.Google Scholar
- Lorenzoni, I., A. Jordan, M. Hulme, R.K. Turner, and T. O’Riordan. 2000. A co-evolutionary approach to climate impact assessment: Part I. Integrating socio-economic and climate change scenarios. Global Environmental Change 10: 57–68.CrossRefGoogle Scholar
- Louette, G.D., J. Maes, R.M. Alkemade, L. Boitani, B. De Knegt, J. Eggers, A. Falcucci, E. Framstad, et al. 2010. BIOSCORE–cost-effective assessment of policy impact on biodiversity using species sensitivity scores. Journal for Nature Conservation 18: 142–148.CrossRefGoogle Scholar
- Manzano, P., and J.E. Malo. 2006. Extreme long-distance seed dispersal via sheep. Frontiers in Ecology and Evolution 4: 244–248.CrossRefGoogle Scholar
- Martin, Y., H. Van Dyck, N. Dendoncker, and N. Titeux. 2013. Testing instead of assuming the importance of land use change scenarios to model species distributions under climate change. Global Ecology and Biogeography 22: 1204–1216.CrossRefGoogle Scholar
- Menzel, A., T.H. Sparks, N. Estrella, E. Koch, A. Aasa, R. Ahas, K. Alm-Kübler, P. Bissolli, et al. 2006. European phenological response to climate change matches the warming pattern. Global Change Biology 12: 1969–1976.CrossRefGoogle Scholar
- Metzger, M.J., R.G.H. Bunce, R.H.G. Jongman, C.A. Mücher and J.W. Watkins. 2005. A climatic stratification of the environment of Europe. Global Ecology and Biogeography 14: 549–563.CrossRefGoogle Scholar
- Moss, R.H., J.A. Edmonds, K.A. Hibbard, M.R. Manning, S.K. Rose, D.P. Van Vuuren, T.R. Carter, S. Emori, et al. 2010. The next generation of scenarios for climate change research and assessment. Nature 463: 747–756.CrossRefGoogle Scholar
- Oliver, T.H., and M.D. Morecroft. 2014. Interactions between climate change and land use change on biodiversity: Attribution problems, risks, and opportunities. WIREs Climate Change 5: 317–335.CrossRefGoogle Scholar
- Ozinga, W.A., C. Römermann, R.M. Bekker, A. Prinzing, W.L.M. Tamis, J.H.J. Schaminee, S.M. Hennekens, K. Thompson, et al. 2009. Dispersal failure contributes to plant losses in NW Europe. Ecology Letters 12: 66–74.CrossRefGoogle Scholar
- Paterson, J.S., M.B. Araújo, P.M. Berry, J.M. Piper, and M.D.A. Rounsevell. 2008. Mitigation, adaptation and the threat to biodiversity. Conservation Biology 22: 1352–1355.CrossRefGoogle Scholar
- Pawson, S.M., A. Brin, E.G. Brockerhoff, D. Lamb, T.W. Payn, A. Paquette, and J.A. Parrotta. 2013. Plantation forests, climate change and biodiversity. Biodiversity and Conservation 22: 1203–1227.CrossRefGoogle Scholar
- Pompe, S., J. Hanspach, F. Badeck, S. Klotz, W. Thuiller, and I. Kühn. 2008. Climate and land use change impacts on plant distributions in Germany. Biology Letters 4: 564–567.CrossRefGoogle Scholar
- Poschlod, P., and M.F. WallisDeVries. 2002. The historical and socioeconomic perspective of calcareous grasslands—Lessons from the distant and recent past. Biological Conservation 104: 361–376.CrossRefGoogle Scholar
- Rajczak, J., P. Pall, and C. Schär. 2013. Projections of extreme precipitation events in regional climate simulations for Europe and the Alpine region. Journal of Geophysical Research: Atmospheres 118: 3610–3626.Google Scholar
- Santamaria, L. 2002. Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23: 137–154.CrossRefGoogle Scholar
- Settele, J., O. Kudrna, A. Harpke, I. Kühn, C. Van Swaay, R. Verovnik, M. Warren, M. Wiemers, et al. 2008. Climatic risk atlas of European butterflies, vol 1. Biorisk 1. Sofia: Pensoft Publishers.Google Scholar
- Spangenberg, J.H., A. Bondeau, T.R. Carter, S. Fronzek, J. Jaeger, K. Jylha, I. Kuhn, I. Omann, et al. 2012. Scenarios for investigating risks to biodiversity. Global Ecology and Biogeography 21: 5–18.CrossRefGoogle Scholar
- Suttle, K.B., M.A. Thomsen, and M.E. Power. 2007. Species interactions reverse grassland responses to changing climate. Science 315: 640–642.CrossRefGoogle Scholar
- Svensson, L. and P.J. Grant. 2013. Vogelgids van Europa. Voorschoten: ANWB.Google Scholar
- Thuiller, W., S. Lavorel, M.B. Araujo, M.T. Sykes, and I.C. Prentice. 2005. Climate change threats to plant diversity in Europe. Proc Nat Acad Sci 102: 8245–8250.CrossRefGoogle Scholar
- Titeux, N., K. Henle, J.B. Mihoub, A. Regos, I.R. Geijzendorffer, W. Cramer, P.H. Verburg, and L. Brotons. 2016. Biodiversity scenarios neglect future land use changes. Global Change Biology. doi: 10.1111/gcb.13272.Google Scholar
- Van der Meijden, R. 2005. Heukel’s Flora van Nederland, 23rd ed. Groningen: Noordhoff Publishers.Google Scholar
- Van Swaay, C., M. Warren and G. Loıs. 2006. Biotope use and trends of European butterflies. Journal of Insect Conservation 10: 189–209.CrossRefGoogle Scholar
- Van Teeffelen, A.J.A., L. Meller, J. Van Minnen, J.E. Vermaat, and M. Cabeza. 2015. How climate proof is the European Union’s biodiversity policy? Reg Env Change 15: 997–1010.CrossRefGoogle Scholar
- Van Vuuren, D., and T.R. Carter. 2014. Climate and socio-economic scenarios for climate change research and assessment: Reconciling the new with the old. Climate Change 122: 415–429.CrossRefGoogle Scholar
- Veen, P., R. Jefferson, J. de Smidt, and J. van der Straaten. 2009. Grasslands in Europe of high nature value. Zeist: KNNV.Google Scholar
- Verboom, J., R. Alkemade, J. Klijn, M.J. Metzger, and R. Reijnen. 2007. Combining biodiversity modeling with political and economic development scenarios for 25 EU countries. Ecological Economics 62: 267–276.CrossRefGoogle Scholar
- Verburg, P., B. Eickhout, and H. Van Meijl. 2008. A multi-scale, multi-model approach for analysing the future dynamics of European land use. The Annals of Regional Science 42: 57–77.CrossRefGoogle Scholar
- Walker, K.J., P.A. Stevens, D.P. Stevens, J.O. Mountford, S.J. Manchester, and R.F. Pywell. 2004. The restoration and re-creation of species-rich lowland grassland on land formerly managed for intensive agriculture in the UK. Biological Conservation 119: 1–18.CrossRefGoogle Scholar
- WallisDeVries, M.F. 2014. Linking species assemblages to environmental change: Moving beyond the specialist-generalist dichotomy. Basic and Applied Ecology 15: 279–287.CrossRefGoogle Scholar
- Westhoek, H., M. Van den Berg, and J. Bakker. 2006. Development of land use scenarios for European land use. Agriculture, Ecosystems & Environment 114: 7–20.CrossRefGoogle Scholar