, Volume 45, Issue 8, pp 872–884 | Cite as

Climate regulation, energy provisioning and water purification: Quantifying ecosystem service delivery of bioenergy willow grown on riparian buffer zones using life cycle assessment

  • David Styles
  • Pål Börjesson
  • Tina D’Hertefeldt
  • Klaus Birkhofer
  • Jens Dauber
  • Paul Adams
  • Sopan Patil
  • Tim Pagella
  • Lars B. Pettersson
  • Philip Peck
  • Céline Vaneeckhaute
  • Håkan Rosenqvist


Whilst life cycle assessment (LCA) boundaries are expanded to account for negative indirect consequences of bioenergy such as indirect land use change (ILUC), ecosystem services such as water purification sometimes delivered by perennial bioenergy crops are typically neglected in LCA studies. Consequential LCA was applied to evaluate the significance of nutrient interception and retention on the environmental balance of unfertilised energy willow planted on 50-m riparian buffer strips and drainage filtration zones in the Skåne region of Sweden. Excluding possible ILUC effects and considering oil heat substitution, strategically planted filter willow can achieve net global warming potential (GWP) and eutrophication potential (EP) savings of up to 11.9 Mg CO2e and 47 kg PO4e ha−1 year−1, respectively, compared with a GWP saving of 14.8 Mg CO2e ha−1 year−1 and an EP increase of 7 kg PO4e ha−1 year−1 for fertilised willow. Planting willow on appropriate buffer and filter zones throughout Skåne could avoid 626 Mg year−1 PO4e nutrient loading to waters.


LCA Eutrophication Greenhouse gas emissions Bioenergy Agriculture Environment 



The research presented in this paper is a contribution to the strategic research area Biodiversity and Ecosystems in a Changing Climate, BECC. The authors are grateful to BECC for funding a workshop in Lund in February 2014 that initiated this collaborative study.

Supplementary material

13280_2016_790_MOESM1_ESM.pdf (208 kb)
Supplementary material 1 (PDF 208 kb)


  1. Arbault, D., M. Rivière, B. Rugani, E. Benetto, and L. Tiruta-Barna. 2014. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Science of the Total Environment 472: 262–272.CrossRefGoogle Scholar
  2. Aronsson, P., H. Rosenqvist, and I. Dimitriou. 2014. Impact of nitrogen fertilization to short-rotation willow coppice plantations grown in Sweden on yield and economy. Bioenergy Research 7: 993–1001.CrossRefGoogle Scholar
  3. Austin, P. 2014. The economic benefits of native shelter belts report 2/14. Warrnambool: Basalt-to-Bay Landcare.Google Scholar
  4. Bennett, R.G., D. Mendham, G. Ogden, and J. Bartle. 2014. Enhancing tree belt productivity through capture of short-slope runoff water. GCB Bioenergy 7: 1107–1117.CrossRefGoogle Scholar
  5. Berg, Å. 2002. Breeding birds in short-rotation coppices on farmland in central Sweden—The importance of Salix height and adjacent habitats. Agriculture, Ecosystems & Environment 90: 265–276.CrossRefGoogle Scholar
  6. Berndes, G., S. Ahlgren, P. Börjesson, and A. Cowie. 2013. Bioenergy and land use change state of the art. Wiley Interdisciplinary Reviews: Energy and Environment 2: 282–303.CrossRefGoogle Scholar
  7. Börjesson, P. 1999. Environmental effects of energy crop cultivation in Sweden—Part I: Identification and quantification. Biomass and Bioenergy 16: 137–154.CrossRefGoogle Scholar
  8. Börjesson, P., G. Berndes, F. Fredriksson, and T. Kåberger. 2002. Multifunktionella bioenergiodlingar. Slutrapport till Energimyndigheten (Multifunctional bioenergy plantations. Final report to the Swedish Energy Agency). Report No 37, Environmental and Energy Systems Studies, Lund University, Lund.Google Scholar
  9. Börjesson, P., and G. Berndes. 2006. The prospects for willow plantations for wastewater treatment in Sweden. Biomass and Bioenergy 30: 428–438.CrossRefGoogle Scholar
  10. Brandt, M. H. Ejhed, and L. Rapp. 2008. Näringsbelastning på Östersjön och Västerhavet 2006 (Nutrient load on the Baltic Sea and the North Sea 2006—OK translation David?). Report 5815, Swedish Environmental Protection Agency, Stockholm.Google Scholar
  11. Burney, J.A., S.J. Davis, and D.B. Lobell. 2010. Greenhouse gas mitigation by agricultural intensification. Proceedings of the National Academy of Sciences of the United States of America 107: 12052–12057.CrossRefGoogle Scholar
  12. Carsan, S., A. Stroebel, I. Dawson, R. Kindt, C. Mbow, J. Mowo, and R. Jamnadass. 2014. Can agroforestry option values improve the functioning of drivers of agricultural intensification in Africa? Current Opinion in Environmental Sustainability 6: 35–40.CrossRefGoogle Scholar
  13. CML, 2010. Characterisation factors database available online from Institute of Environmental Sciences (CML), Universiteit Leiden, Leiden. Accessed 15 May 2012.
  14. Dalgaard, T., J.F. Bienkowski, A. Bleeker, U. Dragosits, J.L. Drouet, P. Durand, A. Frumau, N.J. Hutchings, et al. 2012. Farm nitrogen balances in six European landscapes as an indicator for nitrogen losses and basis for improved management. Biogeosciences 9: 5303–5321.CrossRefGoogle Scholar
  15. Dimitriou, I., H. Rosenqvist, and G. Berndes. 2011. Slow expansion and low yields of willow short rotation coppice in Sweden; implications for future strategies. Biomass and Bioenergy 35: 4613–4618.CrossRefGoogle Scholar
  16. EC. 2009. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. OJEU: L 140/16.Google Scholar
  17. Ecoinvent. 2014. Ecoinvent database version 3.1, accessed via SimaPro.Google Scholar
  18. Eurostat. 2015. Population and employment statistics page. Accessed 22 Sept 2015.
  19. Firbank, L., R.B. Bradbury, D.I. McCracken, and C. Stoate. 2013. Delivering multiple ecosystem services from Enclosed Farmland in the UK. Agriculture, Ecosystems & Environment 166: 65–75.CrossRefGoogle Scholar
  20. Fischer, G., E. Hizsnyik, S. Prieler, H., and van Velthuizen. 2007. Assessment of biomass potentials for biofuel feedstock in Europe: Methodology and results. REFUEL project, Workpackage 2. Laxenburg.Google Scholar
  21. Garnett, T., M.C. Appleby, A. Balmford, I.J. Bateman, T.G. Benton, et al. 2013. Sustainable intensification in agriculture: Premises and Policies. Science 341: 33–34.CrossRefGoogle Scholar
  22. Godfray, H.C.J., J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. Robinson, S.M. Thomas, and C. Toulmin. 2010. Food security: the challenge of feeding 9 billion people. Science 327: 812–818.CrossRefGoogle Scholar
  23. González-García, S., B. Mola-Yudego, I. Dimitriou, P. Aronsson, and R. Murphy. 2012. Environmental assessment of energy production based on long term commercial willow plantations in Sweden. Science of the Total Environment 421–422: 210–219.CrossRefGoogle Scholar
  24. Haas, G., F. Wetterich, and U. Geier. 2000. Life cycle assessment framework in agriculture on the farm level. International Journal of LCA 5: 345–348.CrossRefGoogle Scholar
  25. Havlík, P., H. Valin, M. Herrero, M. Obersteiner, E. Schmid, M.C. Rufino, A. Mosnier, P.K. Thornton, H. Böttcher, R.T. Conant, S. Frank, S. Fritz, S. Fuss, F. Kraxner, and A. Notenbaert. 2014. Climate change mitigation through livestock system transitions. PNAS 111: 3709–3714.CrossRefGoogle Scholar
  26. IPCC. 2006. IPCC GUIDELINES for national greenhouse gas inventories. Accessed 31 Mar 2016.
  27. Johnsson, H., and K. Mårtensson. 2002. Kväveläckage från svensk åkermark (Nitrogen leaching from Swedish arable land). Report 5248, Swedish Environmental Protection Agency, Stockholm.Google Scholar
  28. Jordbruksverket. 2014a. Jordbruksstatistisk årsbok 2014. Jönköping.Google Scholar
  29. Jordbruksverket. 2014b. Riktlinjer för gödsling och kalkning 2015. Jönköping.Google Scholar
  30. Kloverpris, J., H. Wenzel, and P. Nielsen. 2008. Life cycle inventory modeling of land use induced by crop consumption. International Journal of Life Cycle Assessment 13: 13–21.Google Scholar
  31. Kort, J. 1988. Benefits of windbreaks to field and forage crops. Agriculture, Ecosystems & Environment 22–23: 165–190.CrossRefGoogle Scholar
  32. Lupp, G., J. Albrecht, M. Darbi, and O. Bastian. 2011. Ecosystem services in energy crop production—A concept for regulatory measures in spatial planning? Journal of Landscape Ecology 4: 49–66.CrossRefGoogle Scholar
  33. Kiedrzyńska, E., A. Jóźwik, M. Kiedrzyński, and M. Zalewski. 2014. Hierarchy of factors exerting an impact on nutrient load of the Baltic Sea and sustainable management of its drainage basin. Marine Pollution Bulletin 88: 162–173.CrossRefGoogle Scholar
  34. Lindroth, A., and A. Båth. 2009. Assessment of regional willow coppice yield in Sweden on basis of water availability. Forest Ecology and Management 121: 57–65.CrossRefGoogle Scholar
  35. Maskell, L.C., A. Crowe, M.J. Dunbar, B. Emmett, et al. 2013. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. Journal of Applied Ecology 50: 561–571.CrossRefGoogle Scholar
  36. Matthews, R.B., and P. Grogan. 2001. Potential C-sequestration rates of short-rotation coppiced willow and Miscanthus biomass crops: A modelling study. Aspects of Applied Biology 65: 303–312.Google Scholar
  37. McKay, H. ed. 2011. Short rotation forestry: Review of growth and environmental impacts. Forest Research Monograph, 2, Forest Research, Surrey.Google Scholar
  38. Misselbrook, T.H., S.L. Gilhespy, and L.M. Cardenas (eds.). 2012. Inventory of ammonia emissions from UK agriculture 2011. London: Defra.Google Scholar
  39. Morton, D.S., R. DeFries, Y.E. Shimabukuro, L.O. Anderson, E. Arai, F. del Bon Espirito-Santo, R. Freitas, and J. Morisette. 2006. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. PNAS 103: 14637–14641.CrossRefGoogle Scholar
  40. Mulligan, D., R. Edwards, L. Marelli, N. Scarlat, M. Brandao, and F. Monforti-Ferrario. 2010. The effects of increased demand for biofuel feedstocks on the world agricultural markets and areas. JRC, Ispra.Google Scholar
  41. PBL. 2011. The protein puzzle: The consumption and production of meat, dairy and fish in the European Union. PBL (Netherlands Environmental Assessment Agency), The Hague.Google Scholar
  42. Pinder, R.W., E.A. Davidson, C.L. Goodalec, T.L. Greavera, J.D. Herricka, and L. Liud. 2012. Climate change impacts of US reactive nitrogen. Proceedings of the National Academy of Sciences of the USA 109: 7671–7675.CrossRefGoogle Scholar
  43. Plassmann, K. 2012. Methods for assessing the carbon footprints of products can favour low- over high-yielding agricultural systems when carbon removals are included. Nature Climate Change 2: 2–6.Google Scholar
  44. Rehl, T., J. Lansche, and J. Müller. 2012. Life cycle assessment of energy generation from biogas—Attributional versus consequential approach. Renewable and Sustainable Energy Reviews 16: 3766–3775.CrossRefGoogle Scholar
  45. Rockström, J., W. Steffen, K. Noone, A. Persson, S. Chapin, E.F. Lambin, T.M. Lenton, M. Scheffer, et al. 2014. A safe operating space for humanity. Nature 461: 472–475.CrossRefGoogle Scholar
  46. Rosemond, A.D., J.P. Benstead, P.M. Bumpers, V. Gulis, J.S. Kominoski, D.W.P. Manning, K. Suberkropp, and J.B. Wallace. 2015. Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347: 1142–1145.CrossRefGoogle Scholar
  47. SCB. 2014 Skane land data. Statistiska centralbyrån, Stockholm. Accessed Nov 2014.
  48. Sikkema, R., M. Steiner, M. Junginger, W. Hiegl, M.T. Hansen, and A. Faaij. 2011. The European wood pellet markets: current status and prospects for 2020. Biofuels Bioprod Biorefining 5: 250–278.CrossRefGoogle Scholar
  49. Sleeswijk, W., A.L. van Oers, J. Guinée, J. Struijs, and M. Huijbregts. 2008. Normalisation in product life cycle assessment: An LCA of the global and European economic systems in the year 2000. Science of the Total Environment 390: 227–240.CrossRefGoogle Scholar
  50. Sluka, C., and P.C. Peck. 2015. Stakeholder dynamics in the forest energy sector: Key issues to manage and ways forward. Biofuels, Bioproducts and Biorefining 9: 51–71.CrossRefGoogle Scholar
  51. Styles, D., and M.B. Jones. 2007. Energy crops in Ireland: Quantifying potential reductions in greenhouse gas emissions from the agriculture and electricity sectors. Biomass and Bioenergy 31: 759–772.CrossRefGoogle Scholar
  52. Styles, D., J. Gibbons, A.P. Williams, H. Stichnothe, D.R. Chadwick, and J.R. Healey. 2015a. Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock scenarios on dairy farms, global change biology bioenergy 7: 1034–1049.Google Scholar
  53. Styles, D., J. Gibbons, A.P. Williams, J. Dauber, B. Urban, H. Stichnothe, D. Chadwick, and D.L. Jones. 2015b. Consequential life cycle assessment of biogas, biofuel and biomass energy options in an arable rotation. Global Change Biology Bioenergy 7: 1305–1320.CrossRefGoogle Scholar
  54. Styles, D., E. Mesa-Dominguez, and D. Chadwick. 2016. Environmental balance of the of the UK biogas sector: An evaluation by consequential life cycle assessment. Science of the Total Environment 560–561: 241–253.CrossRefGoogle Scholar
  55. Tonini, D., L. Hamelin, H. Wenzel, and T. Astrup. 2012. Bioenergy production from perennial energy crops: A consequential LCA of 12 bioenergy scenarios including land use changes. Environmental Science and Technology 46: 13521–13530.CrossRefGoogle Scholar
  56. Valentine, J., J. Clifton-Brown, A. Hastings, P. Robson, G. Allison, and P. Smith. 2012. Food versus fuel: the use of land for lignocellulosic ‘next generation’ energy crops that minimize competition with primary food production. GCB Bioenergy 4: 1–19.CrossRefGoogle Scholar
  57. Vázquez-Rowe, I., A. Marvuglia, S. Rege, and E. Benetto. 2014. Applying consequential LCA to support energy policy: Land use change effects of bioenergy production. Science of the Total Environment 472: 78–89.CrossRefGoogle Scholar
  58. Weidema, B.P., T. Ekvall, and R. Heijungs. 2009. Guidelines for application of deepened and broadened LCA. Deliverable D18 of work package 5 of the CALCAS project. ENEA, Rome.Google Scholar
  59. Withers, P. 2013. Personal communication, 22 April 2013.Google Scholar
  60. Zamagni, A., J. Guinée, R. Heijungs, P. Masoni, and A. Raggi. 2012. Lights and shadows in consequential LCA. The International Journal of Life Cycle Assessment 17: 904–918.CrossRefGoogle Scholar

Copyright information

© Royal Swedish Academy of Sciences 2016

Authors and Affiliations

  • David Styles
    • 1
  • Pål Börjesson
    • 2
  • Tina D’Hertefeldt
    • 3
  • Klaus Birkhofer
    • 3
  • Jens Dauber
    • 4
  • Paul Adams
    • 5
  • Sopan Patil
    • 1
  • Tim Pagella
    • 1
  • Lars B. Pettersson
    • 3
  • Philip Peck
    • 6
  • Céline Vaneeckhaute
    • 7
  • Håkan Rosenqvist
    • 8
  1. 1.School of Environment, Natural Resources and GeographyBangor UniversityBangorUK
  2. 2.Environmental and Energy System StudiesLund UniversityLundSweden
  3. 3.Biodiversity Unit, Department of BiologyLund UniversityLundSweden
  4. 4.Thünen Institute of BiodiversityBrunswickGermany
  5. 5.Department of Mechanical EngineeringBath UniversityNorth East SomersetUK
  6. 6.The International Institute for Industrial Environmental EconomicsLund UniversityLundSweden
  7. 7.Département de génie civil et de génie des eauxUniversité LavalQuébecCanada
  8. 8.Department of Crop Production EcologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations