Ambio

, Volume 46, Issue 2, pp 129–142

Nitrogen footprints: Regional realities and options to reduce nitrogen loss to the environment

  • Hideaki Shibata
  • James N. Galloway
  • Allison M. Leach
  • Lia R. Cattaneo
  • Laura Cattell Noll
  • Jan Willem Erisman
  • Baojing Gu
  • Xia Liang
  • Kentaro Hayashi
  • Lin Ma
  • Tommy Dalgaard
  • Morten Graversgaard
  • Deli Chen
  • Keisuke Nansai
  • Junko Shindo
  • Kazuyo Matsubae
  • Azusa Oita
  • Ming-Chien Su
  • Shin-Ichiro Mishima
  • Albert Bleeker
Perspective

Abstract

Nitrogen (N) management presents a sustainability dilemma: N is strongly linked to energy and food production, but excess reactive N causes environmental pollution. The N footprint is an indicator that quantifies reactive N losses to the environment from consumption and production of food and the use of energy. The average per capita N footprint (calculated using the N-Calculator methodology) of ten countries varies from 15 to 47 kg N capita−1 year−1. The major cause of the difference is the protein consumption rates and food production N losses. The food sector dominates all countries’ N footprints. Global connections via trade significantly affect the N footprint in countries that rely on imported foods and feeds. The authors present N footprint reduction strategies (e.g., improve N use efficiency, increase N recycling, reduce food waste, shift dietary choices) and identify knowledge gaps (e.g., the N footprint from nonfood goods and soil N process).

Keywords

Nitrogen cycle Nitrogen effects Nitrogen footprint Nitrogen use efficiency 

References

  1. Bellarby, J., R. Tirado, A. Leip, F. Weiss, J.P. Lesschen, and P. Smith. 2013. Livestock greenhouse gas emissions and mitigation potential in Europe. Global Change Biology 19: 3–18.CrossRefGoogle Scholar
  2. Bleeker, A., M. Sutton, W. Winiwater, and A. Leip. 2012. Economy-wide nitrogen balances and indicators: Concept and methodology. ENV/EPOC/WPEI 4: 3–22.Google Scholar
  3. Bodirsky, B.L., A. Popp, H. Lotze-Campen, J.P. Dietrich, S. Rolinski, I. Weindl, C. Schmitz, C. Müller, et al. 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nature Communications 5: 3858. doi:10.1038/ncomms4858.CrossRefGoogle Scholar
  4. Dalgaard, T., B. Hansen, B. Hasler, O. Hertel, N.J. Hutchings, B.H. Jacobsen, L.S. Jensen, B. Kronvang, et al. 2014. Policies for agricultural nitrogen management: Trends, challenges and prospects for improved efficiency in Denmark. Environmental Research Letters 9: 115002.CrossRefGoogle Scholar
  5. Emerson, J.W., A. Hsu, M.A. Levy, A. de Sherbinin, V. Mara, D.C. Esty, and M. Jaiteh. 2012. 2012 Environmental Performance Index and Pilot Trend Environmental Performance Index. New Haven: Yale Center for Environmental Law and Policy.Google Scholar
  6. Erisman, J.W., W. De Vries, H. Kros, O. Oenema, L. Van Der Eerden, H. Van Zeijts, and S. Smeulders. 2001. An outlook for a national integrated nitrogen policy. Environmental Science & Policy 4: 87–95.CrossRefGoogle Scholar
  7. Erisman, J.W., N. Domburg, W. de Vries, H. Kros, B. de Haan, and K. Sanders. 2005. The Dutch N-cascade in the European perspective. Science in China. Series C, Life Sciences 48: 827–842.CrossRefGoogle Scholar
  8. Erisman, J.W., J.N. Galloway, S. Seitzinger, A. Bleeker, N.B. Dise, R. Petrescu, A.M. Leach, and W. de Vries. 2013. Consequences of human modification of the global nitrogen cycle. Philosophical Transactions of the Royal Society B 368: 20130116. doi:10.1098/rstb.2013.0116.CrossRefGoogle Scholar
  9. Erisman, J.W., J.A. Galloway, M.S. Sutton, Z. Klimont, and W. Winiwater. 2008. How a century of ammonia synthesis changed the world. Nature Geoscience 1: 636–639.CrossRefGoogle Scholar
  10. Fowler, D., M. Coyle, U. Skiba, M.A. Sutton, J.N. Cape, S. Reis, L.J. Sheppard, A. Jenkins, et al. 2013. The global nitrogen cycle in the 21st century. Philosophical Transactions of the Royal Society B 368: 20130164. doi:10.1098/rstb.2013.0164.CrossRefGoogle Scholar
  11. Freney, J.R. 2011. Management practices to increase efficiency of fertilizer and animal nitrogen and minimize nitrogen loss to the atmosphere and groundwater. In Proceedings of the International Seminar on Increased Agricultural Nitrogen Circulation in Asia: Technological Challenge to Mitigate Agricultural N Emissions. Taipei, Taiwan.Google Scholar
  12. Galloway, J.N., J.D. Aber, J.W. Erisman, S.P. Seitzinger, R.W. Howarth, E.B. Cowling, and B.J. Cosby. 2003. The nitrogen cascade. BioScience 53: 341–356.Google Scholar
  13. Galloway, J.N., F.J. Dentener, D.G. Capone, E.W. Boyer, R.W. Howarth, S.P. Seitzinger, G.P. Asner, C.C. Cleveland, et al. 2004. Nitrogen cycles: Past, present and future. Biogeochemistry 70: 153–226.CrossRefGoogle Scholar
  14. Galloway, J.N., A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai, J.R. Freney, L.A. Martinelli, S.P. Seitzinger, et al. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320: 889–892.Google Scholar
  15. Galloway, J.N., A.M. Leach, A. Bleeker, and J.W. Erisman. 2013. A chronology of human understanding of the nitrogen cycle. Philosophical Transactions B 368: 20130120. doi:10.1098/rstb.2013.0120.CrossRefGoogle Scholar
  16. Galloway, N.J., W. Winiwarter, A. Leip, A.M. Leach, A. Bleeker, and J.W. Erisman. 2014. Nitrogen footprints: Past, present and future. Environmental Research Letters 9: 115003.CrossRefGoogle Scholar
  17. Geoscience Australia and BREE. 2014. Australian Energy Resource Assessment, 2nd ed. Canberra: Geoscience Australia.Google Scholar
  18. Giller, K.E., P. Chalk, A. Dobermann, L. Hammond, P. Heffer, J.K. Ladha, P. Nyamudeza, L. Maene, et al. 2004. Emerging technologies to increase the efficiency of use of fertilizer nitrogen. In Agriculture and the nitrogen cycle: Assessing the impacts of fertilizer use on food production and the environment, ed. A.R. Mosier, J.K. Syers, and J.R. Freney, 35–51. Washington, DC: Island Press.Google Scholar
  19. Graversgaard M., T. Dalgaard, A.M. Leach, L.R. Cattaneo, and J.N. Galloway. 2016. The Danish nitrogen footprint: Applying nitrogen footprints to build awareness about protein consumption and using policy scenarios to change behavior. In Proceedings of the 7th International Nitrogen Initiative Conference, Submitted.Google Scholar
  20. Gu, B., Y. Ge, Y. Ren, B. Xu, W. Luo, H. Jiang, B. Gu, and J. Chang. 2012. Atmospheric reactive nitrogen in China: Sources, recent trends, and damage costs. Environmental Science and Technology 46: 9420–9427.CrossRefGoogle Scholar
  21. Gu, B., A.M. Leach, L. Ma, J.N. Galloway, S.X. Chang, Y. Ge, and J. Chang. 2013a. Nitrogen footprint in China: food, energy, and nonfood goods. Environmental Science and Technology 47: 9217–9224.CrossRefGoogle Scholar
  22. Gu, B., J. Chang, Y. Min, Y. Ge, Q. Zhu, J.N. Galloway, and C. Peng. 2013b. The role of industrial nitrogen in the global nitrogen biogeochemical cycle. Scientific Reports 3: 2579.Google Scholar
  23. Gu, B., X. Ju, J. Chang, Y. Ge, and P.M. Vitousek. 2015. Integrated reactive nitrogen budgets and future trends in China. Proceedings of the National Academy of Sciences of the United States of America 112: 8792–8797.CrossRefGoogle Scholar
  24. Gustavsson, J., C. Cederberg, and U. Sonesson. 2011. Global food losses and food waste: Extent, causes and prevention. Study conducted for the International Congress SAVE FOOD! At Interpack2011, Düsseldorf/Germany. FAO, Rome. www.fao.org/docrep/014/mb060e/mb060e00.pdf.
  25. Lassaletta, L., G. Billen, B. Grizzetti, J. Garnier, A.M. Leach, and J.N. Galloway. 2014. Food and feed trade as a driver in the global nitrogen cycle: 50-year trends. Biogeochemistry 118: 225–241.CrossRefGoogle Scholar
  26. Leach, A.M., J.N. Galloway, A. Bleeker, J.W. Erisman, R. Khon, and J. Kitzes. 2012. A nitrogen footprint model to help consumers understand their role in nitrogen losses to the environment. Environmental Development 1: 40–66.CrossRefGoogle Scholar
  27. Leach, A.M., A.N. Majidi, J.N. Galloway, and A.J. Greene. 2013. Towards institutional sustainability: a nitrogen footprint model for a university. Sustainability: The Journal of Record 6: 211–219.CrossRefGoogle Scholar
  28. Leach, A.M., K.A. Emery, J. Gephart, K.F. Davis, J.W. Erisman, A. Leip, M.L. Pace, P. D’Odorico, et al. 2016. Environmental impact food labels combining carbon, nitrogen, and water footprints. Food Policy 61: 213–223.CrossRefGoogle Scholar
  29. Leip, A., A. Leach, P. Musinguzi, T. Tumwesigye, G. Olupot, J.S. Tenywa, J. Mudiope, O. Hutton, et al. 2014a. Nitrogen-neutrality: A step towards sustainability. Environmental Research Letters 9: 115001. doi:10.1088/1748-9326/9/11/115001.CrossRefGoogle Scholar
  30. Leip, A., F. Weiss, J.P. Lesschen, and H. Westhoek. 2014b. The nitrogen footprint of food products in the European Union. The Journal of Agricultural Science 152: 20–33.CrossRefGoogle Scholar
  31. Ma, L., F. Wang, W. Zhang, W. Ma, G. Velthof, W. Qin, O. Oenema, and F. Zhang. 2013. Environmental assessment of management options for nutrient flows in the food chain in China. Environmental Science and Technology 47: 7260–7268.Google Scholar
  32. Makino, M. 2011. Fisheries management in Japan: Its institutional features and case studies, vol. 34. Dordrecht: Springer. doi:10.1007/978-94-007-1777-0.CrossRefGoogle Scholar
  33. OECD. 2008. Environmental Performance of Agriculture in OECD Countries since 1990. ISBN 978-92-64-04092-2.Google Scholar
  34. Oenema, O. 2004. Governmental policies and measures regulating nitrogen and phosphorus from animal manure in European agriculture. Journal of Animal Science 82: 196–206.Google Scholar
  35. Oita, A., A. Malik, K. Kanemoto, A. Geschke, S. Nishijima, and M. Lenzen. 2016a. Substantial nitrogen pollution embedded in international trade. Nature Geoscience 9: 111–115.CrossRefGoogle Scholar
  36. Oita, A., I. Nagano, and I. Matsuda. 2016b. An improved methodology for calculating the nitrogen footprint of seafood. Ecological Indicators 60: 1091–1103.CrossRefGoogle Scholar
  37. Origin. 2015. Coal in Australia. Origin Energy, Australia, Retrieved 22 July 2016, from https://www.originenergy.com.au/blog/about-energy/coal-in-australia.html.
  38. Pierer, M., W. Winiwarter, A.M. Leach, and J.N. Galloway. 2014. The nitrogen footprint of food products and general consumption patterns in Austria. Food Policy 49: 128–136.CrossRefGoogle Scholar
  39. Rockström, J., W. Steffen, K. Noone, Å. Persson, F.S. Chapin III, E.F. Lambin, T.M. Lenton, M. Scheffer, et al. 2009. A safe operating space for humanity. Nature 461: 472–475.CrossRefGoogle Scholar
  40. Shibata, H., L.R. Cattaneo, A.M. Leach, and J.N. Galloway. 2014. First approach to the Japanese nitrogen footprint model to predict the loss of nitrogen to the environment. Environmental Research Letters 9: 115013. doi:10.1088/1748-9326/9/11/115013.CrossRefGoogle Scholar
  41. Shindo, J. 2012. Changes in the nitrogen balance in agricultural land in Japan and 12 other Asian Countries based on a nitrogen-flow model. Nutrient Cycling in Agroecosystems 94: 47–61.CrossRefGoogle Scholar
  42. Steffen, W., K. Richardson, J. Rockström, S.E. Cornell, I. Fetzer, E.M. Bennett, R. Biggs, S.R. Carpenter, et al. 2015. Planetary boundaries: Guiding human development on a changing planet. Science 347: 1259855.CrossRefGoogle Scholar
  43. Stevens, C.J., A.M. Leach, S. Dale, and J.N. Galloway. 2014. Personal nitrogen footprint tool for the United Kingdom. Environmental Sciences Processes Impacts 16: 1563–1569.CrossRefGoogle Scholar
  44. Sutton, M.A., O. Oenema, J.E. Erisman, A. Leip, H. Van Grinsven, and W. Wilfried Winiwarter. 2011. Too much of a good thing. Nature 472: 159–161.CrossRefGoogle Scholar
  45. Sutton, M.A., A. Bleeker, C.M. Howard, J.W. Erisman, Y.P. Abrol, M. Bekunda, A. Datta, E. Davidson, et al. 2013. Our Nutrient World: The challenge to produce more food and energy with less pollution. Centre for Ecology and Hydrology, Edinburgh on behalf of the Global Partnership on Nutrient Management and the International Nitrogen Initiative.Google Scholar
  46. Takemasa, M. 1998. Nutritional strategies to reduce nutrient waste in livestock and poultry production. Chemistry & Biology 36: 720–726 (in Japanese).Google Scholar
  47. Tilman, D., and M. Clark. 2015. Food, agriculture & the environment: Can we feed the world & save the earth? Dædalus 144: 8–23.Google Scholar
  48. van Grinsven, H.J.M., H.F.M. Ten Berge, T. Dalgaard, B. Fraters, P. Durand, A. Hart, G. Hofman, B.H. Jacobsen, et al. 2012. Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive: A benchmark study. Biogeosciences 9: 5143–5160.Google Scholar
  49. Vanham, D., F. Bouraoui, A. Leip, B. Grizzetti, and G. Bidoglio. 2015. Lost water and nitrogen resources due to EU consumer food waste. Environmental Research Letters 10: 84008–84022.CrossRefGoogle Scholar
  50. Vitousek, P.M., D.N.L. Menge, S.C. Reed, and C.C. Cleveland. 2013. Biological nitrogen fixation: Rates, patterns, and ecological controls in terrestrial ecosystems. Philosophical Transactions of the Royal Society B 368: 20130119. doi:10.1098/rstb.2013.0119.CrossRefGoogle Scholar
  51. Westhoek, H., J.P. Lesschen, T. Rood, S. Wagner, A. De Marco, D. Murphy-Bokern, A. Leip, H. Van Grinsven, et al. 2014. Food choices, health and environment: Effects of cutting Europe’s meat and dairy intake. Global Environmental Change. Elsevier Ltd. 26: 196–205.CrossRefGoogle Scholar
  52. Westhoek H., J.P. Lesschen, A. Leip, T. Rood, S. Wagner, A. De Marco, D. Murphy-Bokern, C. Pallière, et al. 2015. Nitrogen on the table: The influence of food choices on nitrogen emissions and the European environment. (European Nitrogen Assessment Special Report on Nitrogen and Food.). Centre for Ecology and Hydrology, Edinburgh, UK.Google Scholar
  53. Winiwarter, W., J.W. Erisman, J.N. Gallowaym, Z. Klimont, and M. Sutton. 2013. Estimating environmental loads of reactive nitrogen in the 21st century. Climate Change 120: 889–901.CrossRefGoogle Scholar
  54. World Nuclear Association. 2015. Australia’s Electricity. Retrieved 22 July, 2016, from http://www.world-nuclear.org/information-library/country-profiles/countries-a-f/appendices/australia-s-electricity.aspx.

Copyright information

© Royal Swedish Academy of Sciences 2016

Authors and Affiliations

  • Hideaki Shibata
    • 1
  • James N. Galloway
    • 2
  • Allison M. Leach
    • 3
  • Lia R. Cattaneo
    • 2
  • Laura Cattell Noll
    • 2
  • Jan Willem Erisman
    • 4
    • 16
  • Baojing Gu
    • 5
  • Xia Liang
    • 6
  • Kentaro Hayashi
    • 7
  • Lin Ma
    • 8
  • Tommy Dalgaard
    • 9
  • Morten Graversgaard
    • 9
  • Deli Chen
    • 6
  • Keisuke Nansai
    • 10
  • Junko Shindo
    • 11
  • Kazuyo Matsubae
    • 12
  • Azusa Oita
    • 13
  • Ming-Chien Su
    • 14
  • Shin-Ichiro Mishima
    • 7
  • Albert Bleeker
    • 15
  1. 1.Field Science Center for Northern BiosphereHokkaido UniversitySapporoJapan
  2. 2.Department of Environmental SciencesUniversity of VirginiaCharlottesvilleUSA
  3. 3.Department of Natural Resources & the EnvironmentThe Sustainability InstituteDurhamUSA
  4. 4.Louis Bolk InstituteDriebergenThe Netherlands
  5. 5.Department of Land Management, School of Public AffairsZhejiang UniversityHangzhouPeople’s Republic of China
  6. 6.Faculty of Veterinary and Agricultural SciencesThe University of MelbourneMelbourneAustralia
  7. 7.Division of Biogeochemical CyclesNational Institute for Agro-Environmental SciencesTsukubaJapan
  8. 8.Key Laboratory of Agricultural Water Resources, Center for Agricultural Resources Research, Institute of Genetic and Developmental BiologyThe Chinese Academy of SciencesShijiazhuangPeople’s Republic of China
  9. 9.Department of AgroecologyAarhus UniversityTjeleDenmark
  10. 10.Center for Material Cycles and Waste Management ResearchNational Institute for Environmental StudiesTsukubaJapan
  11. 11.Division of Life and Environmental Sciences, Graduate Faculty of Interdisciplinary ResearchUniversity of YamanashiKofuJapan
  12. 12.Graduate School of Environmental StudiesTohoku UniversitySendaiJapan
  13. 13.Graduate School of Environment and Information SciencesYokohama National UniversityYokohamaJapan
  14. 14.Department of Natural Resources and Environmental StudiesNational Dong-Hwa UniversityShoufengTaiwan
  15. 15.Department of Environmental AssessmentEnergy Research Centre of the NetherlandsPettenThe Netherlands
  16. 16.VU UniversityAmsterdamThe Netherlands

Personalised recommendations