, Volume 45, Issue 6, pp 725–741 | Cite as

Climate change impact assessments on the water resources of India under extensive human interventions

  • C. G. Madhusoodhanan
  • K. G. Sreeja
  • T. I. EldhoEmail author


Climate change is a major concern in the twenty-first century and its assessments are associated with multiple uncertainties, exacerbated and confounded in the regions where human interventions are prevalent. The present study explores the challenges for climate change impact assessment on the water resources of India, one of the world’s largest human-modified systems. The extensive human interventions in the Energy–Land–Water–Climate (ELWC) nexus significantly impact the water resources of the country. The direct human interventions in the landscape may surpass/amplify/mask the impacts of climate change and in the process also affect climate change itself. Uncertainties in climate and resource assessments add to the challenge. Formulating coherent resource and climate change policies in India would therefore require an integrated approach that would assess the multiple interlinkages in the ELWC nexus and distinguish the impacts of global climate change from that of regional human interventions. Concerted research efforts are also needed to incorporate the prominent linkages in the ELWC nexus in climate/earth system modelling.


Climate change Water resources Human interventions Impact assessment Uncertainties ELWC nexus 



We would like to thank the two anonymous reviewers and the Associate Editor for their critical comments and helpful suggestions on the earlier versions of this paper.

Supplementary material

13280_2016_784_MOESM1_ESM.pdf (1.6 mb)
Supplementary material 1 (pdf 1622 KB)


  1. Abeysingha, N., M. Singh, V. Sehgal, M. Khanna, and H. Pathak. 2015. Analysis of trends in streamflow and its linkages with rainfall and anthropogenic factors in Gomti River basin of North India. Theoretical and Applied Climatology 123: 785–799. doi: 10.1007/s00704-015-1390-5.CrossRefGoogle Scholar
  2. Arnell, N.W. 2004. Climate change and global water resources: SRES emissions and socio-economic scenarios. Global Environmental Change 14: 31–52.CrossRefGoogle Scholar
  3. Arnell, N.W., and S.N. Gosling. 2013. The impacts of climate change on river flow regimes at the global scale. Journal of Hydrology 486: 351–364. doi: 10.1016/j.jhydrol.2013.02.010.CrossRefGoogle Scholar
  4. Asokan, S.M., and G. Destouni. 2014. Irrigation effects on hydro-climatic change: Basin-wise water balance-constrained quantification and cross-regional comparison. Surveys in Geophysics 35: 879–895. doi: 10.1007/s10712-013-9223-5.CrossRefGoogle Scholar
  5. Asokan, S.M., J. Jarsjö, and G. Destouni. 2010. Vapor flux by evapotranspiration: Effects of changes in climate, land use, and water use. Journal of Geophysical Research: Atmospheres 115. doi: 10.1061/(ASCE)HE.1943-5584.0000006.
  6. Bandyopadhyay, A., A. Bhadra, N. Raghuwanshi, and R. Singh. 2009. Temporal trends in estimates of reference evapotranspiration over India. Journal of Hydrologic Engineering 14: 508–515. doi: 10.1061/(ASCE)HE.1943-5584.0000006.CrossRefGoogle Scholar
  7. Bhushan, C., A. Kumarankandath, and N. Goswami. 2015a. The state of concentrated solar power in India: A roadmap to developing solar thermal technologies in India. Technical Report. Centre for Science and Environment, New Delhi.Google Scholar
  8. Bhushan, C., P. Bhati, S. Kumar, A. Sangeetha, S. Siddhartha, S. Ramanathan, and A. Rudra. 2015b. Heat on power: Green rating of coal-based power plants. Technical Report. Centre for Science and Environment, New Delhi.Google Scholar
  9. Bobba, A.G. 2002. Numerical modelling of salt-water intrusion due to human activities and sea-level change in the Godavari Delta, India. Hydrological Sciences Journal 47: S67–S80.CrossRefGoogle Scholar
  10. Bouwer, L., J. Aerts, P. Droogers, and A. Dolman. 2006. Detecting the long-term impacts from climate variability and increasing water consumption on runoff in the Krishna river basin (India). Hydrology and Earth System Sciences Discussions 3: 1249–1280.CrossRefGoogle Scholar
  11. Bring, A., S.M. Asokan, F. Jaramillo, J. Jarsjö, L. Levi, J. Pietroń, C. Prieto, P. Rogberg, et al. 2015. Implications of freshwater flux data from the CMIP5 multi-model output across a set of Northern Hemisphere drainage basins. Earth’s Future 3: 206–217. doi: 10.1002/2014EF000296.CrossRefGoogle Scholar
  12. CEA. 2015. Growth of electricity sector in India from 1947–2015. Technical Report. Central Electricity Authority, Government of India, New Delhi.Google Scholar
  13. CGWB. 2010. Groundwater quality in shallow aquifers in India. Technical Report. Central Ground Water Board, Govt. of India, New Delhi.Google Scholar
  14. CGWB. 2014. Dynamic groundwater resources of India. Technical Report. Central Ground Water Board, Govt. of India, New Delhi.Google Scholar
  15. Chattopadhyay, N., and M. Hulme. 1997. Evaporation and potential evapotranspiration in India under conditions of recent and future climate change. Agricultural and Forest Meteorology 87: 55–73. doi: 10.1016/S0168-1923(97)00006-3.CrossRefGoogle Scholar
  16. Chaturvedi, R.K., J. Joshi, M. Jayaraman, G. Bala, and N.H. Ravindranath. 2012. Multi-model climate change projections for India under representative concentration pathways. Current Science 103: 791–802.Google Scholar
  17. Cullet, P., L. Bhullar, and S. Koonan. 2015. Inter-sectoral water allocation and conflicts: Perspectives from Rajasthan. Economic & Political Weekly 50: 61–69.Google Scholar
  18. CWC. 1993. Reassessment of water resources potential of India. Technical Report. Centre Water Commission, Govt. of India, New Delhi.Google Scholar
  19. CWC. 2011. Report on water quality hot spots in rivers of India. Technical Report. Centre Water Commission, Govt. of India, New Delhi.Google Scholar
  20. CWC. 2012. National register of large dams. New Delhi: Central Water Commission, Govt. of India.Google Scholar
  21. CWC. 2015. Water and related statistics. Technical Report. Central Water Commission, Govt. of India, New Delhi.Google Scholar
  22. Deser, C., A. Phillips, V. Bourdette, and H. Teng. 2012. Uncertainty in climate change projections: The role of internal variability. Climate Dynamics 38: 527–546.CrossRefGoogle Scholar
  23. Destouni, G., S.M. Asokan, and J. Jarsjö. 2010. Inland hydro-climatic interaction: Effects of human water use on regional climate. Geophysical Research Letters 37: L18402. doi: 10.1029/2010GL044153.CrossRefGoogle Scholar
  24. Destouni, G., F. Jaramillo, and C. Prieto. 2013. Hydroclimatic shifts driven by human water use for food and energy production. Nature Climate Change 3: 213–217. doi: 10.1038/nclimate1719.CrossRefGoogle Scholar
  25. Döll, P. and S.E. Bunn. 2014. The impact of climate change on freshwater ecosystems due to altered river flow regimes. In Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, ed. C.B. Field, V.R. Barros, D.J. Dokken, K.J. Mach, M.D. Mastrandrea, T.E. Bilir, M. Chatterjee, K.L. Ebi et al., pp. 143–146. Cambridge: Cambridge University Press.Google Scholar
  26. Döll, P., H. Hoffmann-Dobrev, F. Portmann, S. Siebert, A. Eicker, M. Rodell, G. Strassberg, and B. Scanlon. 2012. Impact of water withdrawals from groundwater and surface water on continental water storage variations. Journal of Geodynamics 59: 143–156.CrossRefGoogle Scholar
  27. Douglas, E., A. Beltrán-Przekurat, D. Niyogi, R. Pielke, and C. Vörösmarty. 2009. The impact of agricultural intensification and irrigation on land–atmosphere interactions and Indian monsoon precipitation: A mesoscale modeling perspective. Global and Planetary Change 67: 117–128.CrossRefGoogle Scholar
  28. Douglas, E.M., D. Niyogi, S. Frolking, J. Yeluripati, R.A. Pielke, N. Niyogi, C. Vörösmarty, and U. Mohanty. 2006. Changes in moisture and energy fluxes due to agricultural land use and irrigation in the Indian monsoon belt. Geophysical Research Letters 33: L14403. doi: 10.1029/2006GL026550.CrossRefGoogle Scholar
  29. FAO. 2015. AQUASTAT Main Database. Rome: Food and Agriculture Organization of the United Nations (FAO). Accessed June 25, 2015, from
  30. Garduño, H., S. Romani, B. Sengupta, A. Tuinhof, and R. Davis. 2011. India groundwater governance case study. Technical Report. World Bank, Washington, DC.Google Scholar
  31. Ghose, M. 2001. Design of cost-effective coal washery effluent treatment plant for clean environment. Journal of Scientific and Industrial Research 60: 40–47.Google Scholar
  32. Ghosh, S., D. Das, S.C. Kao, and A.R. Ganguly. 2012. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Climate Change 2: 86–91.CrossRefGoogle Scholar
  33. Glazer, A.N., and G.E. Likens. 2012. The water table: The shifting foundation of life on land. Ambio 41: 657–669.CrossRefGoogle Scholar
  34. GoI., 2010a. Climate change and India: A 4 × 4 assessment a sectoral and regional analysis for 2030s. Technical Report. Ministry of Environment and Forests, Govt. of India, New Delhi.Google Scholar
  35. GoI. 2010b. India: Greenhouse Gas Emissions 2007. Technical Report. New Delhi: Ministry of Environment and Forests, Govt. of India.Google Scholar
  36. GoI. 2013. Twelfth five year plan (2012–2017) Economic Sectors, vol. II. New Delhi: Sage.Google Scholar
  37. GoI. 2014. Landuse statistics at a glance. Technical Report. Directorate of Economics and Statistics, Govt. of India, New Delhi.Google Scholar
  38. GoI. 2015. Annual Report 2014–15. Technical Report. Ministry of Mines, Govt. of India, New Delhi.Google Scholar
  39. Gordon, L.J., W. Steffen, B.F. Jönsson, C. Folke, M. Falkenmark, and Å. Johannessen. 2005. Human modification of global water vapor flows from the land surface. Proceedings of the National Academy of Sciences 102: 7612–7617.CrossRefGoogle Scholar
  40. Gosling, S., R. Taylor, N. Arnell, and M. Todd. 2011. A comparative analysis of projected impacts of climate change on river runoff from global and catchment-scale hydrological models. Hydrology and Earth System Sciences 15: 279–294.CrossRefGoogle Scholar
  41. Grafton, R.Q., J. Pittock, R. Davis, J. Williams, G. Fu, M. Warburton, B. Udall, R. McKenzie, et al. 2013. Global insights into water resources, climate change and governance. Nature Climate Change 3: 315–321.CrossRefGoogle Scholar
  42. GRDC. 2015. Long-term mean monthly discharges and annual characteristics of GRDC stations/online provided by the Global Runoff Data Centre of WMO. Accessed November 25, 2015, from
  43. Haddeland, I., J. Heinke, H. Biemans, S. Eisner, M. Flörke, N. Hanasaki, M. Konzmann, F. Ludwig, et al. 2014. Global water resources affected by human interventions and climate change. Proceedings of the National Academy of Sciences 111: 3251–3256.CrossRefGoogle Scholar
  44. Hagemann, S., C. Chen, D. Clark, S. Folwell, S.N. Gosling, I. Haddeland, N. Hannasaki, J. Heinke, et al. 2013. Climate change impact on available water resources obtained using multiple global climate and hydrology models. Earth System Dynamics 4: 129–144. doi: 10.5194/esd-4-129-2013.CrossRefGoogle Scholar
  45. Hansen, G., and W. Cramer. 2015. Global distribution of observed climate change impacts. Nature Climate Change 5: 182–185.CrossRefGoogle Scholar
  46. Hawkins, E., and R. Sutton. 2009. The potential to narrow uncertainty in regional climate predictions. Bulletin of the American Meteorological Society 90: 1095–1107. doi: 10.1175/2009BAMS2607.1.CrossRefGoogle Scholar
  47. Hirabayashi, Y., R. Mahendran, S. Koirala, L. Konoshima, D. Yamazaki, S. Watanabe, H. Kim, and S. Kanae. 2013. Global flood risk under climate change. Nature Climate Change 3: 816–821. doi: 10.1038/nclimate1911.CrossRefGoogle Scholar
  48. Hoekstra, A.Y., and A.K. Chapagain. 2007. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resources Management 21: 35–48. doi: 10.1007/s11269-006-9039-x.CrossRefGoogle Scholar
  49. Hoff, H. 2011. Understanding the nexus. Background paper for the Bonn2011 nexus conference: The water, energy and food security nexus. Stockholm: Stockholm Environment Institute.Google Scholar
  50. Howells, M., S. Hermann, M. Welsch, M. Bazilian, R. Segerström, T. Alfstad, D. Gielen, H. Rogner, et al. 2013. Integrated analysis of climate change, land-use, energy and water strategies. Nature Climate Change 3: 621–626.CrossRefGoogle Scholar
  51. Hsu, P.-C., T. Li, H. Murakami, and A. Kitoh. 2013. Future change of the global monsoon revealed from 19 CMIP5 models. Journal of Geophysical Research: Atmospheres 118: 1247–1260.Google Scholar
  52. Huntington, T.G. 2006. Evidence for intensification of the global water cycle: Review and synthesis. Journal of Hydrology 319: 83–95.CrossRefGoogle Scholar
  53. IEA. 2012. World Energy Outlook 2012. Technical Report. International Energy Agency, London.Google Scholar
  54. IEA. 2015a. World Energy Outlook 2015. Technical Report. International Energy Agency, London.Google Scholar
  55. IEA. 2015b. World Energy Trends 2015. Technical Report. International Energy Agency, London.Google Scholar
  56. IINCD. 2015. India’s intended nationally determined contribution: Working towards climate justice. Submitted to United Nations Framework Convention on Climate Change. Technical Report. Govt. of India, New Delhi.Google Scholar
  57. Immerzeel, W., F. Pellicciotti, and M. Bierkens. 2013. Rising river flows throughout the twenty-first century in two Himalayan glacierized watersheds. Nature Geoscience 6: 742–745.CrossRefGoogle Scholar
  58. Jain, S.K., and V. Kumar. 2012. Trend analysis of rainfall and temperature data for India. Current Science 102: 37–49.Google Scholar
  59. Jaramillo, F., and G. Destouni. 2014. Developing water change spectra and distinguishing change drivers worldwide. Geophysical Research Letters 41: 8377–8386. doi: 10.1002/2014GL061848.CrossRefGoogle Scholar
  60. Jaramillo, F., and G. Destouni. 2015. Local flow regulation and irrigation raise global human water consumption and footprint. Science 350: 1248–1251.CrossRefGoogle Scholar
  61. Jarsjö, J., S.M. Asokan, C. Prieto, A. Bring, and G. Destouni. 2012. Hydrological responses to climate change conditioned by historic alterations of land-use and water-use. Hydrology and Earth System Sciences 16: 1335–1347. doi: 10.5194/hess-16-1335-2012.CrossRefGoogle Scholar
  62. Jarvis, A., H. Reuter, A. Nelson, and E. Guevara. 2008. Hole-filled SRTM for the globe, Version 4. Accessed March 5, 2012, from
  63. Jarvis, W.T. 2006. Transboundary groundwater: Geopolitical consequences, commons sense, and the law of the hidden sea. PhD Thesis. Oregon: Oregon State University.Google Scholar
  64. Jayaraman, T., and K. Murari. 2014. Climate change and agriculture: Current and future trends, and implications for India. Review of Agrarian Studies 4: 1–49.Google Scholar
  65. Jhajharia, D., Y. Dinpashoh, E. Kahya, V.P. Singh, and A. Fakheri-Fard. 2012. Trends in reference evapotranspiration in the humid region of northeast India. Hydrological Processes 26: 421–435.CrossRefGoogle Scholar
  66. Jhajharia, D., R. Kumar, P. Dabral, V. Singh, R. Choudhary, and Y. Dinpashoh. 2014. Reference evapotranspiration under changing climate over the Thar Desert in India. Meteorological Applications 22: 425–435.CrossRefGoogle Scholar
  67. Joshi, M., E. Hawkins, R. Sutton, J. Lowe, and D. Frame. 2011. Projections of when temperature change will exceed 2°C above pre-industrial levels. Nature Climate Change 1: 407–412.CrossRefGoogle Scholar
  68. Joy, K.J., B. Gujja, S. Paranjape, V. Goud, and S. Vispute. 2008. Water conflicts in India: A million revolts in the making. New Delhi: Routledge.Google Scholar
  69. Jung, M., M. Reichstein, P. Ciais, S.I. Seneviratne, J. Sheffield, M.L. Goulden, G. Bonan, A. Cescatti, et al. 2010. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467: 951–954.CrossRefGoogle Scholar
  70. Khare, V., S. Nema, and P. Baredar. 2013. Status of solar wind renewable energy in India. Renewable and Sustainable Energy Reviews 27: 1–10. doi: 10.1016/j.rser.2013.06.018.CrossRefGoogle Scholar
  71. Koirala, S., Y. Hirabayashi, R. Mahendran, and S. Kanae. 2014. Global assessment of agreement among streamflow projections using CMIP5 model outputs. Environmental Research Letters 9: 064017. doi: 10.1088/1748-9326/9/6/064017.CrossRefGoogle Scholar
  72. Kothawale, D.R., and K. Rupa Kumar. 2005. On the recent changes in surface temperature trends over India. Geophysical Research Letters 32: doi: 10.1029/2005GL023528.
  73. Kraucunas, I., L. Clarke, J. Dirks, J. Hathaway, M. Hejazi, K. Hibbard, M. Huang, C. Jin, et al. 2014. Investigating the nexus of climate, energy, water, and land at decision-relevant scales: The Platform for Regional Integrated Modeling and Analysis (PRIMA). Climatic Change 129: 573–588.CrossRefGoogle Scholar
  74. Krishna Kumar, K., S.K. Patwardhan, A. Kulkarni, K. Kamala, K.K. Rao, and R. Jones. 2011. Simulated projections for summer monsoon climate over India by a high-resolution regional climate model (PRECIS). Current Science 101: 312–326.Google Scholar
  75. Laîné, A., H. Nakamura, K. Nishii, and T. Miyasaka. 2014. A diagnostic study of future evaporation changes projected in CMIP5 climate models. Climate Dynamics 42: 2745–2761. doi: 10.1007/s00382-014-2087-7.CrossRefGoogle Scholar
  76. Lambin, E.F., H.J. Geist, and E. Lepers. 2003. Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources 28: 205–241.CrossRefGoogle Scholar
  77. Lee, J.-Y., and B. Wang. 2014. Future change of global monsoon in the CMIP5. Climate Dynamics 42: 101–119.CrossRefGoogle Scholar
  78. Lehner, B., Liermann, C.R., Revenga, C., Vörösmarty, C., Fekete, B., Crouzet, P., Döll, P., Endejan, M., et al. 2011. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Frontiers in Ecology and the Environment 9: 494–502. Accessed 15 March 2016.
  79. Lima, I.B., F.M. Ramos, L.A. Bambace, and R.R. Rosa. 2008. Methane emissions from large dams as renewable energy resources: A developing nation perspective. Mitigation and Adaptation Strategies for Global Change 13: 193–206.CrossRefGoogle Scholar
  80. Mall, R., A. Gupta, R. Singh, R. Singh, and L. Rathore. 2006. Water resources and climate change: An Indian perspective. Current Science 90: 1610–1626.Google Scholar
  81. McDonald, R.I., I. Douglas, C. Revenga, R. Hale, N. Grimm, J. Grönwall, and B. Fekete. 2011. Global urban growth and the geography of water availability, quality, and delivery. Ambio 40: 437–446.CrossRefGoogle Scholar
  82. Molle, F., and J. Berkoff. 2006. Cities versus agriculture: Revisiting intersectoral water transfers, potential gains, and conflicts, vol. 10. Colombo: International Water Management Institute.Google Scholar
  83. MoWR. 2013. Report of the Standing Committee on Water Resources. Technical Report. New Delhi: Ministry of Water Resources, Govt. of India.Google Scholar
  84. Mujumdar, P., and S. Ghosh. 2008. Modeling GCM and scenario uncertainty using a possibilistic approach: Application to the Mahanadi River, India. Water Resources Research 44(6). doi: 10.1029/2007WR006137.
  85. Mukherji, A., T. Shah, and M. Giordano. 2012. Managing energy-irrigation nexus in India: A typology of state interventions. IWMI-Tata Water Policy Research Highlight. Gujarat: IWMI-Tata Water Policy Programme. Accessed November 30, 2015, from
  86. Nohara, D., A. Kitoh, M. Hosaka, and T. Oki. 2006. Impact of climate change on river discharge projected by multimodel ensemble. Journal of Hydrometeorology 7: 1076–1089.CrossRefGoogle Scholar
  87. Nune, R., B.A. George, P. Teluguntla, and A.W. Western. 2014. Relating trends in streamflow to anthropogenic influences: A case study of Himayat Sagar catchment, India. Water Resources Management 28: 1579–1595.CrossRefGoogle Scholar
  88. Oki, T., and S. Kanae. 2006. Global hydrological cycles and world water resources. Science 313: 1068–1072.CrossRefGoogle Scholar
  89. Panda, D.K., A. Kumar, S. Ghosh, and R. Mohanty. 2013. Streamflow trends in the Mahanadi River basin (India): Linkages to tropical climate variability. Journal of Hydrology 495: 135–149. doi: 10.1016/j.jhydrol.2013.04.054.CrossRefGoogle Scholar
  90. Panda, D.K., and J. Wahr. 2016. Spatiotemporal evolution of water storage changes in India from the updated GRACE-derived gravity records. Water Resources Research. doi: 10.1002/2015WR017797.Google Scholar
  91. Pandit, M.K., and R.E. Grumbine. 2012. Potential effects of ongoing and proposed hydropower development on terrestrial biological diversity in the Indian Himalaya. Conservation Biology 26: 1061–1071.CrossRefGoogle Scholar
  92. Peters, G.P., R.M. Andrew, T. Boden, J.G. Canadell, P. Ciais, C. Le Quéré, G. Marland, M.R. Raupach, et al. 2013. The challenge to keep global warming below 2°C. Nature Climate Change 3: 4–6.CrossRefGoogle Scholar
  93. Prakash, S., V. Sathiyamoorthy, C. Mahesh, and R. Gairola. 2014. An evaluation of high-resolution multisatellite rainfall products over the Indian monsoon region. International Journal of Remote Sensing 35: 3018–3035.CrossRefGoogle Scholar
  94. Prudhomme, C., I. Giuntoli, E.L. Robinson, D.B. Clark, N.W. Arnell, R. Dankers, B.M. Fekete, W. Franssen, et al. 2014. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences 111: 3262–3267.CrossRefGoogle Scholar
  95. Purohit, P., and D. Fischer. 2014. Second generation biofuel potential in India: Sustainability and cost considerations. Technical Report. Denmark: UNEP Risø Centre on Energy, Climate and Sustainable development.Google Scholar
  96. Raje, D., and R. Krishnan. 2012. Bayesian parameter uncertainty modeling in a macroscale hydrologic model and its impact on Indian river basin hydrology under climate change. Water Resources Research 48. doi: 10.1029/2011WR011123.
  97. Rao, P.G. 1995. Effect of climate change on streamflows in the Mahanadi river basin, India. Water International 20: 205–212.CrossRefGoogle Scholar
  98. Ravindranath, N., C.S. Lakshmi, R. Manuvie, and P. Balachandra. 2011. Biofuel production and implications for land use, food production and environment in India. Energy Policy 39: 5737–5745.CrossRefGoogle Scholar
  99. Ritzema, H., T. Satyanarayana, S. Raman, and J. Boonstra. 2008. Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: Lessons learned in farmers fields. Agricultural Water Management 95: 179–189.CrossRefGoogle Scholar
  100. Rodell, M., I. Velicogna, and J.S. Famiglietti. 2009. Satellite-based estimates of groundwater depletion in India. Nature 460: 999–1002.CrossRefGoogle Scholar
  101. Roxy, M.K., K. Ritika, P. Terray, R. Murtugudde, K. Ashok, and B. Goswami. 2015. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land-sea thermal gradient. Nature communications 6. doi: 10.1038/ncomms8423.
  102. Saha, A., S. Ghosh, A.S. Sahana, and E.P. Rao. 2014. Failure of CMIP5 climate models in simulating post-1950 decreasing trend of Indian monsoon. Geophysical Research Letters 41: 7323–7330.CrossRefGoogle Scholar
  103. Salvi, K., S. Kannan, and S. Ghosh. 2013. High-resolution multisite daily rainfall projections in India with statistical downscaling for climate change impacts assessment. Journal of Geophysical Research: Atmospheres 118: 3557–3578.Google Scholar
  104. Schellnhuber, H.J., K. Frieler, and P. Kabat. 2014. The elephant, the blind, and the intersectoral intercomparison of climate impacts. Proceedings of the National Academy of Sciences 111: 3225–3227.CrossRefGoogle Scholar
  105. Schewe, J., J. Heinke, D. Gerten, I. Haddeland, N.W. Arnell, D.B. Clark, R. Dankers, S. Eisner, et al. 2014. Multimodel assessment of water scarcity under climate change. Proceedings of the National Academy of Sciences 111: 3245–3250.CrossRefGoogle Scholar
  106. Shah, Z., and M.D. Kumar. 2008. In the midst of the large dam controversy: Objectives, criteria for assessing large water storages in the developing world. Water Resources Management 22: 1799–1824.CrossRefGoogle Scholar
  107. Shashikanth, K., C.G. Madhusoodhanan, S. Ghosh, T.I. Eldho, K. Rajendran, and R. Murtugudde. 2014a. Comparing statistically downscaled simulations of Indian monsoon at different spatial resolutions. Journal of Hydrology 519: 3163–3177. doi: 10.1016/j.jhydrol.2014.10.042.CrossRefGoogle Scholar
  108. Shashikanth, K., K. Salvi, S. Ghosh, and K. Rajendran. 2014b. Do CMIP5 simulations of Indian summer monsoon rainfall differ from those of CMIP3? Atmospheric Science Letters 15: 79–85. doi: 10.1002/asl2.466.CrossRefGoogle Scholar
  109. Sherif, M.M., and V.P. Singh. 1999. Effect of climate change on sea water intrusion in coastal aquifers. Hydrological Processes 13: 1277–1287.CrossRefGoogle Scholar
  110. Shiklomanov, I.A., and J.C. Rodda. 2004. World water resources at the beginning of the twenty-first century. Cambridge: Cambridge University Press.Google Scholar
  111. Shiva, V., J. Bandyopadhyay, P. Hedge, P. Hedge, B.V. Krishnamurthy, J. Kurien, G. Narendranath, V. Ramprasad, et al. 1991. Ecology and the politics of survival: Conflicts over natural resources in India. New Delhi: Sage.Google Scholar
  112. Siam, M.S., M.-E. Demory, and E.A. Eltahir. 2013. Hydrological cycles over the Congo and Upper Blue Nile Basins: Evaluation of general circulation model simulations and reanalysis products. Journal of Climate 26: 8881–8894.CrossRefGoogle Scholar
  113. Siebert, S., V. Henrich, K. Frenken, and J. Burke. 2013. Update of the global map of irrigation areas to Version 5. Bonn/Rome: University of Bonn/FAO. Accessed February 22, 2015, from
  114. Sinha, A., G. Kathayat, H. Cheng, S.F. Breitenbach, M. Berkelhammer, M. Mudelsee, J. Biswas, and R. Edwards. 2015. Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nature communications 6. doi: 10.1038/ncomms7309.
  115. Skaggs, R., K. A. Hibbard, P. Frumhoff, T. Lowry, R. Middleton, R. Pate, V. C. Tidwell, J. Arnold, et al. 2012. Climate and energy–water–land system interactions technical report to the us department of energy in support of the national climate assessment. Technical Report. Richland, WA: Pacific Northwest National Laboratory (PNNL).Google Scholar
  116. Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M.M.H.L. Tignor, and H.L. Miller. 2007. The physical science basis: Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  117. Sreeja, K.G., C.G. Madhusoodhanan, and T.I. Eldho. 2016. Coastal zones in integrated river basin management in the West Coast of India: Delineation, boundary issues and implications. Ocean & Coastal Management 119: 1–13. doi: 10.1016/j.ocecoaman.2015.09.017.CrossRefGoogle Scholar
  118. Sreeja, K.G., C.G. Madhusoodhanan, P.K. Shetty, and T.I. Eldho. 2012. Inclusive spaces in integrated river basin management: Discerning multiple boundaries of resource relations. International Journal of River Basin Management 10: 351–367. doi: 10.1080/15715124.2012.739172.CrossRefGoogle Scholar
  119. Sterling, S.M., A. Ducharne, and J. Polcher. 2013. The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change 3: 385–390. doi: 10.1038/nclimate1690.CrossRefGoogle Scholar
  120. Stocker, T.F., D. Qin, G.K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, et al. 2013. Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
  121. Sundararajan, M., and A. Mohan. 2011. A study on the impact of coalwashery effluents along Damodar river stretch in Dhanbad District Jharkhand, India. International Journal of Engineering and Management Sciences 2: 233–245.Google Scholar
  122. SWBD. 2005. Shuttle Radar Topography Mission Water Body Dataset. Accessed 5 January  2015.Google Scholar
  123. Taheripour, F., T.W. Hertel, B.N. Gopalakrishnan, S. Sahin, J.J. Escurra, et al. 2015. Agricultural production, irrigation, climate change, and water scarcity in India. In 2015 AAEA & WAEA joint annual meeting, July 26–28, San Francisco, California, No. 205591. Agricultural and Applied Economics Association & Western Agricultural Economics Association.Google Scholar
  124. TERI. 2015. TERI Energy and Environment Data Diary and Yearbook 2014/15. Technical Report. New Delhi: Energy Research Institute.Google Scholar
  125. Tian, H., K. Banger, T. Bo, and V.K. Dadhwal. 2014. History of land use in India during 1880–2010: Large-scale land transformations reconstructed from satellite data and historical archives. Global and Planetary Change 121: 78–88. doi: 10.1016/j.gloplacha.2014.07.005.CrossRefGoogle Scholar
  126. Törnqvist, R., J. Jarsjö, J. Pietroń, A. Bring, P. Rogberg, S.M. Asokan, and G. Destouni. 2014. Evolution of the hydro-climate system in the Lake Baikal basin. Journal of Hydrology 519: 1953–1962. doi: 10.1016/j.jhydrol.2014.09.074.CrossRefGoogle Scholar
  127. Tuanmu, M.-N., and W. Jetz. 2014. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography 23: 1031–1045.CrossRefGoogle Scholar
  128. UNFCCC. 2015. Paris Agreement, United Nations Framework Convention on Climate Change. Accessed December 31, 2015, from
  129. Vaidyanathan, A. 1999. Water resource management: Institutions and irrigation development in India. New Delhi: Oxford University Press.Google Scholar
  130. van Vliet, M.T.H., D. Wiberg, S. Leduc, and K. Riahi. 2016. Power-generation system vulnerability and adaptation to changes in climate and water resources. Nature Climate Change. doi: 10.1038/nclimate2903.Google Scholar
  131. Vitousek, P.M., H.A. Mooney, J. Lubchenco, and J.M. Melillo. 1997. Human domination of Earth’s ecosystems. Science 277: 494–499.CrossRefGoogle Scholar
  132. Vittal, H., S. Karmakar, and S. Ghosh. 2013. Diametric changes in trends and patterns of extreme rainfall over India from pre-1950 to post-1950. Geophysical Research Letters 40: 3253–3258. doi: 10.1002/grl.50631.CrossRefGoogle Scholar
  133. Vörösmarty, C.J., P. Green, J. Salisbury, and R.B. Lammers. 2000. Global water resources: Vulnerability from climate change and population growth. Science 289: 284–288.CrossRefGoogle Scholar
  134. WCD. 2000. Dams and development: A new framework for decision-making: The report of the World Commission on Dams. London: Earthscan.Google Scholar

Copyright information

© Royal Swedish Academy of Sciences 2016

Authors and Affiliations

  • C. G. Madhusoodhanan
    • 1
  • K. G. Sreeja
    • 1
  • T. I. Eldho
    • 1
    Email author
  1. 1.Department of Civil EngineeringIndian Institute of Technology BombayMumbaiIndia

Personalised recommendations